JPH04224866A - Silicone rubber composition - Google Patents

Silicone rubber composition

Info

Publication number
JPH04224866A
JPH04224866A JP41762690A JP41762690A JPH04224866A JP H04224866 A JPH04224866 A JP H04224866A JP 41762690 A JP41762690 A JP 41762690A JP 41762690 A JP41762690 A JP 41762690A JP H04224866 A JPH04224866 A JP H04224866A
Authority
JP
Japan
Prior art keywords
silicone rubber
parts
group
composition
hydrocarbon group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41762690A
Other languages
Japanese (ja)
Other versions
JP2992088B2 (en
Inventor
Takayoshi Otomo
孝嘉 大伴
Akito Nakamura
明人 中村
Sunao Okawa
直 大川
Shuji Yamada
修司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DuPont Toray Specialty Materials KK
Original Assignee
Dow Corning Toray Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Toray Silicone Co Ltd filed Critical Dow Corning Toray Silicone Co Ltd
Priority to JP2417626A priority Critical patent/JP2992088B2/en
Publication of JPH04224866A publication Critical patent/JPH04224866A/en
Application granted granted Critical
Publication of JP2992088B2 publication Critical patent/JP2992088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title compsn. giving a cured article resistant to repeated deformation such as repeated flexing or repeated elongation. CONSTITUTION:The title compsn. comprises an organopolysiloxane shown by general formula 1 (wherein R<1> is a monovalent hydrocarbon group; and a is 1.90-2.05), a reinforcing filler, a silanolated organosilicon compd. shown by general formula II (wherein R<2> and R<3> are each a monovalent hydrocarbon group contg. no alkenyl group; R<4> is a monovalent hydrocarbon group; A is a divalent hydrocarbon group; b is 0 or 1; and n is 1-30), and a curing catalyst.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はシリコーンゴム組成物に
関し、詳しくは、硬化後、屈曲、伸長等の繰り返し変形
に対して優れた耐久性を示すシリコーンゴム組成物に関
する。 【0002】 【従来の技術 】シリコーンゴムは、耐熱性,耐寒性等
に優れるので、種々の用途に用いられている。ところが
、シリコーンゴムは、屈曲、伸長等の繰り返し変形に対
する耐久性に劣り、キーボード、自動車用等速ジョイン
トブーツ等繰り返し変形に対する耐久性が要求されてい
る用途においては、十分満足できる素材ではなかった。 従来、このような耐久性を改善するためには、シリコー
ンゴム組成物に配合する充填剤の量を減少させ、充填剤
の分散を良くし、濾過を強化し異物をできるだけ取り除
くことがよかった。しかし、これらの方法によっても十
分に満足できる耐久性を有するシリコーンゴム組成物は
得られていなかった。 【0003】 【発明が解決しようとする課題】本発明者らは上記問題
点を解決するために鋭意研究した結果、シリコーンゴム
組成物に少量の特殊なシリコーン化合物を添加配合すれ
ば、繰り返し変形に対する耐久性が飛躍的に向上するこ
とを見出し本発明に到達した。 【0004】即ち、本発明の目的は、硬化後、屈曲、伸
長等の繰り返し変形に対して、優れた耐久性を有するシ
リコーンゴム成形品になり得るシリコーンゴム組成物を
提供することにある。 【0005】 【課題を解決するための手段とその作用】本発明は、(
A)一般式:R1aSiO(4−a)/2(式中、R1
は一価炭化水素基であり、aは1.90〜2.05の数
である。)で表わされるオルガノポリシロキサン100
重量部、(B)補強性充填剤5〜100重量部、(C)
一般式:【化1】(式中、R2とR3はアルケニル基を
含まない一価炭化水素基であり、R4は一価炭化水素基
であり、Aは二価炭化水素基であり、bは0または1で
あり、nは1〜30の整数である。)で表わされるシラ
ノール基含有オルガノシリコーン化合物0.05〜20
重量部および(D)硬化剤(本発明の組成物を硬化させ
るに十分な量である。)からなるシリコーンゴム組成物
に関する。以下、これらを詳細に説明する。 【0006】(A)成分のオルガノポリシロキサンは本
発明組成物の主成分であり、上式中、R1はメチル基,
エチル基,プロピル基,ブチル基等のアルキル基;ビニ
ル基,アリル基等のアルケニル基;フェニル基,トリル
基等のアリール基;シクロヘキシル基等のシクロアルキ
ル基、またはこれらの基の炭素原子結合水素原子の一部
または全部をハロゲン原子、シアノ基等で置換したクロ
ロメチル基,トリフルオロプロピル基,シアノメチル基
等で例示される非置換または置換一価炭化水素基である
。 また、aは1.90〜2.05の数である。このような
オルガノポリシロキサンとしては、両末端トリメチルシ
ロキシ基封鎖のメチルビニルポリシロキサン,両末端ト
リメチルシロキシ基封鎖のメチルビニルシロキサン・ジ
メチルシロキサン共重合体,両末端ジメチルビニルシロ
キシ基封鎖のジメチルシロキサン・メチルフェニルシロ
キサン共重合体,両末端ジメチルビニルシロキシ基封鎖
のジメチルシロキサン・ジフェニルシロキサン共重合体
,両末端トリメチルシロキシ基封鎖のジメチルシロキサ
ン・メチルフェニルシロキサン・メチルビニルシロキサ
ン共重合体,両末端ジメチルビニルシロキシ基封鎖のメ
チル(3,3,3−トリフルオロプロピル)ポリシロキ
