JPH04225403A - Distance measuring device for mobile object - Google Patents

Distance measuring device for mobile object

Info

Publication number
JPH04225403A
JPH04225403A JP90407490A JP40749090A JPH04225403A JP H04225403 A JPH04225403 A JP H04225403A JP 90407490 A JP90407490 A JP 90407490A JP 40749090 A JP40749090 A JP 40749090A JP H04225403 A JPH04225403 A JP H04225403A
Authority
JP
Japan
Prior art keywords
distance
receiving
beam emitting
receiving section
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90407490A
Other languages
Japanese (ja)
Other versions
JP2800922B2 (en
Inventor
Hironari Tanaka
裕也 田中
Kimio Kikuchi
公男 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2407490A priority Critical patent/JP2800922B2/en
Publication of JPH04225403A publication Critical patent/JPH04225403A/en
Application granted granted Critical
Publication of JP2800922B2 publication Critical patent/JP2800922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To quickly and correctly track a light wave range finder turned to a reflector regardless of the movement of a cart by measuring the distance between the cart and the reflector set at a subject position with the light wave range finder provided to the cart. CONSTITUTION:The beam transmitting/receiving devices 8a and 8b are provided at both sides of a light wave range meter 7 in such an attitude where the beams of both devices 8a and 8b are in parallel with the beam of the finder 7. Thus these devices 8a and 8b originate the beams and receive the reflected beams respectively. In this case, the space between the devices 8a and 8b is set smaller than the width of a reflector 6. Then both devices 8a and 8b are arranged so that their directions can be changed in a single body to the finder 7. Thus the directions of both devices 8a and 8b are continuously changed until they can receive the beams, that is, each of both devices 8a and 8b is turned in the beam receivable direction if it is unable to receive the beam respectively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、例えば建築現場におい
て資材を搬送する運搬車等の作業車を自律走行させる際
に必要となる作業車の位置検出を、作業車から2つの基
準位置までの距離に基づいて行なう場合等に用いられる
装置で、詳しくは、基準位置等の対象位置に設けた指標
具に向けて光や電波、音波等のビームを発信し、かつ、
その指標具からの反射ビームを受信してその指標具まで
の距離を測定する光波距離計等の距離計を作業車等の移
動体に設け、前記指標具に向く向きに前記距離計の測距
用のビーム発受信部を向き修正する追尾手段を設けてあ
る移動体の測距装置に関する。
[Industrial Application Field] The present invention detects the position of a work vehicle, which is necessary when a work vehicle such as a transport vehicle for transporting materials at a construction site runs autonomously, from the work vehicle to two reference positions. It is a device used when conducting measurements based on distance, etc. Specifically, it is a device that emits a beam of light, radio waves, sound waves, etc. toward an indicator set at a target position such as a reference position, and
A distance meter such as a light wave distance meter that receives the reflected beam from the index tool and measures the distance to the index tool is installed on a moving object such as a work vehicle, and the distance meter is oriented in a direction facing the index tool. The present invention relates to a distance measuring device for a moving object, which is provided with a tracking means for correcting the direction of a beam emitting/receiving section.

【0002】0002

【従来の技術】この種の移動体の測距装置では、移動体
の移動に伴なって指標具と距離計との位置関係が変化す
る。そして、このような位置関係の変化によって、距離
計におけるビーム発受信部の向きが指標具に向く向きか
ら外れると、所期の測距を行えなくなる。そこで、移動
体の移動にかかわらず測距を行なうには何等かの手段が
必要であり、その手段の1つとして、移動体の移動にか
かわらず、ビーム発受信部の向きが指標具に向く向きと
なるようにビーム発受信部の向きを変更する、つまり、
修正する追尾がある。
2. Description of the Related Art In this type of distance measuring device for a moving object, the positional relationship between the indicator and the distance meter changes as the moving object moves. If such a change in positional relationship causes the beam emitting/receiving section of the range finder to deviate from the direction toward the indicator, it becomes impossible to measure the distance as expected. Therefore, some kind of means is required to perform distance measurement regardless of the movement of the moving object, and one such means is to ensure that the direction of the beam emitting/receiving section is directed toward the index tool regardless of the movement of the moving object. Change the direction of the beam emitting/receiving unit so that the
There is tracking to fix.

