JPH04224108A - Production of cobalt-containing zeolite - Google Patents

Production of cobalt-containing zeolite

Info

Publication number
JPH04224108A
JPH04224108A JP41266490A JP41266490A JPH04224108A JP H04224108 A JPH04224108 A JP H04224108A JP 41266490 A JP41266490 A JP 41266490A JP 41266490 A JP41266490 A JP 41266490A JP H04224108 A JPH04224108 A JP H04224108A
Authority
JP
Japan
Prior art keywords
cobalt
zeolite
zsm
temperature
containing zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41266490A
Other languages
Japanese (ja)
Inventor
Masao Nakano
中野 雅雄
Katsumi Kamiyama
上山 克巳
Kazuhiko Sekizawa
関沢 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP41266490A priority Critical patent/JPH04224108A/en
Publication of JPH04224108A publication Critical patent/JPH04224108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To produce cobalt-containing zeolite useful for catalysts for various organic reactions, catalysts for environmental purification, and adsorbents with superior reproducibility. CONSTITUTION:The method is a manufacturing method for cobalt-containing zeolite characterized by applying ion exchange to cobalt and subjecting zeolite having a composition represented, expressed in terms of anhydrous oxide, by formula xCoO.yM2/nO.Al2O3.zSiO2 [where M means cation excluding that of Co, (n) means the valence of the cation M, x=0.2 to 2.0, y=0.01 to 1.0, and z=10-200] to burning at 500-900 deg.C while allowing the air having <=5000ppm moisture content to flow at >=SV400hr<-1>.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、コバルト含有ゼオライ
トの製造方法に関するものであり、更に詳しくは、特定
の条件下で焼成処理を実施することを特徴とするコバル
ト含有ゼオライトの製造方法に関するものである。
[Industrial Field of Application] The present invention relates to a method for producing cobalt-containing zeolite, and more particularly to a method for producing cobalt-containing zeolite, which is characterized by carrying out a calcination treatment under specific conditions. be.

【0002】0002

【従来の技術】コバルト含有ゼオライトは、各種の有機
反応の触媒や環境浄化触媒、吸着剤として提案されてお
り、有用な物質である。例えば、特開昭63−2837
27号公報,特開平1−130735号公報、特願平1
−331740号には、コバルトを含有したゼオライト
が、酸素過剰の排ガスであっても排ガス中の窒素酸化物
を除去する触媒として有効であることが記載されている
BACKGROUND OF THE INVENTION Cobalt-containing zeolites are useful substances that have been proposed as catalysts for various organic reactions, environmental purification catalysts, and adsorbents. For example, JP-A-63-2837
No. 27, JP-A-1-130735, Japanese Patent Application No. 1-130735, Japanese Patent Application No. 1-130735
No. 331,740 describes that zeolite containing cobalt is effective as a catalyst for removing nitrogen oxides from exhaust gas even in exhaust gas containing excess oxygen.

【0003】コバルト含有ゼオライトが各用途において
特徴的な作用を有するのは、コバルトがカチオンとして
ゼオライトに存在するかまたはゼオライトの細孔内等に
高分散なコバルト化合物として存在するためであると推
定できる。
[0003] The reason why cobalt-containing zeolite has characteristic effects in each application is presumed to be that cobalt exists in the zeolite as a cation or as a highly dispersed cobalt compound within the pores of the zeolite. .

【0004】このような特徴を有するコバルト含有ゼオ
ライトは、一般には、水溶性のコバルト化合物を利用し
たイオン交換や含浸担持により調製され、その調製方法
の一例として、特願平1−331740号公報等を挙げ
ることができる。
[0004] Cobalt-containing zeolite having such characteristics is generally prepared by ion exchange or impregnating support using a water-soluble cobalt compound, and an example of the preparation method is disclosed in Japanese Patent Application No. 1-331740, etc. can be mentioned.