サン,両末端ジメチルビニルシロキシ基封鎖のジメチル
シロキサン・メチル(3,3,3−トリフルオロプロピ
ル)シロキサン共重合体、CH2=CH(CH3)2S
iO1/2単位,(CH3)3SiO1/2単位および
SiO4/2単位からなるオルガノポリシロキサン等が
例示される。(A)成分の重合度は100〜30000
の範囲であることが望ましく、更に望ましくは1000
〜20000の範囲である。本発明において、上述した
各種オルガノポリシロキサンを組み合わせて使用しても
よい。 【0007】(B)成分の補強性充填剤は、本発明組成
物が硬化してなるシリコーンゴム成形品の機械的強度を
向上させるための成分である。このような補強性充填剤
としては、沈降シリカ,煙霧状シリカ,焼成シリカ,煙
霧状酸化チタンおよびこれらの充填剤の表面をヘキサメ
チルジシラザン,トリメチルクロロシラン,ポリメチル
シロキサン等の有機ケイ素化合物で表面処理したものが
例示される。本成分の配合量は、(A)成分100重量
部に対して5〜100重量部の範囲である。 【0008】(C)成分のシラノール基含有オルガノシ
リコーン化合物は、本発明組成物が硬化してなるシリコ
ーンゴム成形品に、屈曲、伸長等の繰り返し変形に対す
る耐久性を付与するために必須とされる成分である。上
式中、R2とR3は上記(A)成分の説明の箇所で述べ
たR1と同様な一価炭化水素基の中からアルケニル基を
除く一価炭化水素基であり、R4は上記(A)成分の説
明の箇所で述べたR1と同様な一価炭化水素基であり、
Aはエチレン基,プロピレン基,ブチレン基,ペンチレ
ン基等のアルキレン基で例示される二価炭化水素基であ
る。また、bは0または1であり、nは1〜30の整数
である。このようなシラノール基含有オルガノシリコー
ン化合物は、硬化前のシリコーンゴム組成物のポリマー
成分と補強性充填剤との相互作用を減少させる可塑剤と
しても作用し、そのためにはシラノール基含有率は大き
いほど良い。また(C)成分の添加量は、(A)成分1
00重量部に対して0.05〜20重量部の範囲である
。このような化合物の合成方法は、次のような方法で合
成可能である。即ち、テトラキス(ジメチルシロキシ)
シランとジメチルビニルクロロシランまたは分子鎖片末
端がケイ素原子結合ビニル基で封鎖され、他の末端がケ
イ素原子結合塩素原子で封鎖されたオルガノシリコーン
化合物を白金系触媒存在下で付加反応することにより、
分子鎖末端にケイ素原子結合塩素原子を(4−b)個有
する付加体を得る。次いで、この付加体のケイ素原子結
合塩素原子を、塩基性希薄水溶液で注意深く加水分解す
ることによって得られる。それらの反応式を以下に示す
。 【式1】 【0009】(D)成分は、本発明組成物を硬化させる
ための硬化剤である。(D)成分として代表的なものに
は有機過酸化物があり、具体的には、ジクミルパーオキ
サイド,ジ−t−ブチルパーオキサイド,t−ブチルク
ミルパーオキサイド,2,5−ジメチル−2,5−ジ(
t−ブチルパーオキシ)ヘキサン,2,5−ジメチル−
2,5−ジ(ベンゾイルパーオキシ)ヘキサン,2,5
−ジメチル−2,5−ジ(t−ブチルパーオキシ)−3
,3,5−トリメチルシクロヘキサン,ベンゾイルパー
オキサイド,2,4−ジクロロベンゾイルパーオキサイ
ド,パラクロロベンゾイルパーオキサイド等が例示され
る。(D)成分の添加量は、本発明の組成物を硬化させ
るに十分な量であり、通常、(A)成分100重量部に
対して0.1〜15重量部の範囲が望ましい。 【0010】また、(D)成分としては、一分子中にケ
イ素原子結合水素原子を3個以上含有するオルガノハイ
ドロジェンポリシロキサンと白金系触媒とを併用した硬
化剤がある。ここで、ケイ素原子結合水素原子を3個以
上含有するオルガノハイドロジェンポリシロキサンとし
ては、両末端トリメチルシロキシ基封鎖ジメチルシロキ
サン・メチルハイドロジェンシロキサン共重合体が例示
され、その重合度は3〜700の範囲であることが望ま
しい。またその添加量は、(D)成分中のケイ素原子結
合水素原子の合計モル数と(A)成分中のアルケニル基
の合計モル数との比が、(0.5:1)〜(20:1)
となるような量である。この場合は、付加反応促進触媒
として白金系触媒が併用される。白金系触媒としては塩
化白金酸およびこれをアルコール,ケトン,エーテル等
に溶解させたもの、塩化白金酸とオレフィン類との錯化
合物、塩化白金酸とアルケニルシロキサンとの錯化合物
、白金黒および白金を担体に保持させたもの等が例示さ
れる。 この白金系触媒の添加量は、(A)成分と(D)成分と
の総重量100万重量部に対して0.1〜500重量部
であることが望ましい。このような硬化剤と共に作業時
間確保のために、アセチレン系化合物,ヒドラジン系化
合物,トリアゾール系化合物,フォスフィン系化合物,
メルカプタン系化合物等公知の硬化遅延剤を使用しても
よい。 【0011】本発明の組成物は上記(A)〜(D)成分
を均一に混合することによって容易に得られるが、必要
に応じてシリコーンゴム用として公知の添加剤である粉
砕石英,ケイ藻土,アスベスト,炭酸カルシウム,アル
ミノケイ酸等の増量性充填剤;酸化鉄,酸化セリウム,
酸化アルミニウム,酸化亜鉛,炭酸マンガン等の耐熱剤
あるいは難燃剤等を配合してもよい。 【0012】 【実施例】以下、実施例にて本発明をより詳細に説明す
る。実施例中、部とあるのは重量部のことである。また
実施例中、定伸長疲労耐久性の測定は次の方法に従って
測定した。 ○定伸長疲労耐久性試験 シリコーンゴムシートから試験片として厚さ2mmのシ
ートをJIS K 6301に規定するダンベル3号形
として打ち抜いた。この試験片をJIS K 6301
,15項に示されるデスマッチャ式試験機にセットして
、標線距離が最大で40mm、最小で20mmとなるよ
うに300±10回/分の速度で往復運動させて、試験
片が破断するまでの往復回数を定伸長疲労耐久性として
数値化した。なお、この試験方法では、つかみ治具間に
保持された試験片は伸びが0〜100%の間で繰り返し
伸長される。 【0013】 【参考例1】攪拌装置付の四つ口フラスコに、テトラキ
ス(ジメチルシロキシ)シラン10.89部、式:【化
2】 で表わされるオルガノシリコーン化合物50部、トルエ
ン100部、塩化白金酸とテトラメチルジビニルジシロ
キサンとの錯体を白金濃度が上記の2種のオルガノシリ
コーン化合物の合計量に対して40ppmになるように
投入し、2時間加熱還流状態で反応させた。サンプリン
グした反応混合物の赤外分光分析によって、ケイ素原子
結合水素原子の特性吸収は消失したことを確認した。次
いで減圧下で過剰の式: 【化2】および低沸点物を留去して、式:【化3】 で表わされるオルガノシリコーン化合物を得た。攪拌装
置付四つ口フラスコに、水250部、氷250部、ジエ
チルエーテル125部、炭酸水素ナトリウム15部を投
入し、冷却および攪拌しながら上記付加体53.9部と
ジエチルエーテル50部との混合物を滴下した。加水分
解後、分液しエーテル層に無水硫酸ナトリウムを添加し
て乾燥した。乾燥後、減圧下、室温でエーテルを留去さ
せて、式: 【化4】 で表わされるシラノール基含有オルガノシリコーン化合
物(シリコーンA)を得た。シリコーンAが、上記の構
造を有することは以下の方法で確認した。即ち、シリコ
ーンAのシラノール基をテトラメチルジシラザンでシリ
ル化した後、過剰のテトラメチルジシラザンを減圧下加
熱留去した。残留物のケイ素原子結合水素原子含有量測
