JPH0422436B2 - - Google Patents

Info

Publication number
JPH0422436B2
JPH0422436B2 JP63009787A JP978788A JPH0422436B2 JP H0422436 B2 JPH0422436 B2 JP H0422436B2 JP 63009787 A JP63009787 A JP 63009787A JP 978788 A JP978788 A JP 978788A JP H0422436 B2 JPH0422436 B2 JP H0422436B2
Authority
JP
Japan
Prior art keywords
thin film
optical
gete
gesnte
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63009787A
Other languages
Japanese (ja)
Other versions
JPH01185850A (en
Inventor
Teruo Kobayashi
Takashi Sano
Kazuhiko Nakano
Keiichiro Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP63009787A priority Critical patent/JPH01185850A/en
Publication of JPH01185850A publication Critical patent/JPH01185850A/en
Publication of JPH0422436B2 publication Critical patent/JPH0422436B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、光ビームを用いて情報が記録再生さ
れる光記録媒体に関するものである。 〔従来の技術〕 テルル化ゲルマニウムGeTeは、光記録材料と
して記録感度が高く、再生信号の信号対雑音比
CNRを大きくすることができる好適な材料であ
る。 さて、光情報記録媒体は、情報の長期保存、例
えば10年以上の目的に使用されることがあり、高
温高湿の環境下に放置されても記録材料の変化が
なく、記録情報を正確に読み書きできることが必
要である。 GeTe材料はかかる点についてみると、その薄
膜が高温高湿の環境下において徐々にではあるが
酸化腐食し反射率や透過率と光学的性質が変化す
る現象がある。 この原因として、GeTe結晶は菱面体構造をし
ているが、原子半径の小さい他の原子が侵入する
ことのできるすきまが存在することをあげること
が出来る。即ち、非晶質相のGeTe薄膜中のGe−
Te結晶原子間距離は、均一でなく非常に広い分
布をもつために、GeTe薄膜が高温高湿の環境下
におかれると、原子半径の小さい酸素がこのすき
まに侵入し、Ge−Te,Ge−Ge,Te−Te結合を
切断し、SeO2,TeO2となつて徐々に薄膜を酸化
させる。 この為、従来は、GeTe薄膜に酸化物、窒化物
等の無機薄膜を被着させて保護膜とし、高温高湿
環境下におけるGeTe薄膜の劣化を防止していた
が、上記保護膜作製に長時間を要したり、光情報
記録媒体作製工程の複雑化や媒体製造価格の上昇
を招くという欠点があつた。 本出願人はこのような欠点を解消し、高温高湿
環境下に放置されても、正確に情報を記録再生で
きる光情報記録媒体を提供し得る記録薄膜とし
て、GeTe材料にCuを添加した材料の記録薄膜を
見出した。この様なCuが添加されたGeTe薄膜に
おいては、Cu原子によつてあらかじめGe−Te格
子内のすきまが埋められているため酸素は侵入し
にくく、またわずかに侵入した酸素はCuと結合
しCuOとなつて安定するので、GeTe薄膜は酸素
の侵入による劣化から保護される。 〔発明が解決しようとする問題点〕 ところが、上記Cu添加GeTe薄膜を光記録膜と
する光情報記録媒体は、Cu添加量が多いほど寿
命が長くなるものの、逆に信号対雑音比CNRは
徐々に劣化し、従つて、Cuが3原子パーセント
以上では信頼できる光情報記録媒体としての性能
が得難く、又Cu含有量をへらしたのでは寿命が
あまり延びないという問題があつた。 即ち、GeTe薄膜が記録光ビームの照射を受け
て非晶質相から結晶質相に転移すると、GeTe結
合原子間距離の分布は均一化され、Cu原子が結
晶質相Ge−Te格子内に入り得る量は制限され、
非晶質相Ge−Teの格子内にあつたCu原子が
GeTe薄膜の結晶化によつてGe−Te結晶格子外
に排斥されCuが析出する。こうして、析出した
Cuが再生光ビームの反射率を変化させて雑音成
分となり、上述の如くCNRを低下させるものと
思われる。 従つて本発明は、寿命が長く、しかもCNRの
大きい光情報記録媒体を提供することを目的とし
てなされたものである。 〔問題点を解決するための手段〕 本発明による光情報記録媒体は、基体上に形成
された光記録薄膜と、該光記録薄膜上に形成され
た保護膜からなる光情報記録媒体において、前記
光記録薄膜の主成分をCuが添加されたGe−Te系
材料とし、前記光記録薄膜中のGeの一部がSnで
置換されてなることを特徴とするものである。 〔作用〕 この様に本発明による光情報記録媒体において
は、光記録薄膜中のGeの一部がSnで置換されて
いるためGe(Sn)−Te結合の原子間距離はGe−
Te結合原子間距離より大きくなる。従つて結晶
相GeSnTe格子内に入りうるCu原子の量が大きく
なり、GeSnTe薄膜が結晶化してもCuの析出は起
こらず、CNRを低下することなく、耐酸化腐食
性だけが向上する。 〔実施例〕 第1図は、本発明による光情報記録媒体の一実
施例を示したものである。即ち、11はポリカー
ボネート基板であり、その上に光情報薄膜として
Cuが添加されたGeSnTe薄膜12を有している。
更に、該記録薄膜上に傷や埃を防止するための樹
脂保護膜13を積層した。 ここで基板11はポリカーボネートに限ること
なく、従来からの公知のPMMA、ポリオレフイ
ン、エポキシ等の透明樹脂板、ガラス板を使用で
きる。 光記録薄膜12はスパツタリグ法および蒸着法
にて作製する。 第2図は、該光記録薄膜を作製する時に使用す
るスパツタリグ装置の概略図である。真空槽21
内の上部に設けられた回転式基板支持テーブル2
2の下面に、ポリカーボネート基板11をとりつ
け、真空槽21内を約5×10-4Paに排気後、真
空槽21内にAr等の活性ガスを導入してガス圧
を5×10-1Paにする。この状態でGe30原子パー
セント、Sn20原子パーセント、Te50原子パーセ
ントからなる合金ターゲツト23とCuターゲツ
ト24に同時に高周波電流を印加すると、スパツ
タリグ作用によつて、基板11上にCuが添加さ
れたGeTe薄膜であつて、該薄膜中のGeの一部が
Snで置換されたCu−GeSnTeが形成される。こ
のとき該薄膜中のSn量は、GeSnTe合金ターゲツ
ト23中のSn含有量を変化させることで任意に
調整することができ、Cu量はCuターゲツト24
に印加される高周波電力によつて任意に調整する
ことができる。 また、Snを調整する他の方法としては、ター
ゲツトにGe50原子パーセント、Te50原子パーセ
ントの合金を用い、該ターゲツト上にSn50原子