【0003】このような追尾手段によるときは、例えば
、ビーム発受信部を縦軸芯周りに回転させてビームを走
査し、ビーム発受信部が指標具に向いて反射ビームが返
ってくる毎に測距を行なう走査手段に比較して、測距を
精度良く行なえる利点がある。つまり、走査手段による
ときは、ビーム発受信部が1回転する毎に測距を1回行
なうのであるが、ビーム発受信部が指標具に向いて反射
ビームを受信している測距時間は、ビーム発受信部が1
回転する時間のうちの極く僅かな時間であり、1回転す
る時間の大部分は測距していないいわば待ち時間である
から、特に、距離計として、前記の測距時間が4〜5秒
前後といった長時間の光波距離計を設けた場合、1回転
毎の測距時間の和が4〜5秒となるまでビーム発受信部
が回転する必要がある。従って、実際の測距には、測距
時間の数倍、或いは、数十倍の長い時間がかかり、その
長時間のうちに移動体が相当移動して、測距開始時と測
距完了時とで移動体から指標具までの距離に無視できな
い大きな差がつき、測距できない事態が発生するおそれ
がある。しかも、移動体と指標具との間でなくとも、指
標具の他に、移動体の周りに反射物があると、その反射
物からの反射ビームも指標具からの反射ビームとして受
信して誤った測距を行なうおそれがある。このことは、
特に、作業車の走行路面となる床上に資材が置かれるの
が普通であって、資材のうちには、アルミサッュで代表
される金属製の資材やガラス等、ビームの反射物となる
ものがある建築現場における作業車の測距装置としては
不都合である。それに対し、追尾手段によるときは、ビ
ーム発受信部を継続して指標具に向けることができ、か
つ、ビーム発受信部と指標具との間に他に反射物があっ
ても、それに影響されることがない。
[0003] When such a tracking means is used, for example, the beam emitting/receiving section is rotated around the vertical axis to scan the beam, and each time the beam emitting/receiving section faces the indicator and the reflected beam returns. Compared to scanning means that measure distances, this method has the advantage of being able to measure distances with high precision. In other words, when using the scanning means, distance measurement is performed once every rotation of the beam emitting/receiving section, but the distance measuring time during which the beam emitting/receiving section faces the indicator and receives the reflected beam is: Beam emitting/receiving section is 1
This is a very small amount of time during a rotation, and most of the time for one rotation is a waiting time when distance measurement is not being performed. When a long-time light wave distance meter such as front and back is provided, the beam emitting/receiving section needs to rotate until the sum of the distance measuring time for each rotation becomes 4 to 5 seconds. Therefore, actual distance measurement takes several times or several tens of times longer than the distance measurement time, and during that long period of time, the moving object moves considerably, and the difference between when distance measurement starts and when distance measurement is completed. This may result in a non-negligible large difference in the distance from the moving object to the index tool, and a situation where distance measurement may not be possible may occur. Moreover, if there is a reflective object around the moving body in addition to the indexing tool, even if it is not between the moving object and the indexing tool, the reflected beam from that reflective object may also be received as a reflected beam from the indexing tool, causing errors. There is a risk that distance measurement may be performed. This means that
In particular, it is common for materials to be placed on the floor, which serves as the road surface for work vehicles to travel on, and some of these materials can reflect the beam, such as metal materials such as aluminum sash, and glass. This is inconvenient as a distance measuring device for work vehicles at construction sites. On the other hand, when the tracking means is used, the beam emitting/receiving section can be continuously directed toward the index tool, and even if there is another reflective object between the beam emitting/receiving section and the index tool, it will not be affected by it. Never.

【0004】そのような追尾を行なう追尾手段として従
来では、テレビカメラを、ビーム発受信部と一体に向き
変更する状態で、かつ、ビーム発受信部と同じ方向を向
く状態に設け、テレビカメラによる撮影画面内での指標
具の映像位置からビーム発受信部の向きと指標具との関
係を判断し、映像画面の中央等の所定の位置に指標具の
映像がくるようにビーム発受信部を向き変更して指標具
に向く向きに修正する手段が知られている。
Conventionally, as a tracking means for performing such tracking, a television camera is installed in a state where the direction can be changed integrally with the beam emitting/receiving section and facing the same direction as the beam emitting/receiving section. The direction of the beam emitting/receiving unit and the relationship between the indicator and the indicator are determined from the image position of the indicator within the imaging screen, and the beam emitting/receiving unit is moved so that the image of the indicator is at a predetermined position such as the center of the image screen. There is a known method for changing the direction and correcting the direction to face the index tool.

【0005】[0005]

【発明が解決しようとする課題】しかし、前記従来の技
術によるときは、映像を処理するのに時間がかかり、移
動体の移動装置が限定される欠点があった。
However, the above-mentioned conventional technology has the disadvantage that it takes time to process the image and that the mobile device for moving the moving object is limited.

【0006】本発明の目的は、正確に、かつ、高速に追
尾する点にある。
An object of the present invention is to perform accurate and high-speed tracking.

