JPH0422491A - Preparation of pyrogen free water - Google Patents

Preparation of pyrogen free water

Info

Publication number
JPH0422491A
JPH0422491A JP2128351A JP12835190A JPH0422491A JP H0422491 A JPH0422491 A JP H0422491A JP 2128351 A JP2128351 A JP 2128351A JP 12835190 A JP12835190 A JP 12835190A JP H0422491 A JPH0422491 A JP H0422491A
Authority
JP
Japan
Prior art keywords
membrane module
remove
pyrogens
adsorbent
ultrafiltration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2128351A
Other languages
Japanese (ja)
Inventor
Hideo Akahori
赤堀 英雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2128351A priority Critical patent/JPH0422491A/en
Publication of JPH0422491A publication Critical patent/JPH0422491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To perfectly remove an endotoxin especially difficult to remove among pyrogens by transmitting pyrogen-containing water through an adsorbent layer and a precise filter membrane module and subsequently transmitting the same through an ultrafiltration membrane module. CONSTITUTION:Tap water is transmitted through a packed bed of an adsorbent represented by activated carbon to adsorb and remove residual chlorine or org. matter (offensive smell components such as a mold smell or pyrogens). Further, the fine particles such as iron rust or bacteria in tap water are prevented from transmission by a precise filter membrane module. An ultrafiltration membrane module perfectly blocks pyrogens not remove by the adsorbent and the precise filter membrane module. Therefore, as the ultrafiltration membrane module, one showing fractionating characteristics (a nominal fractionation mol.wt.(MW) being an MW showing an inhibition ratio of 90% on the basis of polyethylene glycol is about 10000) or one required in characteristics on a further small MW side is used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パイロジエン除去水の製造法に関する。更に
詳しくは、膜透過法によるパイロジエン除去水の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing pyrogen-free water. More specifically, the present invention relates to a method for producing pyrogen-free water using a membrane permeation method.

〔従来の技術〕および〔発明が解決しようとする課題〕
医薬用注射液に用いられる純水の製造においては、一般
にパイロジエン(発熱性物質)といわれている物質を除
去する必要があり、従来はそれの除去が蒸留法によって
行われてきた。最近になって、逆浸透膜を用いる方法も
採用されてきており、これら2つの方法が法的にも認め
られている。
[Prior art] and [Problem to be solved by the invention]
In the production of pure water used for pharmaceutical injections, it is necessary to remove a substance generally called a pyrogen (pyrogen), and conventionally this has been done by distillation. Recently, methods using reverse osmosis membranes have also been adopted, and these two methods are legally recognized.

しかしながら、蒸留法においては、熱源が必要なこと、
エネルギー消費量が大きいことなどから製造コストがか
かり、また逆浸透膜法では、高水圧を発生可能な循環ポ
ンプなどの設備を必要としている。
However, the distillation method requires a heat source;
Manufacturing costs are high due to high energy consumption, and the reverse osmosis membrane method requires equipment such as circulation pumps that can generate high water pressure.

パイロジエンの除去法としては、上記2つの方法以外に
も、活性炭などの吸着剤、ポリオレフィン系材質の口過
膜などの吸着効果による方法などが提案されているが、
こうした吸着法では大部分のパイロジエンが除去される
ものの、完全にそれが阻止される訳ではない。
In addition to the above two methods, methods for removing pyrodiene have been proposed, including methods using adsorbents such as activated carbon, and methods using adsorption effects such as membranes made of polyolefin materials.
Although these adsorption methods remove most of the pyrodiene, they do not completely prevent it.

ところで、パイロジエンと呼ばれるものには、数多くの
物質が存在するが、特に除去が困難であるとされている
のは、低分子量のパイロジエンである1′エンド1〜キ
シン″と呼ばれる物質である。
By the way, there are many substances called pyrodiene, but one substance that is said to be particularly difficult to remove is a substance called 1'endo-xin'' which is a low molecular weight pyrodiene.

エンドトキシンとは、ダラム陰性菌由来のりボボリサッ
カライドであり、一般にはパイロジエンと同意語として
用いられている。
Endotoxin is a polysaccharide derived from Durham-negative bacteria, and is generally used synonymously with pyrodiene.