【0005】[0005]

【発明が解決しようとする課題】上述したように、コバ
ルト含有ゼオライトは一般的にコバルト化合物を用いて
イオン交換等により調製されるが、通常、イオン交換後
乾燥および焼成して各用途に使用される。イオン交換の
際、操作条件、即ち、イオン交換に用いるコバルト化合
物の種類、交換液のpH、ゼオライトのイオン交換サイ
ト数(含有Al2O3量)に対するコバルトイオンの比
率,固液比,コバルトイオン濃度,添加物の有無,温度
等により、形成されるコバルト含有ゼオライト、特に、
コバルトの状態が異なることは知られている。しかし、
同一の操作条件でイオン交換を実施しても同様な特性を
有するコバルト含有ゼオライトが得られない場合があり
、従って、イオン交換後の乾燥および焼成工程が重要で
あることは予想されるが、従来、好ましい乾燥および焼
成方法については明らかでなかった。
[Problems to be Solved by the Invention] As mentioned above, cobalt-containing zeolite is generally prepared by ion exchange using a cobalt compound, but it is usually used for various purposes by drying and calcining after ion exchange. Ru. During ion exchange, the operating conditions, i.e., the type of cobalt compound used for ion exchange, the pH of the exchange solution, the ratio of cobalt ions to the number of ion exchange sites of zeolite (amount of Al2O3 contained), solid-liquid ratio, cobalt ion concentration, addition Cobalt-containing zeolite formed depending on the presence or absence of substances, temperature, etc., especially,
It is known that the states of cobalt are different. but,
Even if ion exchange is performed under the same operating conditions, cobalt-containing zeolite with similar properties may not be obtained. Therefore, it is expected that the drying and calcination steps after ion exchange are important, but conventional However, the preferred drying and firing methods were not clear.

【0006】[0006]

【課題を解決する為の手段】本発明者等は、この現状に
鑑み、コバルト含有ゼオライトの調製方法について鋭意
検討した結果、コバルトがイオン交換サイトに存在する
かあるいは細孔内等に高分散な状態で存在する、好まし
い特性を有するコバルト含有ゼオライトの調製方法を見
出し、本発明を完成するに至った。
[Means for Solving the Problems] In view of the current situation, the present inventors have conducted intensive studies on the preparation method of cobalt-containing zeolite, and have found that cobalt exists in ion exchange sites or is highly dispersed in pores, etc. The inventors have discovered a method for preparing a cobalt-containing zeolite that exists in a state that has favorable properties, and have completed the present invention.

【0007】即ち本発明は、コバルト含有ゼオライトを
製造するにあたり、コバルトをイオン交換した後、無水
基準の酸化物で表わして、下式のような組成を有するゼ
オライトを、水分含有量が5000ppm以下である空
気をSV400hr−1以上で流通しながら、500℃
〜900℃で焼成することを特徴とするコバルト含有ゼ
オライトの製造方法を提供するものである。
That is, in producing a cobalt-containing zeolite, the present invention ion-exchanges cobalt and then converts the zeolite having a composition as shown in the following formula as an oxide on an anhydrous basis into a zeolite with a water content of 5000 ppm or less. 500℃ while circulating certain air at SV400hr-1 or more
The present invention provides a method for producing cobalt-containing zeolite, which is characterized by firing at a temperature of ~900°C.

【0008】 xCoO・yM2/nO・Al2O3・zSiO2(式
中、MはCo以外の陽イオンを表し、nは陽イオンMの
原子価を表わす。x=0.2〜2.0,y=0.01〜
1.0,z=10〜200)以下、本発明をより詳細に
説明する。
xCoO・yM2/nO・Al2O3・zSiO2 (where M represents a cation other than Co, and n represents the valence of the cation M. x=0.2 to 2.0, y=0 .01~
1.0, z=10-200) The present invention will be explained in more detail below.