【0007】[0007]

【課題を解決するための手段】本発明による移動体の測
距装置の第1の特徴構成は、前記追尾手段を構成するに
、前記ビーム発受信部から向き変更方向の一方側に前記
指標具の幅よりも小なる第1設定距離を隔てた箇所に、
ビームの発信向きと受信向きとが同一の修正方向検出用
の2つのビーム発受信器のうちの一方を、それの発信ビ
ームが前記ビーム発受信部の発信ビームと平行になる姿
勢に配設し、その一方のビーム発受信器から向き変更方
向他方側に前記第1設定距離以上で、かつ、指標具の幅
よりも小なる第2設定距離を隔てた箇所に、他方のビー
ム発受信器を、その発信ビームが一方のビーム発受信器
の発信ビームと平行となる姿勢に配設し、前記ビーム発
受信部及びビーム発受信器を一体的に向き変更する駆動
装置と、前記ビーム発受信器夫々の受信の有無を検出す
るセンサと、これらセンサの検出結果に基づいて、一方
のセンサが無検出したときは他方側に、かつ、他方のセ
ンサが無検出したときは一方側に夫々2つのセンサが有
検出するまで向き変更するように駆動装置を作動させる
向き修正制御手段とを設けてある点にある。
[Means for Solving the Problems] A first feature of the distance measuring device for a moving object according to the present invention is that the tracking means includes the indicator tool located on one side of the direction change direction from the beam emitting/receiving section. At a location separated by a first set distance smaller than the width of
One of the two beam transmitting/receiving devices for detecting correction directions in which the beam transmitting direction and the receiving direction are the same is arranged in a posture such that its transmitting beam is parallel to the transmitting beam of the beam transmitting/receiving section. , the other beam transmitter/receiver is placed at a location separated from the one beam transmitter/receiver on the other side in the direction change direction by a second set distance that is equal to or greater than the first set distance and smaller than the width of the index tool. , a driving device for integrally changing the direction of the beam emitting/receiving unit and the beam emitting/receiving device, the beam emitting/receiving unit being arranged in a posture such that its emitting beam is parallel to the emitting beam of one beam emitting/receiving device; and the beam emitting/receiving device. Based on the detection results of these sensors, two sensors are installed on the other side when one sensor detects no reception, and two on one side when the other sensor detects no reception. A direction correction control means is provided for operating the drive device to change the direction until the sensor detects the presence.

【0008】本発明による移動体の測距装置の第2の特
徴構成は、第1の特徴構成において、前記他方のビーム
発受信器を、前記ビーム発受信部から向き変更方向の他
方側に第1設定距離を隔た箇所に設けてある点にある。
[0008] A second characteristic configuration of the distance measuring device for a moving body according to the present invention is that in the first characteristic configuration, the other beam transmitter/receiver is moved from the beam transmitter/receiver to the other side in the direction change direction. They are located at points located one set distance apart.

【0009】本発明による移動体の測距装置の第3の特
徴構成は、第2の特徴構成において、前記2つのビーム
発受信器の夫々が、前記とは別の距離計のビーム発受信
部から構成されている点にある。
A third characteristic configuration of the ranging device for a moving body according to the present invention is that in the second characteristic configuration, each of the two beam transmitting and receiving units is a beam transmitting and receiving unit of a distance meter different from the above. The point is that it is made up of.

【0010】0010

【作用】第1の特徴構成によれば、2つの修正方向検出
用のビーム発受信器の向き変更方向の間隔が指標具の幅
よりも小であるとともに、測距用のビーム発受信部が一
方のビーム発受信器から向き変更方向で他方のビーム発
受信器側に第1設定距離を隔てて位置しており、かつ、
ビーム発受信部とビーム発受信器とのビームが互いに平
行であるから、2つのビーム発受信器が指標具からの反
射ビームをともに受信していれば、ビーム発受信部は指
標具からの反射ビームを受信していることになる。そし
て、ビーム発受信器の一方がビームを受信しないことは
、2つのビーム発受信器及びビーム発受信部の全てが受
信している適正向きから一方側に向きがずれたことであ
り、他方がビームを受信しないことは、適正向きから他
方側に向きがずれたことであって、これがセンサによっ
て検出される。このセンサの検出結果に基づいて向き修
正制御手段が駆動装置が作動させて、適正向きに修正さ
せる。以上のように、修正方向検出用のビーム発受信器
のビーム受信の有無に基づいて向きを修正させる、つま
り、追尾させるから、追尾にテレビカメラを用いる場合
には必要であった時間のかかる画像処理が不要である。
[Operation] According to the first characteristic configuration, the interval between the direction change directions of the two beam transmitters and receivers for detecting correction direction is smaller than the width of the index tool, and the beam transmitter and receiver for distance measurement is located at a first set distance from one beam emitter/receiver in the direction of change of orientation to the other beam emitter/receiver, and
Since the beams from the beam emitting/receiving section and the beam emitting/receiving section are parallel to each other, if the two beam emitting/receiving devices both receive the reflected beam from the indexing device, the beam emitting/receiving section receives the reflected beam from the indexing device. This means that the beam is being received. If one of the beam emitters/receivers does not receive the beam, it means that the two beam emitters/receivers and the beam emitter/receiver section have all deviated from the proper direction in which they are receiving the beam, and the other beam is not receiving the beam. Failure to receive a beam is a deviation from the proper orientation to the other side, which is detected by the sensor. Based on the detection result of this sensor, the driving device operates the orientation correction control means to correct the orientation to an appropriate orientation. As described above, the direction is corrected based on the presence or absence of beam reception by the beam emitter/receiver for detecting the corrected direction, that is, the direction is tracked, which takes time to capture images that would otherwise be required if a television camera was used for tracking. No processing required.