パーセント、Te50原子パーセントの合金チツプ
を載置し、スパツタリングすることによつて、
Geの一部をSnで置換したGeSnTe薄膜を得るさ
い、該SnTe合金チツプの数を増減させると、そ
れに伴いGeSnTe薄膜中のSn量を増減させること
ができる。 また、Ge,Sn,Te量を一定としてCuを変化さ
せるには、上記方法以外に、GeSnTe合金ターゲ
ツト23上にCuチツプを載置してスパツタする
ことで、Cu添加GeSnTe薄膜を得るさい、該Cu
チツプの数を増減させるとCuが添加された
GeSnTe薄膜中のCu量を増減させることができ
る。 真空蒸着法においても同様に、GeSnTe合金と
Cuの2種の蒸発源からの2源同時蒸着法で、
GeSnTe合金の蒸発速度とCuの蒸発速度とを調整
してCu添加GeSnTe薄膜が得られる。 樹脂保護膜13は、紫外線硬化型樹脂液をスピ
ンナにて塗布し、その後紫外線を照射すると樹脂
は硬化し、皮膜を形成する。樹脂保護膜13は紫
外線硬化型樹脂のみならず、湿気硬化型樹脂、二
液反応型樹脂、溶剤型樹脂いずれも適用できる。 この様にして作製したデイスク状光情報記録媒
体にレーザ光を照射して、回転数1800rmp、周波
数1MHzの信号を記録し、その後JISC5024M−1
の温湿度加速試験を行い、ビツト誤り率の増加割
合から媒体寿命を決定した。第1表に、本実施例
による光情報記録媒体の光記録膜組成、光記録膜
の結晶化温度、CNR、媒体寿命を示す。また比
較のためにCuが添加されたGeTe薄膜を光記録膜
とする従来の光情報記録媒体の光記録組成、光記
録膜結晶化温度、CNR、媒体寿命も示す。
[Industrial Field of Application] The present invention relates to an optical recording medium on which information is recorded and reproduced using a light beam. [Prior art] Germanium telluride GeTe has high recording sensitivity as an optical recording material, and has a low signal-to-noise ratio of reproduced signals.
It is a suitable material that can increase CNR. Now, optical information recording media are sometimes used for long-term storage of information, for example for 10 years or more, and the recording material does not change even if left in high temperature and high humidity environments, allowing recorded information to be stored accurately. Must be able to read and write. Regarding this point, GeTe material has a phenomenon in which its thin film undergoes oxidative corrosion, albeit gradually, in a high temperature and high humidity environment, causing changes in reflectance, transmittance, and optical properties. This can be attributed to the fact that although GeTe crystal has a rhombohedral structure, there are gaps through which other atoms with small atomic radii can enter. That is, Ge− in the amorphous GeTe thin film
The distance between Te crystal atoms is not uniform and has a very wide distribution, so when a GeTe thin film is placed in a high temperature and high humidity environment, oxygen with a small atomic radius enters this gap, resulting in Ge−Te, Ge -Ge and Te-Te bonds are broken, forming SeO 2 and TeO 2 and gradually oxidizing the thin film. For this reason, in the past, inorganic thin films such as oxides and nitrides were coated on GeTe thin films as protective films to prevent the GeTe thin films from deteriorating in high temperature and high humidity environments, but it took a long time to create the above protective films. The disadvantages are that it takes time, complicates the optical information recording medium manufacturing process, and increases the media manufacturing cost. The present applicant has developed a material in which Cu is added to GeTe material as a recording thin film that can eliminate these drawbacks and provide an optical information recording medium that can accurately record and reproduce information even when left in a high temperature and high humidity environment. discovered a recording thin film. In such a Cu-doped GeTe thin film, the gaps in the Ge-Te lattice are filled in advance by Cu atoms, making it difficult for oxygen to enter, and the small amount of oxygen that has entered combines with Cu and becomes CuO. As a result, the GeTe thin film is protected from degradation due to oxygen intrusion. [Problems to be solved by the invention] However, although the lifetime of an optical information recording medium using the Cu-doped GeTe thin film as an optical recording film becomes longer as the amount of Cu added increases, conversely, the signal-to-noise ratio CNR gradually decreases. Therefore, if the Cu content is 3 atomic percent or more, it is difficult to obtain reliable performance as an optical information recording medium, and if the Cu content is reduced, the service life will not be extended much. That is, when the GeTe thin film is irradiated with a recording light beam and transitions from an amorphous phase to a crystalline phase, the distribution of GeTe bond interatomic distances becomes uniform, and Cu atoms enter the crystalline phase Ge-Te lattice. The amount you can get is limited,
The Cu atoms in the lattice of the amorphous Ge−Te phase
As the GeTe thin film crystallizes, Cu is expelled from the Ge-Te crystal lattice and precipitates. In this way, it was precipitated
It is thought that Cu changes the reflectance of the reproduction light beam and becomes a noise component, reducing the CNR as described above. Therefore, the present invention has been made with the object of providing an optical information recording medium that has a long life and a high CNR. [Means for Solving the Problems] An optical information recording medium according to the present invention includes an optical recording thin film formed on a substrate and a protective film formed on the optical recording thin film. The main component of the optical recording thin film is a Ge-Te based material to which Cu is added, and a part of the Ge in the optical recording thin film is replaced with Sn. [Operation] As described above, in the optical information recording medium according to the present invention, since a part of Ge in the optical recording thin film is replaced with Sn, the interatomic distance of the Ge(Sn)-Te bond is Ge-
It becomes larger than the Te bond interatomic distance. Therefore, the amount of Cu atoms that can enter the crystal phase GeSnTe lattice increases, and even if the GeSnTe thin film crystallizes, Cu precipitation does not occur, and only the oxidation corrosion resistance improves without reducing the CNR. [Embodiment] FIG. 1 shows an embodiment of an optical information recording medium according to the present invention. That is, 11 is a polycarbonate substrate, on which an optical information thin film is formed.
It has a GeSnTe thin film 12 doped with Cu.
Furthermore, a resin protective film 13 was laminated on the recording thin film to prevent scratches and dust. Here, the substrate 11 is not limited to polycarbonate, and conventionally known transparent resin plates such as PMMA, polyolefin, epoxy, etc., and glass plates can be used. The optical recording thin film 12 is produced by sputtering and vapor deposition. FIG. 2 is a schematic diagram of a sputtering apparatus used when producing the optical recording thin film. Vacuum chamber 21
A rotary substrate support table 2 installed at the top of the
Attach the polycarbonate substrate 11 to the bottom surface of the vacuum chamber 21, evacuate the inside of the vacuum chamber 21 to approximately 5×10 -4 Pa, and then introduce active gas such as Ar into the vacuum chamber 21 to increase the gas pressure to 5×10 -1 Pa. Make it. In this state, when a high frequency current is simultaneously applied to the alloy target 23 consisting of 30 atomic percent Ge, 20 atomic percent Sn, and 50 atomic percent Te and the Cu target 24, a GeTe thin film doped with Cu is formed on the substrate 11 by the sputtering action. Therefore, some of the Ge in the thin film
Cu-GeSnTe substituted with Sn is formed. At this time, the amount of Sn in the thin film can be adjusted arbitrarily by changing the Sn content in the GeSnTe alloy target 23, and the amount of Cu can be adjusted as desired by changing the Sn content in the GeSnTe alloy target 23.
It can be arbitrarily adjusted by the high frequency power applied to. Another method for adjusting Sn is to use an alloy containing 50 atomic percent Ge and 50 atomic percent Te as a target, place an alloy chip containing 50 atomic percent Sn and 50 atomic percent Te on the target, and perform sputtering. Then,
When obtaining a GeSnTe thin film in which a portion of Ge is replaced with Sn, by increasing or decreasing the number of SnTe alloy chips, the amount of Sn in the GeSnTe thin film can be increased or decreased accordingly. In addition, in order to change the Cu content while keeping the Ge, Sn, and Te contents constant, in addition to the above method, a Cu chip is placed on the GeSnTe alloy target 23 and sputtered to obtain the Cu-added GeSnTe thin film. Cu
Cu was added by increasing or decreasing the number of chips.
The amount of Cu in the GeSnTe thin film can be increased or decreased. Similarly, in the vacuum evaporation method, GeSnTe alloy and
A two-source simultaneous evaporation method using two types of Cu evaporation sources,
A Cu-added GeSnTe thin film can be obtained by adjusting the evaporation rate of the GeSnTe alloy and the evaporation rate of Cu. The resin protective film 13 is formed by applying an ultraviolet curable resin liquid using a spinner, and then irradiating ultraviolet rays to cure the resin and form a film. The resin protective film 13 can be made of not only an ultraviolet curable resin but also a moisture curable resin, a two-component reactive resin, or a solvent-based resin. The disk-shaped optical information recording medium produced in this way was irradiated with laser light to record a signal with a rotation speed of 1800 rpm and a frequency of 1 MHz, and then JISC5024M-1
An accelerated temperature/humidity test was conducted, and the media life was determined from the rate of increase in the bit error rate. Table 1 shows the optical recording film composition, crystallization temperature of the optical recording film, CNR, and medium life of the optical information recording medium according to this example. For comparison, the optical recording composition, optical recording film crystallization temperature, CNR, and medium life of a conventional optical information recording medium whose optical recording film is a GeTe thin film doped with Cu are also shown.