【0009】ゼオライトは、通常、結晶性アルミノシリ
ケートと呼ばれるもので、その骨格はSiO4四面体と
AlO4四面体で構成されるが、各四面体の結合様式の
相違により多くの種類が知られている。ゼオライトは、
その種類により結晶構造が異なるため粉末X線回折によ
り識別することができる。これまでに数多くの天然およ
び合成ゼオライトが知られている。例えば、A型ゼオラ
イト,チャバサイト,エリオナイト,クリノプチロライ
ト,フェリエライト,ZSM−5,ZSM−11,モル
デナイト,フォージャサイト,L型ゼオライト等を挙げ
ることができる。本発明において使用するゼオライトの
SiO2/Al2O3比は10〜200が好ましい。S
iO2/Al2O3比が10〜200のゼオライトとし
ては、フェリエライト,ZSM−5,ZSM−11,モ
ルデナイト,フォージャサイト等を挙げることができる
。本発明に使用するゼオライトとしては、ZSM−5が
好ましい。また、これらのゼオライトの製造方法は、限
定されるものではない。
[0009] Zeolite is usually called a crystalline aluminosilicate, and its skeleton is composed of SiO4 tetrahedra and AlO4 tetrahedra, but many types are known due to differences in the bonding styles of each tetrahedron. . Zeolite is
Since the crystal structure differs depending on the type, it can be identified by powder X-ray diffraction. A large number of natural and synthetic zeolites are known to date. Examples include A-type zeolite, chabasite, erionite, clinoptilolite, ferrierite, ZSM-5, ZSM-11, mordenite, faujasite, L-type zeolite, and the like. The SiO2/Al2O3 ratio of the zeolite used in the present invention is preferably 10 to 200. S
Examples of the zeolite having an iO2/Al2O3 ratio of 10 to 200 include ferrierite, ZSM-5, ZSM-11, mordenite, and faujasite. ZSM-5 is preferred as the zeolite used in the present invention. Moreover, the manufacturing method of these zeolites is not limited.

【0010】本発明のコバルト含有ゼオライトは、予め
ゼオライトを成形して製造することもできる。ゼオライ
トを成形する際に用いられるバインダーとしては、特に
制限はないが、カオリン,アタパルガイト,モンモリロ
ナイト,ベントナイト,アロフェン,セピオライト等の
粘土鉱物やシリカ,チタニア,ジルコニア等の無機酸化
物を使用することができる。あるいは、バインダーを用
いずに成形体を直接合成したバインダレスゼオライト成
形体であっても良い。また、コージェライト製あるいは
金属製のハニカム状基材にゼオライトをウォッシュコー
トして用いることもできる。
The cobalt-containing zeolite of the present invention can also be produced by forming the zeolite in advance. There are no particular restrictions on the binder used when molding zeolite, but clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite, and inorganic oxides such as silica, titania, and zirconia can be used. . Alternatively, it may be a binderless zeolite molded product that is directly synthesized without using a binder. Moreover, zeolite can be wash-coated onto a cordierite or metal honeycomb base material.

【0011】上記ゼオライトにコバルトを含有させる方
法としては何ら制限はないが、イオン交換法が好ましい
。その方法は特に限定されず、通常行われている方法で
、コバルトを含有する水溶液を用いてイオン交換すれば
良い。イオン交換の際の水溶液中のコバルトイオンの濃
度は、目的とするイオン交換率によって任意に設定する
ことができる。また、コバルトは可溶性の塩の形で使用
でき、可溶性の塩としては、硝酸塩、酢酸塩、シュウ酸
塩、塩酸塩等が好適に使用できる。また、コバルトイオ
ン交換する際に、アンモニア等を添加しpHを調整して
行っても良い。ゼオライトにコバルトを含有させる前に
、ゼオライトがコバルト以外の陽イオンを含有していて
も一向に差し支えない。また、ゼオライトにコバルトを
含有させた後、コバルト以外の陽イオンを含有させても
一向に差し支えない。イオン交換処理した試料は、固液
分離、洗浄、乾燥してから焼成される。
[0011] Although there are no restrictions on the method of incorporating cobalt into the zeolite, an ion exchange method is preferred. The method is not particularly limited, and ion exchange may be performed using a commonly used aqueous solution containing cobalt. The concentration of cobalt ions in the aqueous solution during ion exchange can be arbitrarily set depending on the desired ion exchange rate. Further, cobalt can be used in the form of a soluble salt, and as the soluble salt, nitrate, acetate, oxalate, hydrochloride, etc. can be suitably used. Further, when performing cobalt ion exchange, ammonia or the like may be added to adjust the pH. There is no problem even if the zeolite contains cations other than cobalt before the zeolite contains cobalt. Furthermore, after the zeolite contains cobalt, there is no problem even if the zeolite contains cations other than cobalt. The sample subjected to ion exchange treatment is subjected to solid-liquid separation, washing, drying, and then firing.