【0011】第2の特徴構成によれば、測距用のビーム
発受信部から2つの修正方向検出用のビーム発受信器ま
での距離が等しいから、向きが一方側にずれた場合と他
方側にずれた場合との向き修正の特性を同じにできる。
According to the second characteristic configuration, since the distances from the distance measuring beam emitting/receiving unit to the two correcting direction detecting beam emitting/receiving units are equal, if the direction is shifted to one side and the other side The characteristics of direction correction can be made the same as when the direction is shifted.

【0012】第3の特徴構成によれば、急激な移動体の
向き変更により、測距用のビーム発受信部が受信しない
ほど大きく向きがずれても、修正方向検出用のビーム発
受信器の1つが受信を維持している可能性があるので、
測距が途切れることを少なくできる。
According to the third characteristic configuration, even if the direction of the moving body deviates so much that the distance measuring beam emitting/receiving unit cannot receive the beam due to a sudden change in direction, the beam emitting/receiving unit for correcting direction detection can There is a possibility that one is maintaining reception, so
Discontinuities in distance measurement can be reduced.

【0013】[0013]

【発明の効果】従って、本発明によれば、移動体の移動
にかかわらずビーム発受信部を指標具に向ける追尾を、
移動体の移動速度を限定することがないように正確、か
つ、高速に行えて、たとえ、測距精度の低下原因となる
資材が存在する建築現場においても、所期の距離測定を
精度良く行なうことができる。特に、請求項2記載のよ
うにすれば、いずれの方向への向きのずれであっても正
確、精度良く追尾させて測距精度を一層向上できる。更
に、請求項3記載のようにすれば、測距時間を長くして
より一層、測距精度を向上できる。
[Effects of the Invention] Therefore, according to the present invention, regardless of the movement of the moving object, the beam emitting/receiving section can be directed to the index tool for tracking.
To perform accurate and high-speed measurement without limiting the movement speed of a moving object, and to accurately measure the desired distance even at a construction site where there are materials that may cause a decrease in distance measurement accuracy. be able to. In particular, according to the second aspect of the present invention, it is possible to accurately and accurately track a deviation in orientation in any direction, thereby further improving distance measurement accuracy. Furthermore, according to the third aspect of the present invention, the distance measurement time can be lengthened to further improve the distance measurement accuracy.

【0014】[0014]

【実施例】本発明の実施例を次に示す。[Example] Examples of the present invention are shown below.

【0015】移動体の一例である自律走行式の運搬車1
は、図1、図3にも示すように、走行面に設定したXY
座標上で運搬車1の位置Pを検出する位置検出手段2と
、運搬車1の移動方向を検出する方向検出手段3と、前
記位置検出手段2及び方向検出手段3の検出結果に基づ
いて目標位置P0 に到着するように走行手段4を作動
させる自律走行用の自動走行制御手段5とを備えている
[0015] Autonomous transport vehicle 1 which is an example of a mobile object
As shown in Figs. 1 and 3, the XY
A position detecting means 2 for detecting the position P of the transport vehicle 1 on the coordinates, a direction detecting means 3 for detecting the moving direction of the transport vehicle 1, and a target based on the detection results of the position detecting means 2 and the direction detecting means 3. The vehicle is equipped with an automatic travel control means 5 for autonomous travel which operates the travel means 4 so as to arrive at the position P0.

【0016】前記位置検出手段2は、図1乃至図3に示
すうに、XY座標の原点を位置検出基準の第1の対象位
置P1 とし、かつ、原点からX軸方向に設定距離L0
 を隔てた位置を位置検出基準の第2の対象位置P2 
とするものであって、運搬車1の位置Pから前記第1の
対象位置P1 までの距離LP1 を測定する第1の測
距装置A1 と、運搬車1の位置Pから前記第2の対象
位置P2 までの距離LP2 を測定する第2の測距装
置A2 と、それら測距装置A1 ,A2 夫々による
測定距離LP1 ,LP2 及び前記設定距離L0 か
ら運搬車1の位置Pの座標値(X,Y)を算出する算出
手段Bとから成る。
As shown in FIGS. 1 to 3, the position detection means 2 sets the origin of the XY coordinates to a first target position P1 of the position detection reference, and sets a set distance L0 in the X-axis direction from the origin.
The second target position P2 of the position detection reference is the position separated by
A first distance measuring device A1 that measures the distance LP1 from the position P of the transport vehicle 1 to the first target position P1, and a first distance measuring device A1 that measures the distance LP1 from the position P of the transport vehicle 1 to the second target position A second distance measuring device A2 measures the distance LP2 to P2, and the coordinate values (X, Y ).