〔効果〕〔effect〕

以上説明したように、本発明による光情報記録
媒体においては、光記録膜はCuを添加したGeTe
薄膜を主成分とし、Geの一部がSnで置換されて
いるために、光情報記録媒体のCNRを劣化させ
ることなく、Cu添加量を増すことができ、した
がつて該光情報記録媒体の寿命を長くすることが
できる。
As explained above, in the optical information recording medium according to the present invention, the optical recording film is made of Cu-doped GeTe
Since the thin film is the main component and a portion of Ge is replaced with Sn, the amount of Cu added can be increased without deteriorating the CNR of the optical information recording medium. It can extend the lifespan.

【図面の簡単な説明】[Brief explanation of drawings]

第一図は本発明による光情報記録媒体の一実施
例を示す断面図、第2図は本発明に適用しうるス
パツタリング装置の概略図、第3図はその特性の
説明に供する線図である。 11…基板、12…光記録薄膜、13…樹脂保
護膜、21…真空槽、22…基板支持テーブル、
23…GeSnTeターゲツト、24…Cuターゲツ
ト。
Fig. 1 is a cross-sectional view showing an embodiment of the optical information recording medium according to the present invention, Fig. 2 is a schematic diagram of a sputtering device applicable to the present invention, and Fig. 3 is a diagram for explaining its characteristics. . DESCRIPTION OF SYMBOLS 11... Substrate, 12... Optical recording thin film, 13... Resin protective film, 21... Vacuum chamber, 22... Substrate support table,
23...GeSnTe target, 24...Cu target.

Claims (1)

【特許請求の範囲】[Claims] 1 基体上に形成された光記録薄膜と、該光記録
薄膜上に形成された保護膜からなる光情報記録媒
体において、前記光記録薄膜の主成分をCuが添
加されたGe−Te系材料とし、前記光記録薄膜中
のGeの一部がSnで置換されてなることを特徴と
する光情報記録媒体。
1. In an optical information recording medium consisting of an optical recording thin film formed on a substrate and a protective film formed on the optical recording thin film, the main component of the optical recording thin film is a Cu-added Ge-Te based material. . An optical information recording medium, characterized in that a portion of Ge in the optical recording thin film is replaced with Sn.
JP63009787A 1988-01-20 1988-01-20 Optical information recording medium Granted JPH01185850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63009787A JPH01185850A (en) 1988-01-20 1988-01-20 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63009787A JPH01185850A (en) 1988-01-20 1988-01-20 Optical information recording medium

Publications (2)

Publication Number Publication Date
JPH01185850A JPH01185850A (en) 1989-07-25
JPH0422436B2 true JPH0422436B2 (en) 1992-04-17

Family

ID=11729935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63009787A Granted JPH01185850A (en) 1988-01-20 1988-01-20 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPH01185850A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598563B2 (en) * 2009-09-11 2013-12-03 Tohoku University Phase-change material and phase-change type memory device

Also Published As

Publication number Publication date
JPH01185850A (en) 1989-07-25

Similar Documents

Publication Publication Date Title
KR20000062984A (en) Information recording medium, manufacturing method of the medium and recording method of the medium
US6432502B1 (en) Optical recording medium and method of manufacturing the same
US4879205A (en) Information storage medium and a method of manufacturing the same
JP2005022409A (en) Optical information recording medium and method for manufacturing the same
JPH0422436B2 (en)
EP0307750B1 (en) Use of a storage meedium in a method of recording information
JP2571557B2 (en) Optical information recording medium
JP2576959B2 (en) Optical information recording medium
JP2596902B2 (en) Optical information recording medium
JP2696754B2 (en) Optical information recording medium
JP2000067466A (en) Optical recording medium and its production
JP2003022570A (en) Optical recording medium and manufacturing method therefor
JP2562428B2 (en) Optical information recording medium
JP2571556B2 (en) Optical information recording medium
JP2596901B2 (en) Optical information recording medium
JP2562427B2 (en) Optical information recording medium
JPH0416862B2 (en)
US20060165946A1 (en) Optical storage medium
JP2888520B2 (en) Optical information recording medium
JP2557407B2 (en) Information recording medium
JP2798247B2 (en) Optical recording medium
JPH0322826B2 (en)
JPH0387291A (en) Data recording medium
JP2001143326A (en) Optical information recording medium
JPH0476313B2 (en)