【0012】本発明において、焼成は水分含有量が50
00ppm以下、好ましくは2000ppm以下である
空気を、SV400hr−1以上、好ましくは600h
r−1以上で流通しながら、500℃〜900℃で焼成
することを特徴とする。ここで、SVとは空気流量F(
cc/hr)を焼成処理される剤の体積Vで除した値で
ある。流通させる空気の水分含有量が高い場合や、SV
が小さい場合にはゼオライトから脱離した水により雰囲
気中の水蒸気分圧が高くなり、コバルトは加水分解され
酸化物としてゼオライトの外表面に凝集しやすくなり、
一方、ゼオライトは脱アルミしやすくなると考えられる
。また、焼成温度が500℃より低い場合、ゼオライト
のイオン交換サイトでのコバルトの安定化が不十分であ
り、900℃より高い場合は、ゼオライトの構造破壊が
起こる。
[0012] In the present invention, firing is performed when the moisture content is 50%.
00 ppm or less, preferably 2000 ppm or less, at a SV of 400 hr-1 or more, preferably 600 h
It is characterized by firing at 500°C to 900°C while flowing at r-1 or higher. Here, SV is the air flow rate F(
cc/hr) divided by the volume V of the agent to be fired. When the moisture content of the air to be circulated is high, or when the SV
When is small, the water desorbed from the zeolite increases the water vapor partial pressure in the atmosphere, and cobalt is more likely to be hydrolyzed and aggregate on the outer surface of the zeolite as an oxide.
On the other hand, zeolite is thought to be easier to dealumate. Further, if the calcination temperature is lower than 500°C, the stabilization of cobalt at the ion exchange site of the zeolite is insufficient, and if it is higher than 900°C, the structure of the zeolite is destroyed.

【0013】[0013]

【実施例】以下、実施例において本発明をさらに詳細に
説明する。しかし、本発明はこれら実施例のみに限定さ
れるものではない。
EXAMPLES The present invention will be explained in more detail in the following examples. However, the present invention is not limited to these examples.

【0014】実施例1 特開昭59−54620号公報実施例5の方法に従って
ZSM−5類似ゼオライトを合成した。無水ベースにお
ける酸化物のモル比で表わして、次の化学組成を有して
いた。
Example 1 A ZSM-5-like zeolite was synthesized according to the method of Example 5 of JP-A-59-54620. It had the following chemical composition, expressed as molar ratios of oxides on an anhydrous basis.

【0015】 1.1Na2O・Al2O3・43SiO2これを塩化
アンモニウム水溶液でイオン交換して調製したアンモニ
ウム型ZSM−5;200gを、濃度0.23mol/
lの酢酸コバルト(II)4水和物の水溶液1800m
lに投入し、80℃で16時間攪拌した。スラリ−を固
液分離後、ゼオライトケ−キを再度調製した上記組成の
水溶液に投入して同様な操作を行った。固液分離後、充
分水洗し、110℃で10時間乾燥し、Co−ZSM−
5−Aを調製した。無水ベースにおける酸化物のモル比
で表わして、次の化学組成を有していた。
1.1Na2O・Al2O3・43SiO2 Ammonium type ZSM-5 prepared by ion-exchanging this with an aqueous ammonium chloride solution;
1800ml of an aqueous solution of cobalt(II) acetate tetrahydrate
1 and stirred at 80°C for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours to form Co-ZSM-
5-A was prepared. It had the following chemical composition, expressed as molar ratios of oxides on an anhydrous basis.

【0016】1.39CoO・0.01Na2O・Al
2O3・43SiO2 このCo−ZSM−5−A;10mlを石英管に充填し
、水分含有量が190ppmの乾燥空気を400ml/
min(SV=2400hr−1)で流しながら、環状
電気炉にて10℃/minで800℃まで昇温し、その
温度で5時間保持して焼成処理を施し、Co−ZSM−
5−A1を得た。
1.39CoO・0.01Na2O・Al
2O3・43SiO2 Fill a quartz tube with 10ml of this Co-ZSM-5-A, and add 400ml/dry air with a moisture content of 190ppm.
Co-ZSM-
5-A1 was obtained.

【0017】実施例2 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が190ppmの乾燥空気
を100ml/min(SV=1200hr−1)で流
しながら、環状電気炉にて10℃/minで850℃ま
で昇温し、その温度で5時間保持して焼成処理を施し、
Co−ZSM−5−A2を得た。
Example 2 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and dry air with a water content of 190 ppm was flowed at 100 ml/min (SV = 1200 hr-1). At the same time, the temperature was raised to 850°C at a rate of 10°C/min in a circular electric furnace, and the temperature was maintained at that temperature for 5 hours to perform a firing treatment.
Co-ZSM-5-A2 was obtained.