【0017】前記第1及び第2の測距装置A1 ,A2
 は、図1、図2に示すように、夫々、対象位置P1 
,P2 に設けた指標具6に向けて赤外線ビームを発信
し、かつ、その指標具からの反射赤外線ビームを受信し
て、発信から受信までの時間から指標具までの距離を測
定対象の前記距離LP1 ,LP2 として測定する光
波距離計7と、前記対象とする指標具6に赤外線ビーム
を発信するように指標具6に向く向きに前記光波距離計
7の全体を向き修正する追尾手段8とから成る。
[0017] The first and second distance measuring devices A1 and A2
As shown in FIGS. 1 and 2, respectively, the target position P1
, P2, and receives the reflected infrared beam from the indicator, and calculates the distance to the indicator based on the time from transmission to reception. A light wave distance meter 7 that measures as LP1 and LP2, and a tracking means 8 that corrects the direction of the entire light wave distance meter 7 to face the index tool 6 so as to transmit an infrared beam to the target index tool 6. Become.

【0018】前記指標具6は、入射(受信)した赤外線
ビームをそれの入射方向と平行な方向に反射するコーナ
キューブ利用の反射鏡である。
The index tool 6 is a reflecting mirror using a corner cube that reflects an incident (received) infrared beam in a direction parallel to the direction of incidence of the infrared beam.

【0019】前記光波距離計7の取付手段は、図2に示
すように、運搬車1に2つのターンテーブル9を同一の
鉛直軸芯y周りに各別に回転自在に支持させ、これらタ
ーンテーブル9の夫々に、支持枠10を水平軸芯x周り
に揺動自在に支持させ、それら支持枠10の夫々に対応
する光波距離計7を装着する手段である。つまり、光波
距離計7は、ターンテーブル9の回転と支持枠10の揺
動とにより向きを変更するようになっている。
As shown in FIG. 2, the means for attaching the light wave distance meter 7 is to support two turntables 9 on the transport vehicle 1 so as to be rotatable around the same vertical axis y, and to attach the turntables 9 to the vehicle 1. The support frame 10 is supported swingably around the horizontal axis x, and the light wave distance meter 7 corresponding to each of the support frames 10 is attached to the support frame 10. In other words, the direction of the optical distance meter 7 is changed by the rotation of the turntable 9 and the swinging of the support frame 10.

【0020】前記追尾手段8は、運搬車1の移動に伴な
う光波距離計7と反射鏡6との水平方向での相対変位に
かかわらず、光波距離計7の測距用のビーム発受信部7
aを反射鏡6に向かせて測距を行なえるようにするため
の手段である。そして、図4に示すように、赤外線ビー
ムの発信向きと受信向きとが同一の修正方向検出用の2
つのビーム発受信器8a,8bと、ターンテーブル9を
回転させて光波距離計7を向き変更するステッピングモ
ータ8A(駆動装置の一例)と、前記修正方向検出用の
ビーム発受信器8a,8b夫々の受信の有無を検出する
センサSa,Sbと、向き修正制御手段8Bとから成る
The tracking means 8 is capable of transmitting and receiving beams for distance measurement of the light wave range meter 7, regardless of the relative displacement in the horizontal direction between the light wave range meter 7 and the reflecting mirror 6 as the transport vehicle 1 moves. Part 7
This is a means for directing a to the reflecting mirror 6 and performing distance measurement. As shown in FIG. 4, there are two
a stepping motor 8A (an example of a driving device) that rotates the turntable 9 to change the direction of the optical distance meter 7, and beam transmitters and receivers 8a and 8b for detecting the corrected direction, respectively. It consists of sensors Sa and Sb that detect the presence or absence of reception, and direction correction control means 8B.

【0021】前記修正方向検出用のビーム発受信器8a
,8bは、図6乃至図8に示すように、測距用のビーム
発受信部7aから向き変更方向の両側方夫々に第1設定
距離L1 を隔てた箇所に、それらの発信ビームが測距
用のビーム発受信部7aの発信ビームと平行になる姿勢
で配設され、かつ、測距用のビーム発受信部7aと一体
的に向き変更されるようにターンテーブル9に取付けら
れている。前記第1設定距離L1 と反射鏡6の幅Lと
は、2L1 <Lの関係に設定されている。つまり、2
つのビーム発受信器8a,8bの間隔(第2設定距離)
L2 は、2L1 である。
Beam transmitter/receiver 8a for detecting the correction direction
, 8b, as shown in FIGS. 6 to 8, the emitted beams are emitted from the beam emitting/receiving unit 7a for distance measurement at a first set distance L1 on both sides of the direction change direction. The beam emitting/receiving section 7a for distance measurement is arranged in a posture parallel to the emitted beam of the beam emitting/receiving section 7a, and is attached to the turntable 9 so as to be changed in direction integrally with the beam emitting/receiving section 7a for distance measurement. The first set distance L1 and the width L of the reflecting mirror 6 are set to have a relationship of 2L1 <L. In other words, 2
Interval between two beam transmitters and receivers 8a and 8b (second set distance)
L2 is 2L1.