定結果は、0.214重量パーセントで計算値0.21
5重量パーセントとよく一致していた。反応式は以下の
通りである。 【式2】 【0014】 【参考例2】攪拌装置付の四つ口フラスコに、テトラキ
ス(ジメチルシロキシ)シラン50.0部、式:【化5
】 で表わされるクロロシラン81部,トルエン100部,
塩化白金酸とテトラメチルジビニルジシロキサンとの錯
体を白金濃度が上記の2種のオルガノシリコーン化合物
の合計量に対して20ppmになるように投入し、2時
間加熱還流状態で反応させた。サンプリングした反応混
合物の赤外分光分析によって、ケイ素原子結合水素原子
の特性吸収が消失したことを確認し、減圧下で過剰のジ
メチルビニルクロロシランおよび低沸点物を留去して、
式: 【化6】 で表わされるオルガノシリコーン化合物を得た。攪拌装
置付四つ口フラスコに、水300部,氷300部,ジエ
チルエーテル300部,炭酸水素ナトリウム35部を投
入し、冷却および攪拌しながら上記付加体65部とジエ
チルエーテル50部との混合物を滴下した。加水分解後
、分液しエーテル層に無水硫酸ナトリウムを添加して乾
燥した。乾燥後、減圧下室温でエーテルを留去させて、
式: 【化7】 で表わされるオルガノシリコーン化合物(シリコーンB
)55部を得た。シリコーンBが、上記の構造を有する
ことを参考例1と同様の方法で確認した。即ち、シリコ
ーンBのシラノール基をテトラメチルジシラザンでシリ
ル化した後、過剰のテトラメチルジシラザンを減圧下加
熱留去した。残留物のケイ素原子結合水素原子含有量測
定結果は、0.40重量パーセントで計算値0.41重
量パーセントによく一致していた。反応式は以下の通り
である。 【式3】 【0015】 【実施例1】ジメチルシロキシ単位99.92モルパー
セント、メチルビニルシロキシ単位0.18モルパーセ
ントからなる平均重合度7000のオルガノポリシロキ
サン100部、比表面積300平方メートル/グラムの
乾式法シリカ25部、参考例1で得られたシリコーンA
を、表1に示すように添加し、ニーダーミキサーで混練
後、170℃で1時間熱処理してシリコーンゴムベース
を得た。このシリコーンゴムベース100部に、2,5
−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキ
サン0.7部を添加し均一に混合してシリコーンゴム組
成物を得た。次いで、この組成物を温度170℃、圧力
20kg/cm2、加熱時間10分間の条件下でプレス
成形して厚さ2ミリメートルのシリコーンゴム成形シー
トを得た。このシートを200℃に設定された熱循環式
オーブン中に入れ、4時間放置した。この様にして得ら
れたシートから評価試験用ダンベルを作成し、デスマッ
チャ疲労試験機を用いて100パーセント定伸長疲労性
を測定して、表1の結果を得た。また、比較のため、上
記においてシリコーンAの代わりに25℃における粘度
が40センチストークスの両末端シラノール基封鎖ジメ
チルポリシロキサン(シリコーンC)を使用した以外は
上記と同様にしてシリコーンゴム組成物(比較例1の組
成物)を得た。この組成物について上記と同一の方法に
よってシリコーンゴムシートの物理特性と定伸長疲労耐
久性試験を行った。これらの測定結果を比較例1として
表1に併記した。これらの結果から、本発明組成物は、
その硬化してなるシリコーンゴムシートが200万回以
上の伸長に耐え、比較例1のシリコーンゴム組成物より
優れた定伸長疲労耐久性を示した。 【表1】 1)平均重合度7000のオルガノポリシロキサン10
0部に対する添加重量部 【0016】 【実施例2】ジメチルシロキシ単位99.92モルパー
セント、メチルビニルシロキシ単位0.18モルパーセ
ントからなる平均重合度7000のオルガノポリシロキ
サン100部、比表面積200平方メートル/グラムの
湿式法シリカ40部、参考例2で得られたシリコーンB
を、表2に示すように配合し、ニーダーミキサ−で混練
後、170℃で1.5時間熱処理してシリコーンゴムベ
ースを得た。このシリコーンゴムベース100部に、2
,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)
ヘキサン0.6部を添加し均一に混合してシリコーンゴ
ム組成物を得た。次いで、この組成物を温度170℃、
圧力20kg/cm2、加熱時間10分間の条件下でプ
レス成形して厚さ2ミリメートルのシリコーンゴム成形
シートを得た。このシートを200℃に設定された熱循
環式オーブン中に入れて、4時間放置した。この様にし
て得られたシリコーンゴムシートから評価試験用ダンベ
ルを作成し、実施例1と同様に定伸長疲労性耐久性を調
べ、表2の結果を得た。また比較のため、上記において
シリコーンBの代わりに実施例1において比較例1の組
成物に使用したシリコーンCを添加した以外は上記と同
様にしてシリコーンゴム組成物を製造した。またシリコ
ーンBもシリコーンCも添加しない以外は上記と同様に
してシリコーンゴム組成物を製造した。これらのシリコ
ーンゴム組成物について上記と同様の評価を行った。こ
れらの結果を表2に併記した。これらの結果から、本発
明組成物は、その硬化してなるシリコーンゴムが150
万回以上の伸長に耐え、比較例2の組成物より優れた定
伸長疲労耐久性を示した。 【表2】 1)平均重合度7000のオルガノポリシロキサン10
0部に対する添加重量部 【0017】 【実施例3】ジメチルシロキシ単位99.92モルパー
セント、メチルビニルシロキシ単位0.18モルパーセ
ントからなる平均重合度7000のオルガノポリシロキ
サン100部、比表面積300平方メートル/グラムの
乾式法シリカ25部、参考例1で得られたシリコーンA
を、表3に示すように配合し、ニーダーミキサーで混練
後、170℃で1時間熱処理してシリコーンゴムベース
を得た。このシリコーンゴムベース100部に、25℃
における粘度が5センチストークスの式:【化8】 で表わされる、ケイ素原子結合水素原子含有率が0.8
重量パーセントのジメチルシロキサン・メチルハイドロ
ジェンシロキサン共重合体0.5部、モノメチルトリス
(モノメチルブチノキシ)シラン0.06部、塩化白金
酸とテトラメチルビニルジシロキサンとの錯体を白金と
して総重量に対して15ppmになるような量加えて二
本ロールで均一に混合することにより、シリコーンゴム
組成物を得た。この組成物を温度150℃、圧力20k
g/cm2、加熱時間5分間の条件下でプレス成形して
厚さ2ミリメートルのシリコーンゴム成形シートを得た
。このようにして得られたシリコーンゴムシートから評
価試験用ダンベルを作成し、実施例1と同様に物理特性
,定伸長疲労耐久性を測定した。これらの測定結果を表
3に示した。また比較のため、上記においてシリコーン
Aの代わりに実施例1において比較例1の組成物に使用
したシリコーンCを添加した以外は上記と同様にしてシ
リコーンゴム組成物を製造した。さらに上記においてシ
リコーンA,シリコーンCを添加しない以外は上記と同
様にしてシリコーンゴム組成物を製造した。これらのシ
リコーンゴム組成物の特性を上記と同様にして測定した
。これらの結果を表3に併記した。これらの結果から、
本発明組成物は、その硬化してなるシリコーンゴムが2
50万回以上の伸長に耐え、比較例3のシリコーンゴム
組成物より優れた定伸長疲労耐久性を示した。 【表3】 1)平均重合度7000のオルガノポリシロキサン10
0部に対する添加重量部   【0018】 【発明の効果】本発明のシリコーンゴム組成物は、(A
)成分〜(D)成分からなり、特に(C)成分の特殊な
シラノール基含有オルガノシリコーン化合物を含有して
いるので、加熱硬化後、屈曲,伸長等の繰り返し変形に
対して優れた耐久性を示すシリコーンゴム成形品になり
得るという特徴を有する。
Description: [0001] The present invention relates to a silicone rubber composition, and more specifically, a silicone rubber that exhibits excellent durability against repeated deformation such as bending and elongation after curing. Regarding the composition. [0002] Silicone rubber is used for various purposes because it has excellent heat resistance and cold resistance. However, silicone rubber has poor durability against repeated deformation such as bending and stretching, and has not been a material that is fully satisfactory in applications that require durability against repeated deformation, such as keyboards and constant velocity joint boots for automobiles. Conventionally, in order to improve such durability, it was recommended to reduce the amount of filler added to the silicone rubber composition, improve the dispersion of the filler, and strengthen filtration to remove as much foreign matter as possible. However, even by these methods, a silicone rubber composition having sufficiently satisfactory durability has not been obtained. [0003] The present inventors have conducted extensive research to solve the above problems, and have found that if a small amount of a special silicone compound is added to a silicone rubber composition, the resistance to repeated deformation can be improved. The present invention was achieved by discovering that durability can be dramatically improved. That is, an object of the present invention is to provide a silicone rubber composition that can be made into a silicone rubber molded article having excellent durability against repeated deformation such as bending and elongation after curing. [Means for Solving the Problems and Their Effects] The present invention provides (
A) General formula: R1aSiO(4-a)/2 (wherein R1
is a monovalent hydrocarbon group, and a is a number from 1.90 to 2.05. ) Organopolysiloxane 100 represented by
Parts by weight, (B) 5 to 100 parts by weight of reinforcing filler, (C)
General formula: [Chemical formula 1] (wherein, R2 and R3 are monovalent hydrocarbon groups containing no alkenyl group, R4 is a monovalent hydrocarbon group, A is a divalent hydrocarbon group, and b is a divalent hydrocarbon group. 0 or 1, and n is an integer of 1 to 30.) Silanol group-containing organosilicone compound 0.05 to 20
and (D) a curing agent (in an amount sufficient to cure the composition of the present invention). These will be explained in detail below. The organopolysiloxane (A) component is the main component of the composition of the present invention, in the above formula, R1 is a methyl group,
Alkyl groups such as ethyl, propyl and butyl groups; alkenyl groups such as vinyl and allyl groups; aryl groups such as phenyl and tolyl groups; cycloalkyl groups such as cyclohexyl groups, or hydrogen bonded to the carbon atom of these groups It is an unsubstituted or substituted monovalent hydrocarbon group exemplified by a chloromethyl group, a trifluoropropyl group, a cyanomethyl group, etc. in which some or all of the atoms are substituted with a halogen atom, a cyano group, etc. Further, a is a number from 1.90 to 2.05. Such organopolysiloxanes include methylvinylpolysiloxane with trimethylsiloxy groups blocked at both ends, methylvinylsiloxane/dimethylsiloxane copolymer with both ends blocked with trimethylsiloxy groups, and dimethylsiloxane/methyl with both ends blocked with dimethylvinylsiloxy groups. Phenylsiloxane copolymer, dimethylsiloxane/diphenylsiloxane copolymer with both ends blocked with dimethylvinylsiloxy groups, dimethylsiloxane/methylphenylsiloxane/methylvinylsiloxane copolymer with both ends blocked with trimethylsiloxy groups, both ends with dimethylvinylsiloxy groups Blocked methyl(3,3,3-trifluoropropyl)polysiloxane, dimethylsiloxane/methyl(3,3,3-trifluoropropyl)siloxane copolymer with both terminals blocked by dimethylvinylsiloxy groups, CH2=CH(CH3 )2S
Examples include organopolysiloxanes consisting of iO1/2 units, (CH3)3SiO1/2 units, and SiO4/2 units. The degree of polymerization of component (A) is 100 to 30,000
The range is preferably 1000, more preferably 1000
It is in the range of ~20,000. In the present invention, the various organopolysiloxanes mentioned above may be used in combination. [0007] Component (B), a reinforcing filler, is a component for improving the mechanical strength of a silicone rubber molded product obtained by curing the composition of the present invention. Such reinforcing fillers include precipitated silica, fumed silica, pyrogenic silica, fumed titanium oxide, and surfaces of these fillers with organosilicon compounds such as hexamethyldisilazane, trimethylchlorosilane, and polymethylsiloxane. The processed ones are exemplified. The blending amount of this component is in the range of 5 to 100 parts by weight per 100 parts by weight of component (A). The silanol group-containing organosilicone compound (C) is essential for imparting durability against repeated deformation such as bending and elongation to the silicone rubber molded product obtained by curing the composition of the present invention. It is an ingredient. In the above formula, R2 and R3 are monovalent hydrocarbon groups excluding alkenyl groups from the same monovalent hydrocarbon groups as R1 described in the explanation of component (A) above, and R4 is It is a monovalent hydrocarbon group similar to R1 described in the component explanation,
A is a divalent hydrocarbon group exemplified by alkylene groups such as ethylene group, propylene group, butylene group, and pentylene group. Further, b is 0 or 1, and n is an integer of 1 to 30. Such a silanol group-containing organosilicone compound also acts as a plasticizer to reduce the interaction between the polymer component of the silicone rubber composition and the reinforcing filler before curing, and for this purpose, the higher the silanol group content, the higher the silanol group content. good. In addition, the amount of component (C) added is as follows: (A) component 1
The amount ranges from 0.05 to 20 parts by weight per 00 parts by weight. Such a compound can be synthesized by the following method. i.e., tetrakis(dimethylsiloxy)
By carrying out an addition reaction between silane and dimethylvinylchlorosilane or an organosilicone compound in which one end of the molecular chain is capped with a silicon-bonded vinyl group and the other end is capped with a silicon-bonded chlorine atom in the presence of a platinum-based catalyst.
An adduct having (4-b) silicon-bonded chlorine atoms at the end of the molecular chain is obtained. The silicon-bonded chlorine atoms of this adduct are then carefully hydrolyzed with a dilute basic aqueous solution. Their reaction formulas are shown below. [Formula 1] Component (D) is a curing agent for curing the composition of the present invention. Typical examples of component (D) include organic peroxides, specifically dicumyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2 ,5-di(
t-butylperoxy)hexane, 2,5-dimethyl-
2,5-di(benzoylperoxy)hexane, 2,5
-dimethyl-2,5-di(t-butylperoxy)-3
, 3,5-trimethylcyclohexane, benzoyl peroxide, 2,4-dichlorobenzoyl peroxide, parachlorobenzoyl peroxide and the like. The amount of component (D) added is sufficient to cure the composition of the present invention, and is usually preferably in the range of 0.1 to 15 parts by weight per 100 parts by weight of component (A). [0010] Component (D) is a curing agent that uses a combination of an organohydrogenpolysiloxane containing three or more silicon-bonded hydrogen atoms per molecule and a platinum catalyst. Here, an example of the organohydrogenpolysiloxane containing three or more silicon-bonded hydrogen atoms is a dimethylsiloxane/methylhydrogensiloxane copolymer blocked with trimethylsiloxy groups at both ends, and its degree of polymerization is 3 to 700. Preferably within the range. The amount added is such that the ratio of the total number of moles of silicon-bonded hydrogen atoms in component (D) to the total number of moles of alkenyl groups in component (A) is between (0.5:1) and (20:1). 1)
The amount is such that In this case, a platinum-based catalyst is used in combination as an addition reaction promoting catalyst. Platinum-based catalysts include chloroplatinic acid and those dissolved in alcohols, ketones, ethers, etc., complex compounds of chloroplatinic acid and olefins, complex compounds of chloroplatinic acid and alkenylsiloxanes, platinum black, and platinum. Examples include those held on a carrier. The amount of the platinum-based catalyst added is preferably 0.1 to 500 parts by weight based on 1 million parts by weight of the total weight of components (A) and (D). In order to secure working time with such hardening agents, acetylene compounds, hydrazine compounds, triazole compounds, phosphine compounds,
Known curing retarders such as mercaptan compounds may also be used. The composition of the present invention can be easily obtained by uniformly mixing the above components (A) to (D), but if necessary, crushed quartz, diatom, etc., which are known additives for silicone rubber, may be added. Expanding fillers such as earth, asbestos, calcium carbonate, aluminosilicate; iron oxide, cerium oxide,
Heat resistant agents or flame retardants such as aluminum oxide, zinc oxide, manganese carbonate, etc. may be added. [Examples] The present invention will be explained in more detail with reference to Examples below. In the examples, parts refer to parts by weight. Further, in the examples, constant elongation fatigue durability was measured according to the following method. ○Constant Elongation Fatigue Durability Test A 2 mm thick sheet was punched out as a test piece from a silicone rubber sheet as a dumbbell size 3 according to JIS K 6301. This test piece was tested according to JIS K 6301.
, set it in the desmatcher type testing machine shown in Section 15, and make it reciprocate at a speed of 300 ± 10 times/min so that the gauge distance is 40 mm at the maximum and 20 mm at the minimum, until the test piece breaks. The number of reciprocations was quantified as constant elongation fatigue durability. In addition, in this test method, the test piece held between the gripping jigs is repeatedly stretched at an elongation between 0 and 100%. [Reference Example 1] In a four-neck flask equipped with a stirring device, 10.89 parts of tetrakis(dimethylsiloxy)silane, 50 parts of an organosilicone compound represented by the formula: [Chemical formula 2], 100 parts of toluene, and platinum chloride were placed. A complex of acid and tetramethyldivinyldisiloxane was added so that the platinum concentration was 40 ppm based on the total amount of the two types of organosilicone compounds, and the mixture was reacted under heating under reflux for 2 hours. Infrared spectroscopic analysis of the sampled reaction mixture confirmed that the characteristic absorption of silicon-bonded hydrogen atoms had disappeared. Then, excess formula: [Formula 2] and low boiling point substances were distilled off under reduced pressure to obtain an organosilicone compound represented by the formula: [Formula 3]. 250 parts of water, 250 parts of ice, 125 parts of diethyl ether, and 15 parts of sodium bicarbonate were placed in a four-necked flask equipped with a stirrer, and while cooling and stirring, 53.9 parts of the above adduct and 50 parts of diethyl ether were combined. The mixture was added dropwise. After hydrolysis, the ether layer was separated and dried by adding anhydrous sodium sulfate. After drying, the ether was distilled off at room temperature under reduced pressure to obtain a silanol group-containing organosilicone compound (Silicone A) represented by the formula: embedded image. It was confirmed by the following method that Silicone A had the above structure. That is, after silylating the silanol group of silicone A with tetramethyldisilazane, excess tetramethyldisilazane was distilled off under reduced pressure with heating. The silicon-bonded hydrogen atom content of the residue was determined to be 0.214% by weight, with a calculated value of 0.21.
It was in good agreement with 5% by weight. The reaction formula is as follows. [Formula 2] [Reference Example 2] 50.0 parts of tetrakis(dimethylsiloxy)silane, formula: [Chemical 5
] 81 parts of chlorosilane, 100 parts of toluene,
A complex of chloroplatinic acid and tetramethyldivinyldisiloxane was added so that the platinum concentration was 20 ppm based on the total amount of the two types of organosilicone compounds, and the mixture was reacted under heating under reflux for 2 hours. Infrared spectroscopic analysis of the sampled reaction mixture confirmed that the characteristic absorption of silicon-bonded hydrogen atoms had disappeared, and excess dimethylvinylchlorosilane and low-boiling substances were distilled off under reduced pressure.
An organosilicone compound represented by the formula: [Image Omitted] was obtained. 300 parts of water, 300 parts of ice, 300 parts of diethyl ether, and 35 parts of sodium hydrogen carbonate were placed in a four-neck flask equipped with a stirrer, and the mixture of 65 parts of the adduct and 50 parts of diethyl ether was added while cooling and stirring. dripped. After hydrolysis, the layers were separated and anhydrous sodium sulfate was added to the ether layer to dry it. After drying, ether was distilled off at room temperature under reduced pressure,
Organosilicone compound (Silicone B) represented by the formula:
) 55 copies were obtained. It was confirmed in the same manner as in Reference Example 1 that Silicone B had the above structure. That is, after the silanol group of silicone B was silylated with tetramethyldisilazane, excess tetramethyldisilazane was distilled off under reduced pressure with heating. The silicon-bonded hydrogen content of the residue was determined to be 0.40 weight percent, in good agreement with the calculated value of 0.41 weight percent. The reaction formula is as follows. [Formula 3] [Example 1] 100 parts of an organopolysiloxane with an average degree of polymerization of 7000, consisting of 99.92 mol percent of dimethylsiloxy units and 0.18 mol percent of methylvinylsiloxy units, and a specific surface area of 300 square meters/g. 25 parts of dry process silica, silicone A obtained in Reference Example 1
were added as shown in Table 1, kneaded with a kneader mixer, and then heat treated at 170° C. for 1 hour to obtain a silicone rubber base. Add 2.5 parts to 100 parts of this silicone rubber base.
-Dimethyl-2,5-di(t-butylperoxy)hexane (0.7 part) was added and mixed uniformly to obtain a silicone rubber composition. Next, this composition was press-molded under conditions of a temperature of 170° C., a pressure of 20 kg/cm 2 and a heating time of 10 minutes to obtain a silicone rubber molded sheet with a thickness of 2 mm. This sheet was placed in a heat circulation oven set at 200°C and left for 4 hours. Dumbbells for evaluation tests were made from the sheet thus obtained, and 100% constant elongation fatigue properties were measured using a desmatcher fatigue tester, and the results shown in Table 1 were obtained. For comparison, a silicone rubber composition (comparative The composition of Example 1) was obtained. This composition was tested for physical properties and constant elongation fatigue durability of a silicone rubber sheet using the same method as above. These measurement results are also listed in Table 1 as Comparative Example 1. From these results, the composition of the present invention has the following properties:
The cured silicone rubber sheet withstood elongation more than 2 million times and exhibited constant elongation fatigue durability superior to that of the silicone rubber composition of Comparative Example 1. [Table 1] 1) Organopolysiloxane 10 with an average degree of polymerization of 7000
[Example 2] 100 parts of an organopolysiloxane with an average degree of polymerization of 7000, consisting of 99.92 mol% dimethylsiloxy units and 0.18 mol% methylvinylsiloxy units, specific surface area 200 square meters/ 40 parts of wet process silica, silicone B obtained in Reference Example 2
were blended as shown in Table 2, kneaded in a kneader mixer, and heat treated at 170°C for 1.5 hours to obtain a silicone rubber base. To 100 parts of this silicone rubber base, 2
,5-dimethyl-2,5-di(t-butylperoxy)
0.6 part of hexane was added and mixed uniformly to obtain a silicone rubber composition. Next, this composition was heated to a temperature of 170°C.
A silicone rubber molded sheet having a thickness of 2 mm was obtained by press molding under conditions of a pressure of 20 kg/cm 2 and a heating time of 10 minutes. This sheet was placed in a heat circulation oven set at 200°C and left for 4 hours. Dumbbells for evaluation tests were prepared from the silicone rubber sheets thus obtained, and their constant elongation fatigue durability was examined in the same manner as in Example 1, and the results shown in Table 2 were obtained. For comparison, a silicone rubber composition was produced in the same manner as above except that silicone C, which was used in the composition of Comparative Example 1 in Example 1, was added instead of silicone B. A silicone rubber composition was also produced in the same manner as above except that neither silicone B nor silicone C was added. These silicone rubber compositions were evaluated in the same manner as above. These results are also listed in Table 2. From these results, it was found that the cured silicone rubber of the composition of the present invention was 150%
It withstood elongation more than 10,000 times and showed superior constant elongation fatigue durability than the composition of Comparative Example 2. [Table 2] 1) Organopolysiloxane 10 with an average degree of polymerization of 7000
[Example 3] 100 parts of an organopolysiloxane with an average degree of polymerization of 7000, consisting of 99.92 mol% dimethylsiloxy units and 0.18 mol% methylvinylsiloxy units, specific surface area 300 square meters/ 25 parts of dry process silica, silicone A obtained in Reference Example 1
were blended as shown in Table 3, kneaded with a kneader mixer, and then heat treated at 170°C for 1 hour to obtain a silicone rubber base. Add 100 parts of this silicone rubber base at 25°C.
When the viscosity is 5 centistokes, the silicon-bonded hydrogen atom content is 0.8.
Weight percentage of dimethylsiloxane/methylhydrogensiloxane copolymer 0.5 part, monomethyltris(monomethylbutynoxy)silane 0.06 part, complex of chloroplatinic acid and tetramethylvinyldisiloxane as platinum to total weight A silicone rubber composition was obtained by adding an amount of 15 ppm to the mixture and uniformly mixing with two rolls. This composition was mixed at a temperature of 150°C and a pressure of 20k.