【0018】実施例3 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が190ppmの乾燥空気
を400ml/min(SV=2400hr−1)で流
しながら、環状電気炉にて10℃/minで500℃ま
で昇温し、その温度で5時間保持して焼成処理を施し、
Co−ZSM−5−A3を得た。
Example 3 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and dry air with a moisture content of 190 ppm was flowed at 400 ml/min (SV = 2400 hr-1). At the same time, the temperature was raised to 500 °C at a rate of 10 °C/min in a circular electric furnace, and the temperature was maintained at that temperature for 5 hours to perform a firing treatment.
Co-ZSM-5-A3 was obtained.

【0019】実施例4 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が3ppmの乾燥空気を4
00ml/min(SV=2400hr−1)で流しな
がら、環状電気炉にて10℃/minで800℃まで昇
温し、その温度で5時間保持して焼成処理を施し、Co
−ZSM−5−A4を得た。
Example 4 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and 4 ppm of dry air with a water content of 3 ppm was added.
While flowing at 00ml/min (SV = 2400hr-1), the temperature was raised to 800°C at 10°C/min in an annular electric furnace, and the temperature was held for 5 hours to perform a firing treatment.
-ZSM-5-A4 was obtained.

【0020】実施例5 実施例1で得られたCo−ZSM−5−A;の10ml
を石英管に充填し、水分含有量が2000ppmの乾燥
空気を400ml/min(SV=2400hr−1)
で流しながら、環状電気炉にて10℃/minで800
℃まで昇温し、その温度で5時間保持して焼成処理を施
し、Co−ZSM−5−A5を得た。
Example 5 10 ml of Co-ZSM-5-A obtained in Example 1
was filled into a quartz tube, and dry air with a moisture content of 2000 ppm was supplied at 400 ml/min (SV = 2400 hr-1).
800℃ at 10℃/min in an annular electric furnace while flowing with
The temperature was raised to .degree. C., and the temperature was maintained for 5 hours to perform a firing treatment, thereby obtaining Co-ZSM-5-A5.

【0021】比較例1 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が190ppmの乾燥空気
を50ml/min(SV=300hr−1)で流しな
がら、環状電気炉にて10℃/minで800℃まで昇
温し、その温度で5時間保持して焼成処理を施し、Co
−ZSM−5−A6を得た。
Comparative Example 1 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and dry air with a water content of 190 ppm was flowed at a rate of 50 ml/min (SV=300 hr-1). Meanwhile, the temperature was raised to 800°C at a rate of 10°C/min in a circular electric furnace, and the firing process was performed by holding at that temperature for 5 hours.
-ZSM-5-A6 was obtained.

【0022】比較例2 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が190ppmの乾燥空気
を200ml/min(SV=1200hr−1)で流
しながら、環状電気炉にて10℃/minで400℃ま
で昇温し、その温度で5時間保持して焼成処理を施し、
Co−ZSM−5−A7を得た。
Comparative Example 2 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and dry air with a water content of 190 ppm was flowed at 200 ml/min (SV = 1200 hr-1). At the same time, the temperature was raised to 400 °C at a rate of 10 °C/min in a circular electric furnace, and the temperature was maintained at that temperature for 5 hours to perform a firing treatment.
Co-ZSM-5-A7 was obtained.

【0023】比較例3 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が190ppmの乾燥空気
を200ml/min(SV=1200hr−1)で流
しながら、環状電気炉にて10℃/minで900℃ま
で昇温し、その温度で5時間保持して焼成処理を施し、
Co−ZSM−5−A8を得た。
Comparative Example 3 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and dry air with a moisture content of 190 ppm was flowed at 200 ml/min (SV=1200 hr-1). At the same time, the temperature was raised to 900°C at a rate of 10°C/min in an annular electric furnace, and the temperature was maintained for 5 hours to perform a firing treatment.
Co-ZSM-5-A8 was obtained.