【0022】前記向き修正制御手段8Bは、図6に示す
ように、前記2つのセンサSa,Sbがともに有検出す
るように前記ステッピングモータ8Aを作動させる手段
であって、具体的には、図7に示すように一方のセンサ
Saが無検出したときには、図6に示すように2つのセ
ンサSa,Sbがともに有検出するまで他方側に、かつ
、図8に示すように他方のセンサSbが無検出したとき
には、図6に示すように2つのセンサSa,Sbがとも
に有検出するまで一方側に夫々ターンテーブル9を回転
するようにステッピングモータ8Aを作動させる手段で
ある。
As shown in FIG. 6, the direction correction control means 8B is means for operating the stepping motor 8A so that the two sensors Sa and Sb both detect presence. When one sensor Sa detects no detection as shown in FIG. 7, the other sensor Sa and Sb move to the other side as shown in FIG. 8 until both sensors Sa and Sb detect presence. When no detection is detected, the stepping motor 8A is actuated to rotate the turntable 9 to one side, respectively, until both sensors Sa and Sb detect presence, as shown in FIG.

【0023】前記算出手段Bは、図1に示すように、次
の3つの式を用いて、運搬車1の位置Pの座標値(X,
Y)を算出する手段である。
As shown in FIG. 1, the calculation means B calculates the coordinate values (X,
Y).

【0024】[0024]

【数1】 cosλ=(L02+LP12−LP22)/2・L0
 ・LP1 X=LP1 ・cosλ Y=LP1 ・sinλ
[Equation 1] cosλ=(L02+LP12-LP22)/2・L0
・LP1 X=LP1 ・cosλ Y=LP1 ・sinλ

【0025】前記方向検出手段3は、図1、図2、図5
に示すように、運搬車1の移動方向に対するビーム発受
信部7aの向きの傾き角αを検出する、具体的には、運
搬車1に対するターンテーブル9の回転角を検出するロ
ータリエンコーダ3Aを設け、そのロータリエンコーダ
3Aが検出した傾き角αと、前記第1、第2の測距装置
A1 ,A2 の測定距離LP1 ,LP2 と、設定
距離L0 とから、運搬車1の移動方向を、それのY軸
方向に対する傾斜角θとして算出する演算手段3Bを設
けて構成されている。そして、数2、数3で示す式から
θを求めるものである。
The direction detecting means 3 is shown in FIGS. 1, 2, and 5.
As shown in FIG. 2, a rotary encoder 3A is provided to detect the inclination angle α of the direction of the beam emitting/receiving unit 7a with respect to the moving direction of the carrier vehicle 1, specifically, to detect the rotation angle of the turntable 9 with respect to the carrier vehicle 1. , the moving direction of the transport vehicle 1 is determined from the inclination angle α detected by the rotary encoder 3A, the measured distances LP1, LP2 of the first and second distance measuring devices A1, A2, and the set distance L0. A calculation means 3B is provided to calculate the inclination angle θ with respect to the Y-axis direction. Then, θ is determined from the equations shown in Equations 2 and 3.

【0026】[0026]

【数2】 cosλ=(L02+LP12−LP22)/2・L0
 ・LP1                    
 から λ=cos−1{(L02+LP12−LP22)/2
・L0 ・LP1 }
[Formula 2] cosλ=(L02+LP12-LP22)/2・L0
・LP1
From λ=cos-1 {(L02+LP12-LP22)/2
・L0 ・LP1 }

【0027】[0027]

【数3】λ=(π/2)−(α+θ)11と12は、支
持枠10を水平軸芯X周りに揺動させて距離計7を上下
に向き変更するステッピングモータと向きを検出するエ
ンコーダである。
[Equation 3] λ = (π/2) - (α + θ) 11 and 12 are a stepping motor that swings the support frame 10 around the horizontal axis X to change the direction of the distance meter 7 up and down, and detects the direction. It is an encoder.

【0028】〔別実施例〕本発明の別実施例を以下に示
す。
[Another Example] Another example of the present invention will be shown below.

【0029】〔1〕  上記実施例では、距離計7とし
て、ビームの発信から受信までに要した時間から、反射
鏡6までの距離を測定するものを示したが、距離計7と
しては、発信ビームと受信ビームとの位相差から距離を
測定するものであっても良い。
[1] In the above embodiment, the distance meter 7 measures the distance to the reflector 6 from the time required from transmitting the beam to receiving the beam. The distance may be measured based on the phase difference between the beam and the received beam.

【0030】〔2〕  上記実施例では、ビーム発受信
部7a及びビーム発受信器8a,8bのビームとして、
電磁波の1つである赤外線を示したが、ビームとしては
、赤外光以外の電磁波や音波、超音波であっても良い。
[2] In the above embodiment, the beams of the beam emitting/receiving section 7a and the beam emitting/receiving devices 8a, 8b are as follows:
Although infrared light, which is one type of electromagnetic waves, is shown, the beam may be electromagnetic waves other than infrared light, sound waves, or ultrasonic waves.