A silicone rubber molded sheet having a thickness of 2 mm was obtained by press molding under conditions of g/cm2 and heating time of 5 minutes. Dumbbells for evaluation tests were prepared from the silicone rubber sheet thus obtained, and the physical properties and constant elongation fatigue durability were measured in the same manner as in Example 1. The results of these measurements are shown in Table 3. For comparison, a silicone rubber composition was produced in the same manner as above except that silicone C, which was used in the composition of Comparative Example 1 in Example 1, was added instead of silicone A. Furthermore, a silicone rubber composition was produced in the same manner as above except that silicone A and silicone C were not added. The properties of these silicone rubber compositions were measured in the same manner as above. These results are also listed in Table 3. From these results,
The composition of the present invention has a cured silicone rubber of 2
It withstood elongation of 500,000 times or more and showed superior constant elongation fatigue durability than the silicone rubber composition of Comparative Example 3. [Table 3] 1) Organopolysiloxane 10 with an average degree of polymerization of 7000
[0018] Effects of the Invention The silicone rubber composition of the present invention has (A
) to (D), and especially contains component (C), a special silanol group-containing organosilicone compound, so it has excellent durability against repeated deformation such as bending and elongation after heat curing. It has the characteristic that it can be made into a silicone rubber molded product.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  (A)一般式:R1aSiO(4−a
)/2(式中、R1は一価炭化水素基であり、aは1.
90〜2.05の数である。)で表わされるオルガノポ
リシロキサン100重量部、(B)補強性充填剤5〜1
00重量部、(C)一般式: 【化1】 (式中、R2とR3はアルケニル基を含まない一価炭化
水素基であり、R4は一価炭化水素基であり、Aは二価
炭化水素基であり、bは0または1であり、nは1〜3
0の整数である。)で表わされるシラノール基含有オル
ガノシリコーン化合物0.05〜20重量部および(D
)硬化剤(本発明の組成物を硬化させるに十分な量であ
る。)からなるシリコーンゴム組成物。
Claim 1 (A) General formula: R1aSiO(4-a
)/2 (wherein R1 is a monovalent hydrocarbon group, and a is 1.
The number is between 90 and 2.05. ) 100 parts by weight of organopolysiloxane represented by (B) reinforcing filler 5 to 1
00 parts by weight, (C) General formula: [Formula 1] (In the formula, R2 and R3 are monovalent hydrocarbon groups containing no alkenyl group, R4 is a monovalent hydrocarbon group, and A is a divalent hydrocarbon group. is a hydrogen group, b is 0 or 1, and n is 1 to 3
It is an integer of 0. ) and 0.05 to 20 parts by weight of a silanol group-containing organosilicone compound represented by (D
) A curing agent (in an amount sufficient to cure the composition of the present invention).
JP2417626A 1990-12-26 1990-12-26 Silicone rubber composition Expired - Lifetime JP2992088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2417626A JP2992088B2 (en) 1990-12-26 1990-12-26 Silicone rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2417626A JP2992088B2 (en) 1990-12-26 1990-12-26 Silicone rubber composition

Publications (2)

Publication Number Publication Date
JPH04224866A true JPH04224866A (en) 1992-08-14
JP2992088B2 JP2992088B2 (en) 1999-12-20

Family

ID=18525706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2417626A Expired - Lifetime JP2992088B2 (en) 1990-12-26 1990-12-26 Silicone rubber composition

Country Status (1)

Country Link
JP (1) JP2992088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068031A (en) * 2002-03-12 2014-04-17 Hamamatsu Photonics Kk Light-emitting element manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068031A (en) * 2002-03-12 2014-04-17 Hamamatsu Photonics Kk Light-emitting element manufacturing method

Also Published As

Publication number Publication date
JP2992088B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
JPH0514742B2 (en)
WO2017159047A1 (en) Addition-curable silicone rubber composition and cured product
KR960011896B1 (en) Heat-curable silicone rubber composition
JPS62197454A (en) Heat-vulcanizable organopolysiloxane composition
JP3464702B2 (en) Method for producing silicone rubber composition
JP5888076B2 (en) Method for improving plastic return resistance of silicone rubber compound, method for improving compression set resistance of cured silicone rubber, and method for reducing hardness difference
EP0449651B1 (en) Silicone rubber composition and its manufacture
JPH04300966A (en) Silicone rubber composition
JPH0693186A (en) Oil-bleeding silicone rubber composition and cure product thereof
JP7321982B2 (en) Millable silicone rubber composition and cured silicone rubber
CN105273406B (en) Curable silicone rubber composition and silicone rubber member
JP7156216B2 (en) Millable type silicone rubber composition, cured product thereof, and silicone rubber compound for millable type silicone rubber composition
JP2018172634A (en) Elastomer, and molded body
JP2023130798A (en) Addition-curable silicone composition, and flame-retardant silicone rubber
WO2022113696A1 (en) Millable-type silicone rubber composition and silicone rubber cured product
US5340872A (en) Silicone rubber compositions and their cured products
JPH04224866A (en) Silicone rubber composition
JP2616284B2 (en) Method for producing silicone rubber composition
JPH04252266A (en) Silicone rubber composition
JPH11116806A (en) Silicone rubber composition and fixation roll
JPH04268377A (en) Silicone rubber composition
JPH08208994A (en) Liquid silicone rubber composition and production thereof
JP4593592B2 (en) High temperature compression resistant silicone rubber composition
JP6468391B1 (en) Elastomers and molded bodies
WO2023218904A1 (en) Millable silicone rubber composition and cured product of same