【0024】比較例4 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が9000ppmの空気を
200ml/min(SV=1200hr−1)で流し
ながら、環状電気炉にて10℃/minで800℃まで
昇温し、その温度で5時間保持して焼成処理を施し、C
o−ZSM−5−A9を得た。
Comparative Example 4 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and air with a moisture content of 9000 ppm was flowed at 200 ml/min (SV=1200 hr-1). The temperature was raised to 800°C at a rate of 10°C/min in a circular electric furnace, and the firing process was performed by holding at that temperature for 5 hours.
o-ZSM-5-A9 was obtained.

【0025】比較例5 実施例1で得られたCo−ZSM−5−A;10mlを
石英管に充填し、水分含有量が6000ppmの空気を
200ml/min(SV=1200hr−1)で流し
ながら、環状電気炉にて10℃/minで800℃まで
昇温し、その温度で5時間保持して焼成処理を施し、C
o−ZSM−5−A10を得た。
Comparative Example 5 10 ml of Co-ZSM-5-A obtained in Example 1 was filled into a quartz tube, and air with a water content of 6000 ppm was flowed at a rate of 200 ml/min (SV=1200 hr-1). The temperature was raised to 800°C at a rate of 10°C/min in a circular electric furnace, and the firing process was performed by holding at that temperature for 5 hours.
o-ZSM-5-A10 was obtained.

【0026】実施例6 実施例1〜5および比較例1〜5で得られたCo−ZS
M−5のNO吸着量を測定した。NO吸着量の測定は、
試料を500℃で1時間真空排気した後、25℃で行な
った。表1に、600TorrでのNO吸着量を示す。
Example 6 Co-ZS obtained in Examples 1 to 5 and Comparative Examples 1 to 5
The NO adsorption amount of M-5 was measured. Measurement of NO adsorption amount is as follows:
After the sample was evacuated at 500°C for 1 hour, the test was carried out at 25°C. Table 1 shows the NO adsorption amount at 600 Torr.

【0027】実施例7 実施例1〜5および比較例1〜5で得られたCo−ZS
M−5を用いて、排ガス浄化性能を調べた。
Example 7 Co-ZS obtained in Examples 1 to 5 and Comparative Examples 1 to 5
Exhaust gas purification performance was investigated using M-5.

【0028】各Co−ZSM−5をプレス成形した後粉
砕して42〜80メッシュに整粒した。その2mlを常
圧固定床流通式反応管に充填し、下記に示したリーンバ
ーンエンジンの排ガスを模擬したガスを空間速度300
00/hrで流した。500℃で30分の前処理を行っ
た後、400℃定常におけるNOの浄化率を測定した結
果を表1に示す。
[0028] Each Co-ZSM-5 was press-molded and then pulverized to size 42 to 80 mesh. 2ml of the mixture was filled into a normal pressure fixed bed flow reaction tube, and the gas simulating the exhaust gas of a lean burn engine shown below was heated to a space velocity of 300.
It ran at a rate of 00/hr. Table 1 shows the results of measuring the NO purification rate at a steady state of 400°C after pretreatment at 500°C for 30 minutes.

【0029】ガス組成 CO        0.1vol% H2        0.033vol%C3H6  
  0.04vol% NO        0.06vol%CO2    
  10vol% H2O      3vol% O2        4vol% N2        バランス
Gas composition CO 0.1vol% H2 0.033vol% C3H6
0.04vol% NO 0.06vol%CO2
10vol% H2O 3vol% O2 4vol% N2 Balance

【0030】[0030]

【表1】 実施例8 実施例1で調製したアンモニウム型ZSM−5;200
gを、濃度1.09mol/lの塩化バリウムの水溶液
1800mlに投入し、80℃で16時間攪拌した。固
液分離後、充分水洗し、続けて0.23mol/lの酢
酸コバルト(II)4水和物の水溶液700mlに投入
し、80℃で16時間攪拌した。スラリ−を固液分離後
、ゼオライトケ−キを再度調製した上記組成の水溶液に
投入して同様な操作を行った。固液分離後、充分水洗し
、110℃で10時間乾燥し、Co−Ba−ZSM−5
−Aを調製した。無水ベースにおける酸化物のモル比で
表わして、次の化学組成を有していた。
[Table 1] Example 8 Ammonium type ZSM-5 prepared in Example 1; 200
g was added to 1800 ml of an aqueous barium chloride solution having a concentration of 1.09 mol/l, and the mixture was stirred at 80° C. for 16 hours. After solid-liquid separation, the mixture was thoroughly washed with water, then poured into 700 ml of an aqueous solution of 0.23 mol/l cobalt (II) acetate tetrahydrate, and stirred at 80° C. for 16 hours. After solid-liquid separation of the slurry, the zeolite cake was added to the prepared aqueous solution having the above composition and the same operation was performed. After solid-liquid separation, it was thoroughly washed with water and dried at 110°C for 10 hours to form Co-Ba-ZSM-5.
-A was prepared. It had the following chemical composition, expressed as molar ratios of oxides on an anhydrous basis.

【0031】0.49CoO・0.58BaO・Al2
O3・43SiO2 このCo−Ba−ZSM−5−A;10mlを石英管に
充填し、水分含有量が190ppmの乾燥空気を400
ml/min(SV=2400hr−1)で流しながら
、環状電気炉にて10℃/minで800℃まで昇温し
、その温度で5時間保持して焼成処理を施し、Co−B
a−ZSM−5−A1を得た。
0.49CoO・0.58BaO・Al2
O3.43SiO2 10ml of this Co-Ba-ZSM-5-A was filled into a quartz tube, and 400ml of dry air with a water content of 190ppm was added.
Co-B
a-ZSM-5-A1 was obtained.

【0032】比較例6 実施例8で得られたCo−Ba−ZSM−5−A;10
mlを石英管に充填し、水分含有量が6000ppmの
空気を200ml/min(SV=1200hr−1)
で流しながら、環状電気炉にて10℃/minで800
℃まで昇温し、その温度で5時間保持して焼成処理を施
し、Co−Ba−ZSM−5−A2を得た。  実施例
9実施例8および比較例6で調製したCo−Ba−ZS
M−5について、実施例6と同様にしてNO吸着量を測
定した。結果を表2に示す。
Comparative Example 6 Co-Ba-ZSM-5-A obtained in Example 8; 10
ml into a quartz tube and air with a water content of 6000 ppm at 200 ml/min (SV = 1200 hr-1)
800℃ at 10℃/min in an annular electric furnace while flowing with
The temperature was raised to .degree. C., and the temperature was maintained for 5 hours to perform a firing treatment, thereby obtaining Co-Ba-ZSM-5-A2. Example 9 Co-Ba-ZS prepared in Example 8 and Comparative Example 6
Regarding M-5, the NO adsorption amount was measured in the same manner as in Example 6. The results are shown in Table 2.

【0033】実施例10 実施例8および比較例6で調製したCo−Ba−ZSM
−5について、実施例7と同様にして排ガス浄化性能を
測定した。結果を表2に示す。
Example 10 Co-Ba-ZSM prepared in Example 8 and Comparative Example 6
-5, the exhaust gas purification performance was measured in the same manner as in Example 7. The results are shown in Table 2.

【0034】[0034]

【表2】[Table 2]

【0035】[0035]

【発明の効果】前述したように、本発明の方法によると
高性能なコバルト含有ゼオライトを再現性良く製造する
ことができる。その理由は定かでないが、コバルト含有
ゼオライトの性能を左右すると思われるコバルトの状態
に対して、焼成時の水蒸気分圧および温度が大きく影響
していることが示唆される。
As described above, according to the method of the present invention, high-performance cobalt-containing zeolite can be produced with good reproducibility. Although the reason for this is not clear, it is suggested that the water vapor partial pressure and temperature during calcination have a large influence on the state of cobalt, which is thought to affect the performance of cobalt-containing zeolites.