【0031】〔3〕  上記実施例において、図9で示
すように、測距用のビーム発受信部7aの受信の有無を
検出する第3センサScを設けることにより、反射鏡6
の幅Lと第1設定距離L1 とがL<2L1 の場合に
、測距用のビーム発受信部7aをいずれか一方の修正方
向検出用のビーム発受信器8a,8bとして利用して、
修正方向を検出するようにする。なお、図では、他方側
のビーム発受信部8bとして利用した態様を示してある
[3] In the above embodiment, as shown in FIG. 9, by providing the third sensor Sc for detecting the presence or absence of reception by the beam emitting/receiving section 7a for distance measurement, the reflecting mirror 6
When the width L and the first set distance L1 are L<2L1, the beam emitting/receiving section 7a for distance measurement is used as one of the beam emitting/receiving devices 8a, 8b for detecting the correction direction,
Detect the correction direction. Note that the figure shows a mode in which it is used as the beam emitting/receiving section 8b on the other side.

【0032】〔4〕  上記実施例において、図10に
示すように、測距用のビーム発受信部7aをもって、修
正方向検出用のビーム発受信器8a,8bのいずれか一
方を兼用させる。この場合、第2設定距離L2 が第1
設定距離L1 となる。
[4] In the above embodiment, as shown in FIG. 10, the beam emitting/receiving section 7a for ranging is used also as one of the beam emitting/receiving devices 8a, 8b for detecting correction direction. In this case, the second set distance L2 is
The set distance is L1.

【0033】〔5〕  上記実施例では、移動体1とし
て運搬車を示したが、移動体1としては、コンクリート
床面仕上げ機等の各種の作業車を他に挙げることができ
る。
[5] In the above embodiment, a transport vehicle is shown as the moving body 1, but the moving body 1 may also include various working vehicles such as a concrete floor finishing machine.

【0034】〔6〕  上記実施例において、修正方向
検出用のビーム発受信器8a,8bを光波距離計から構
成する。
[6] In the above embodiment, the beam transmitters/receivers 8a, 8b for detecting the correction direction are constituted by optical distance meters.

【0035】〔7〕  尚、特許請求の範囲の項に図面
との対照を便利にする為に符号を記すが、該記入により
本発明は添付図面の構成に限定されるものではない。
[7] Note that although reference numerals are written in the claims for convenience of comparison with the drawings, the present invention is not limited to the structure of the attached drawings by these entries.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】平面図[Figure 1] Plan view

【図2】概略構成図[Figure 2] Schematic configuration diagram

【図3】ブロック図[Figure 3] Block diagram

【図4】ブロック図[Figure 4] Block diagram

【図5】ブロック図[Figure 5] Block diagram

【図6】概略平面図[Figure 6] Schematic plan view

【図7】概略平面図[Figure 7] Schematic plan view

【図8】概略平面図[Figure 8] Schematic plan view

【図9】別実施例を示す概略平面図[Fig. 9] Schematic plan view showing another embodiment

【図10】別実施例を示す概略平面図FIG. 10 is a schematic plan view showing another embodiment.

【符号の説明】[Explanation of symbols]