本発明の目的は、かかるエンドトキシンを始めとするパ
イロジエンの完全なる除去を、コストのかからない方法
によって行うことを可能とするパイロジエン除去水の製
造法を提供することにある。
An object of the present invention is to provide a method for producing pyrogen-free water that makes it possible to completely remove pyrodiene, including endotoxin, by an inexpensive method.

〔課題を解決するための手段〕[Means to solve the problem]

かかる本発明の目的は、パイロジエン含有水を吸着剤層
および精密口過膜モジュールを透過させた後、限外口過
膜モジュールを透過させ、パイロジエン除去水を製造す
ることによって達成される。
This object of the present invention is achieved by passing pyrodiene-containing water through an adsorbent layer and a precision filtration membrane module, and then passing it through an ultrafiltration membrane module to produce pyrogen-free water.

基本的には、エンドトキシンを始めとするパイロジエン
の除去は、限外口過膜モジュールのみを用いても行うこ
とができるが、その場合には目詰りによる流量低下が著
しいので、それに先立って水道水などのパイロジエン含
有水を吸着剤層および精密口過膜モジュールを任意の順
序、一般にはこの順序で透過させることが行われる。
Basically, the removal of endotoxins and other pyrogenes can be carried out using only the ultrafiltration membrane module, but in that case, the flow rate decreases significantly due to clogging, so first use tap water. The pyrodiene-containing water is passed through the adsorbent layer and the precision filtration membrane module in any order, generally in this order.

活性炭によって代表される吸着剤の充填層での透過では
、水道水中の残留塩素や有機物(かび臭などの臭気成分
やパイロジエンなど)の吸着除去が行われる。また、精
密口過膜モジュールの透過では、鉄錆などの微粒子や細
菌類などが阻止される。この精密口過膜モジュールは、
限外口過膜モジュールへの負荷をなるべく小さく抑える
ため、孔径が約0.01−0.05μmのレベルで、純
水透過係数が100aJ/aiT・(kg/ci)・h
r以上の精密口過膜が必要となる。
Permeation through a packed bed of adsorbent, typically activated carbon, adsorbs and removes residual chlorine and organic substances (odor components such as musty odor, pyrodiene, etc.) in tap water. In addition, fine particles such as iron rust and bacteria are blocked when passing through the precision membrane module. This precision membrane module is
In order to keep the load on the ultrafiltration membrane module as small as possible, the pore diameter is approximately 0.01-0.05 μm, and the pure water permeability coefficient is 100aJ/aiT・(kg/ci)・h.
A precision membrane with a diameter of r or higher is required.

限外口過膜モジュールは、吸着剤および限外口過膜モジ
ュールでは除去しきれなかったパイロジエンが完全に阻
止される。このため、限外口過膜モジュールとしては、
第1図のグラフに示されるものと同等な分画特性(ポリ
エチレングリコール基準で阻止率90%を示すときの分
子量である公称分画分子量が約10000)を示すもの
あるいは更に小分子量側の特性が要求されるものが用い
られる。
In the ultra-permeable membrane module, pyrodiene that cannot be completely removed by the adsorbent and the ultra-permeable membrane module is completely blocked. Therefore, as an ultrafiltration membrane module,
Those that exhibit fractionation characteristics equivalent to those shown in the graph of Figure 1 (nominal fractional molecular weight, which is the molecular weight when showing a rejection rate of 90% based on polyethylene glycol, are approximately 10,000), or those that exhibit characteristics on the smaller molecular weight side. What is required is used.

また、コンパクト化のためには、単位容積当りの処理流
量が大きくなければならず、そのために外径が約(1,
3〜0.6ff1m、好ましくは約0.4−0.5rn
m、肉厚が約0.1.mm程度の中空糸膜であって、純
水透過係数(25℃、外径基準)が5ad/a+t ・
(kg/d)・hr以上のものをモジュールとして用い
ることが必要である。このような中空糸膜の膜材料とし
ては、ポリスルホン、ポリフッ化ビニリデンなどが用い
られる。
In addition, in order to make it more compact, the processing flow rate per unit volume must be large, so the outer diameter is approximately (1,
3-0.6ff1m, preferably about 0.4-0.5rn
m, wall thickness is approximately 0.1. It is a hollow fiber membrane of about mm, and the pure water permeability coefficient (25°C, outer diameter standard) is 5ad/a+t.
(kg/d)·hr or more is required to be used as a module. As membrane materials for such hollow fiber membranes, polysulfone, polyvinylidene fluoride, etc. are used.

[発明の効果〕 パイロジエン含有水を吸着剤層および精密口過膜モジュ
ールを透過させた後、限外口過膜モジュールを透過させ
ることにより、パイロジエンの中でも特に除去困難なエ
ンドトキシンの完全な除去を達成することができる。し
かも、この除去法は、処理方法自体あるいは処理装置に
コストがかからず、また全量口過タイプであるため、無
駄に使われる水やエネルギーが殆んどないという利点も
みられる。更に、簡単な装置で容易にパイロジエン除去
水を製造可能とする本方法は、装置の小型化も可能なた
め、原水供給末端即ちユースポイントにおいて適用する
ことができる。
[Effect of the invention] Complete removal of endotoxin, which is particularly difficult to remove among pyrogenes, is achieved by passing pyrodiene-containing water through an adsorbent layer and a precision membrane module, and then passing it through an ultrafiltration membrane module. can do. Furthermore, this removal method does not require any cost for the treatment method itself or the treatment equipment, and since it is a sip-through type, it has the advantage that almost no water or energy is wasted. Furthermore, this method, which allows pyrogen-free water to be easily produced using a simple device, also allows for miniaturization of the device, so it can be applied at the raw water supply end, that is, at the point of use.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例 芳香族ポリスルホン84重量部、ジメチルホルムアミド
15重量部およびポリビニルピロリドン1重量部よりな
る紡糸原液を、エタノールを芯液として、外径0.5m
m、内径0.3rnvnの2重環状ノズルから押出し、
乾湿式紡糸した。
Example A spinning dope consisting of 84 parts by weight of aromatic polysulfone, 15 parts by weight of dimethylformamide and 1 part by weight of polyvinylpyrrolidone was prepared using ethanol as the core liquid and an outer diameter of 0.5 m.
m, extruded from a double annular nozzle with an internal diameter of 0.3rnvn,
Wet-dry spinning.

得られた外径0.4mm、内径0.2mmの中空糸膜は
、第1図のグラフに示される分画特性(検体:ポリエチ
レングリコール、温度=23℃1口過圧力=1kg/a
J)および]Oa(/cj(kg/a()・hrの純水
透過係数を示した。
The obtained hollow fiber membrane with an outer diameter of 0.4 mm and an inner diameter of 0.2 mm has the fractionation characteristics shown in the graph of FIG.
J) and ]Oa(/cj(kg/a()·hr).

この中空糸膜を用いて作製した限外口過膜モジュールで
エンドトキシン含有水(通常の水道水)を透過し、原水
および透過液に対してリムルス試験を行ったところ、原
水中にはエンドトキシンが検出されたが、透過液中には
それが検出されなかった。
Endotoxin-containing water (regular tap water) was permeated through an ultrafiltration membrane module made using this hollow fiber membrane, and a limulus test was performed on the raw water and permeate, and endotoxin was detected in the raw water. However, it was not detected in the permeate.

(リムルス試験) カプトかにの血球抽出成分(Limulus Ameb
ocyteLysate LAL)がエンドトキシンと
特異的に反応してゲル化することを利用した検出法であ
り、市販のエンドトキシン検出キット(三菱レイヨン製
品リムテスター)を用い、検出感度(1,05〜0.1
ng/m12で検出 ところで、この限外口過中空糸膜モジュールのみを用い
て水道水を直接口過した場合には、目詰りによる流量低
下が著しいが、活性炭層および精密口過膜モジュール(
膜孔径0.04μm)で処理した水については、流量低
下がかなり抑えられた。即ち、水道水(藤沢市営水道)
を直接透過させた場合には、単位膜面積当り、処理量1
00cd/a#の時点で、透過係数は約0.8〜0.5
a#/aJ j (kg/a&)・hr以下となってし
まったが、活性炭層および精密口過膜モジュールで処理
した水については、100 al/ fflの時点で、
3 al/d・(kg/cn)・hr以上の透水性を維
持していた。
(Limulus test) Caputo crab blood cell extract component (Limulus Ameb
This is a detection method that utilizes the gelation of ocyteLysate LAL) that specifically reacts with endotoxins, and uses a commercially available endotoxin detection kit (Mitsubishi Rayon product rim tester) with a detection sensitivity of 1.05 to 0.1.
ng/m12 By the way, when tap water is passed directly using only this ultra-filter hollow fiber membrane module, the flow rate decreases significantly due to clogging, but if the activated carbon layer and precision filter membrane module (
Regarding water treated with a membrane pore size of 0.04 μm, the decrease in flow rate was considerably suppressed. In other words, tap water (Fujisawa Municipal Water Supply)
When directly transmitted, the throughput per unit membrane area is 1
At 00cd/a#, the transmission coefficient is about 0.8-0.5
a#/aJ j (kg/a&)・hr or less, but for water treated with activated carbon layer and precision filtration membrane module, at 100 al/ffl,
Water permeability of 3 al/d・(kg/cn)・hr or more was maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法で用いられる限外口過膜の分画特
性を示すグラフである。
FIG. 1 is a graph showing the fractionation characteristics of the ultrafiltration membrane used in the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、パイロジェン含有水を吸着剤層および精密口過膜モ
ジュールを透過させた後、限外口過膜モジュールを透過
させることを特徴とするパイロジェン除去水の製造法。
1. A method for producing pyrogen-free water, which comprises passing pyrogen-containing water through an adsorbent layer and a precision membrane module, and then passing it through an ultrafiltration membrane module.
JP2128351A 1990-05-18 1990-05-18 Preparation of pyrogen free water Pending JPH0422491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2128351A JPH0422491A (en) 1990-05-18 1990-05-18 Preparation of pyrogen free water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2128351A JPH0422491A (en) 1990-05-18 1990-05-18 Preparation of pyrogen free water

Publications (1)

Publication Number Publication Date
JPH0422491A true JPH0422491A (en) 1992-01-27

Family

ID=14982670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2128351A Pending JPH0422491A (en) 1990-05-18 1990-05-18 Preparation of pyrogen free water

Country Status (1)

Country Link
JP (1) JPH0422491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141565A (en) * 1994-11-24 1996-06-04 Kansai Electric Power Co Inc:The Water purifying apparatus
WO1996036370A1 (en) * 1995-05-16 1996-11-21 Bracco S.P.A. Process for the depyrogenation of injectable pharmaceutical solutions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141565A (en) * 1994-11-24 1996-06-04 Kansai Electric Power Co Inc:The Water purifying apparatus
WO1996036370A1 (en) * 1995-05-16 1996-11-21 Bracco S.P.A. Process for the depyrogenation of injectable pharmaceutical solutions

Similar Documents

Publication Publication Date Title
Yunos et al. Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG)
Filloux et al. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling
JP2010227757A (en) Composite separation membrane
Filloux et al. Ultrafiltration of biologically treated domestic wastewater: How membrane properties influence performance
JPS58163490A (en) Method and apparatus for purification of water
Shibata 5.6 Cellulose acetate in separation technology
JP2005313151A (en) Water treatment method
JPH05192660A (en) Method for treating outflowing liquid
KR101790174B1 (en) A PVA coated hollow fiber mambrane and a preparation method thereof
CN103587003A (en) Resource recycling method of waste polymeric microfiltration/ultrafiltration membrane
CN107352710A (en) A kind of water purification process of Household water purification equipment
Hwang et al. Effects of membrane compositions and operating conditions on the filtration and backwashing performance of the activated carbon polymer composite membranes
JP3832602B2 (en) Water purifier and water purifier
JPH0422491A (en) Preparation of pyrogen free water
JP2012091150A (en) Reverse osmosis membrane structure for water treatment and reverse osmosis membrane module
Le et al. Foulant–foulant interaction of combined micro-particulate and organic fouling on a ceramic membrane
JPS61185372A (en) Apparatus for treating excretion sewage
JP3083589B2 (en) Ozone-containing water treatment method
SU632656A1 (en) Method of cleaning waste water
JPH0663545A (en) Water purifier
JPS6068093A (en) Water treating system
JP2000225304A (en) Adsorber
CN107117740A (en) Method of wastewater treatment in reverse osmosis membrane production process
KR0137384B1 (en) Reverse osmosis module using antibiotic permeation water collection tube
JP2018015734A (en) Adsorbent-containing separation membrane and method for manufacturing the same