【0036】本発明の方法に従い、水分含有量が500
0ppm以下である空気をSV400hr−1以上で流
通しながら、500℃〜900℃で焼成すると、水蒸気
分圧が十分低くなるため銅の加水分解が抑えられ、コバ
ルトがイオン交換サイトに均一に分散したコバルト含有
ゼオライトを得ることができる。
According to the method of the invention, the water content is 500
When firing at 500°C to 900°C while flowing air with a concentration of 0 ppm or less at a SV of 400 hr-1 or more, the water vapor partial pressure becomes sufficiently low, so copper hydrolysis is suppressed and cobalt is uniformly dispersed in the ion exchange sites. A cobalt-containing zeolite can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】コバルト含有ゼオライトを製造するにあた
り、コバルトをイオン交換した後、無水基準の酸化物で
表わして、下式のような組成を有するゼオライトを、水
分含有量が5000ppm以下である空気をSV400
hr−1以上で流通しながら、500℃〜900℃で焼
成することを特徴とするコバルト含有ゼオライトの製造
方法。 xCoO・yM2/nO・Al2O3・zSiO2(式
中、MはCo以外の陽イオンを表し、nは陽イオンMの
原子価を表わす。x=0.2〜2.0,y=0.01〜
1.0,z=10〜200)
[Claim 1] In producing cobalt-containing zeolite, after ion-exchanging cobalt, zeolite having the following formula expressed as an oxide on an anhydrous basis is mixed with air having a water content of 5000 ppm or less. SV400
A method for producing cobalt-containing zeolite, which comprises firing at 500°C to 900°C while circulating at hr-1 or more. xCoO・yM2/nO・Al2O3・zSiO2 (in the formula, M represents a cation other than Co, and n represents the valence of the cation M. x = 0.2 ~ 2.0, y = 0.01 ~
1.0, z=10~200)
JP41266490A 1990-12-21 1990-12-21 Production of cobalt-containing zeolite Pending JPH04224108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41266490A JPH04224108A (en) 1990-12-21 1990-12-21 Production of cobalt-containing zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41266490A JPH04224108A (en) 1990-12-21 1990-12-21 Production of cobalt-containing zeolite

Publications (1)

Publication Number Publication Date
JPH04224108A true JPH04224108A (en) 1992-08-13

Family

ID=18521465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41266490A Pending JPH04224108A (en) 1990-12-21 1990-12-21 Production of cobalt-containing zeolite

Country Status (1)

Country Link
JP (1) JPH04224108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051817A (en) * 2009-08-31 2011-03-17 Institute Of National Colleges Of Technology Japan Cobalt skeleton substitution aluminosilicate type zeolite and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051817A (en) * 2009-08-31 2011-03-17 Institute Of National Colleges Of Technology Japan Cobalt skeleton substitution aluminosilicate type zeolite and method for producing the same

Similar Documents

Publication Publication Date Title
JP6072207B2 (en) Nitrogen oxide purification catalyst and method for producing the same
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
JP6176891B2 (en) Novel iron-containing aluminosilicate zeolite and methods for making and using the same
JP5958070B2 (en) β-type iron silicate composition and nitrogen oxide reduction method
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
JP5368106B2 (en) Adsorption unit for volatile hydrocarbons containing adsorbent material made from iron-containing molecular sieve
KR20120098892A (en) Process of direct copper exchange into na+ form of chabazite molecular sieve, and catalysts, systems and methods
JP2013526406A (en) Novel metal-containing zeolite beta for NOx reduction
ES2899640T3 (en) Direct synthesis of a microporous aluminosilicate material of AFX structure comprising copper, and use of this material
JPS5850777B2 (en) Chitsusosankabutsunokangenyoushiyokubai
CN111960433A (en) CHA type molecular sieve synthesized by using bicyclic group-containing quaternary ammonium onium template agent, and preparation and application of catalyst
JP3839565B2 (en) Synthesis method of high silica silicate molecular sieve
JP6842544B2 (en) Synthesis of Molecular Sieve SZZ-41
JP2014122142A (en) Transition metal-containing zeolite, and method for producing the same
JP5124927B2 (en) Hydrocarbon adsorption / removal agent comprising β-type zeolite and hydrocarbon adsorption / removal method using the same
JP2973524B2 (en) Exhaust gas purification catalyst
JPH04224108A (en) Production of cobalt-containing zeolite
JP7319302B2 (en) A catalyst comprising a mixture of AFX structure zeolites, BEA structure zeolites and at least one transition metal for the selective reduction of NOx
JPH04193710A (en) Production of copper-containing zeolite
JPH06170166A (en) Removal of nitrogen oxide
JP7513633B2 (en) Rapid synthesis of catalysts containing zeolites having AFX structure and at least one transition metal for selective reduction of NOx
JPH04210234A (en) Adsorbent for nitric oxide
JPH0760069A (en) Removing process for nitrogen oxide
JPH0478444A (en) Catalyst for purification of exhaust gas and its using method
JP2022529175A (en) Rapid synthesis of catalysts containing zeolites with AFX structure and at least one transition metal for selective reduction of NOx