6          指標具 1          移動体 7          距離計 8          追尾手段 7a        測距用のビーム発受信部8a,8
b  修正方向検出用のビーム発受信器Sa,Sb  
センサ 8A        駆動装置
6 Indicator 1 Moving object 7 Distance meter 8 Tracking means 7a Beam emitting/receiving unit 8a, 8 for distance measurement
b Beam transmitter/receiver Sa, Sb for detecting correction direction
Sensor 8A drive device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  対象位置に設けた指標具(6)に向け
てビームを発信し、かつ、その指標具(6)からの反射
ビームを受信してその指標具(6)までの距離を測定す
る距離計(7)を移動体(1)に取付け、前記指標具(
6)に向く向きに前記距離計(7)の測距用のビーム発
受信部(7a)を向き修正する追尾手段(8)を設けて
ある移動体の測距装置であって、前記追尾手段(8)を
構成するに、前記ビーム発受信部(7a)から向き変更
方向の一方側に前記指標具(6)の幅(L)よりも小な
る第1設定距離(L1)を隔てた箇所に、ビームの発信
向きと受信向きとが同一の修正方向検出用の2つのビー
ム発受信器(8a),(8b)のうちの一方(8a)を
、それの発信ビームが前記ビーム発受信部(7a)の発
信ビームと平行になる姿勢に配設し、その一方のビーム
発受信器(8a)から向き変更方向他方側に前記第1設
定距離(L1)以上で、かつ、指標具(6)の幅(L)
よりも小なる第2設定距離(L2)を隔てた箇所に、他
方のビーム発受信器(8b)を、その発信ビームが一方
のビーム発受信器(8a)の発信ビームと平行となる姿
勢に配設し、前記ビーム発受信部(7a)及びビーム発
受信器(8a),(8b)を一体的に向き変更する駆動
装置(8A)と、前記ビーム発受信器(8a),(8b
)夫々の受信の有無を検出するセンサ(Sa),(Sb
)と、これらセンサ(Sa),(Sb)の検出結果に基
づいて、一方のセンサ(Sa)が無検出したときは他方
側に、かつ、他方のセンサ(Sb)が無検出したときは
一方側に夫々2つのセンサ(Sa),(Sb)が有検出
するまで向き変更するように駆動装置(8A)を作動さ
せる向き修正制御手段(8B)とを設けてある移動体の
測距装置。
[Claim 1] A beam is emitted toward an index tool (6) provided at a target position, and a reflected beam from the index tool (6) is received to measure the distance to the index tool (6). A distance meter (7) is attached to the moving body (1), and the indicator tool (
6) A distance measuring device for a moving body, comprising a tracking means (8) for correcting the direction of a beam emitting/receiving unit (7a) for distance measurement of the range finder (7), the tracking means (8) is a location separated from the beam emitting/receiving section (7a) by a first set distance (L1) smaller than the width (L) of the index tool (6) on one side in the direction change direction. Then, one (8a) of the two beam transmitting/receiving devices (8a), (8b) for detecting correction directions in which the beam transmitting direction and the receiving direction are the same is connected to the beam transmitting/receiving section. (7a) in a posture parallel to the transmitting beam, and the indexing device (6 ) width (L)
The other beam transmitter/receiver (8b) is placed at a location separated by a second set distance (L2) that is smaller than a driving device (8A) for integrally changing the direction of the beam emitting/receiving section (7a) and the beam emitting/receiving devices (8a), (8b);
) sensors (Sa) and (Sb) that detect the presence or absence of reception of each
), and based on the detection results of these sensors (Sa) and (Sb), when one sensor (Sa) does not detect, the other side, and when the other sensor (Sb) does not detect, one side A distance measuring device for a moving body, which is provided with a direction correction control means (8B) that operates a drive device (8A) to change the direction until two sensors (Sa) and (Sb) detect the presence of the object.
【請求項2】  前記他方のビーム発受信器(8b)を
、前記ビーム発受信部(7a)から向き変更方向の他方
側に第1設定距離(L1)を隔た箇所に設けてある請求
項1記載の移動体の測距装置。
2. The other beam transmitter/receiver (8b) is provided at a location separated from the beam transmitter/receiver (7a) by a first set distance (L1) on the other side in the direction change direction. 1. The distance measuring device for a moving object according to 1.
【請求項3】  前記2つのビーム発受信器(8a),
(8b)の夫々が、前記とは別の距離計のビーム発受信
部から構成されている請求項2記載の移動体における測
距装置。
3. The two beam transmitters/receivers (8a),
3. The distance measuring device for a moving body according to claim 2, wherein each of (8b) is constituted by a beam emitting/receiving section of a distance meter different from the above.
JP2407490A 1990-12-27 1990-12-27 Moving object distance measuring device Expired - Fee Related JP2800922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2407490A JP2800922B2 (en) 1990-12-27 1990-12-27 Moving object distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2407490A JP2800922B2 (en) 1990-12-27 1990-12-27 Moving object distance measuring device

Publications (2)

Publication Number Publication Date
JPH04225403A true JPH04225403A (en) 1992-08-14
JP2800922B2 JP2800922B2 (en) 1998-09-21

Family

ID=18517060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2407490A Expired - Fee Related JP2800922B2 (en) 1990-12-27 1990-12-27 Moving object distance measuring device

Country Status (1)

Country Link
JP (1) JP2800922B2 (en)

Also Published As

Publication number Publication date
JP2800922B2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US7474256B2 (en) Position detecting system, and transmitting and receiving apparatuses for the position detecting system
AU2006224653B2 (en) Method and system for determining position and orientation of an object
US8699036B2 (en) Device for optically scanning and measuring an environment
US4691446A (en) Three-dimensional position measuring apparatus
AU2008250667B2 (en) Method for determining position, laser beam detector and detector-reflector device for a system for determining position
US7538888B2 (en) Method for estimating absolute distance of tracking laser interferometer and tracking laser interferometer
US9869757B2 (en) Self-calibrating laser tracker and self-calibration method
JP2004198330A (en) Method and apparatus for detecting position of subject
JP7120723B2 (en) laser scanner system
JP2014215296A (en) Laser scanner for traveling object navigation
JP4172882B2 (en) Method and equipment for detecting position of moving object
JP3982959B2 (en) Mobile body position detection equipment
JP2800922B2 (en) Moving object distance measuring device
JPH11183174A (en) Position measuring apparatus for mobile
JP2930389B2 (en) Moving object distance measuring device
JPS6227406B2 (en)
JPH063112A (en) Optical method for measuring distance
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JP2736558B2 (en) Position measuring method and device
JP2689266B2 (en) Three-dimensional position measuring device
JPH112521A (en) Position-measuring plotting device with inclination sensor
JPH05257530A (en) Method and device for correcting bearing and position of moving robot
JPH06147911A (en) Device for correcting direction of moving robot
JP2784480B2 (en) 2D position and direction measurement device for moving objects
JPH01314912A (en) Automatic measurement device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees