JPH04223444A - Device for scattering fine particles - Google Patents

Device for scattering fine particles

Info

Publication number
JPH04223444A
JPH04223444A JP41388090A JP41388090A JPH04223444A JP H04223444 A JPH04223444 A JP H04223444A JP 41388090 A JP41388090 A JP 41388090A JP 41388090 A JP41388090 A JP 41388090A JP H04223444 A JPH04223444 A JP H04223444A
Authority
JP
Japan
Prior art keywords
fine particles
substrate
dispersion chamber
dispersion
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41388090A
Other languages
Japanese (ja)
Inventor
Michio Komatsu
通郎 小松
Yoshitsune Tanaka
喜凡 田中
Yutaka Hikario
光尾 豊
Kiyoshi Nagano
長野 清
Masakazu Imamura
今村 正和
Hiroyasu Nishida
広泰 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP41388090A priority Critical patent/JPH04223444A/en
Publication of JPH04223444A publication Critical patent/JPH04223444A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To uniformly monodisperse spacer fine particles on a glass substrate for a liquid crystal cell. CONSTITUTION:Fine particles which are entrained by compressed air and introduced into a dispersing room 40 from a fine particle inlet 41 collide with an impingement part 43 and fine particles which have been aggregated or combined into lumps are separated into individual particles to be in the monodisperse state. After that, the air laden with these fine particles enters a scattering room 50 from a fine particle nozzle 42 and decreases in pressure suddenly to expand and fall in laminar flow in the scattering room 50. As a result, the fine particles are scattered on the glass substrate 54 uniformly.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、圧縮気体を用いて微粒
子を分散させ、基板等の物体表面に散布する装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for dispersing fine particles using compressed gas and spraying them onto the surface of an object such as a substrate.

【0002】0002

【従来の技術】従来、液晶用セルには、スペーサー材と
して使用される微粒子を基板上に均一に単分散させるこ
とが求められており、このような装置として、微粒子を
気体と共に乾式散布する装置が知られている。例えば、
特開昭64−88430号公報には、圧縮ガスをノズル
から噴出させ、その時に発生する負圧を利用して、スペ
ーサー材を吸引し、該スペーサー材を噴出口より、基板
上に散布する装置が開示されている。また、上記公報に
は、スペーサー材を充填する貫通孔を有したベースと、
このベースを加振する手段と、貫通孔以外の余分なスペ
ーサー材を除去し、貫通孔に充填されたスペーサー材を
、散布装置の供給部に移載する移載手段を有してスペー
サー材の秤量、供給を自動的に行う装置が開示されてい
る。
[Prior Art] Conventionally, it has been required for liquid crystal cells to uniformly and monodisperse fine particles used as a spacer material onto a substrate, and a device for dry dispersing fine particles together with a gas has been used as a device for this purpose. It has been known. for example,
JP-A No. 64-88430 discloses a device that ejects compressed gas from a nozzle, uses the negative pressure generated at the time to suction spacer material, and sprays the spacer material onto a substrate from the ejection port. is disclosed. Further, the above publication describes a base having a through hole filled with a spacer material,
The base is vibrated, and the spacer material is removed by removing excess spacer material other than the through holes and transferring the spacer material filled in the through holes to the supply section of the spraying device. A device is disclosed that automatically performs weighing and feeding.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記散
布装置においては、微粒子のファン・デル・ワールス力
や静電気力によって凝集物が形成され、基板上に微粒子
の凝集部分が生じたり、また、これら微粒子が散布装置
などの器壁に付着するといった問題があった。これは、
一般に平均粒子径が0.1〜20μmの微粒子は、無機
物、有機物等、材質のいかんに拘らず、ファン・デル・
ワールス力又は静電気力などにより凝集が生ずるためで
あり、その結果、ガラスなどの基板等の物体表面に微粒
子を均一に単分散させることが非常に困難となっている
[Problems to be Solved by the Invention] However, in the above-mentioned dispersion device, aggregates are formed due to the van der Waals force and electrostatic force of the particles, and aggregates of the particles are formed on the substrate, and these particles There was a problem that the liquid adhered to the walls of the spraying equipment. this is,
In general, fine particles with an average particle diameter of 0.1 to 20 μm are van der
This is because aggregation occurs due to Waals force or electrostatic force, and as a result, it is extremely difficult to uniformly monodisperse fine particles on the surface of an object such as a substrate such as glass.

【0004】本発明は前記問題点を解決するためのもの
で、その目的は、基板上に微粒子を均一に単分散させる
ことができる散布装置を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its object is to provide a dispersion device that can uniformly and monodisperse fine particles onto a substrate.

【0005】[0005]

【課題を解決するための手段】本発明に係る微粒子の散
布装置は、微粒子分散室の一端に、外部から微粒子を圧
縮気体と共に受け入れる微粒子導入口を設けると共に、
該分散室の他端には微粒子噴出口を備えて、同噴出口を
散布室内に開口させ、更に、前記分散室内であって前記
微粒子導入口に対向する位置に、衝突体を近接して配設
した手段によって課題を解決したものである。
[Means for Solving the Problems] A particulate dispersion device according to the present invention is provided with a particulate inlet at one end of a particulate dispersion chamber for receiving particulates together with compressed gas from the outside, and
The other end of the dispersion chamber is provided with a particle ejection port, the ejection port is opened into the dispersion chamber, and an impactor is disposed close to the dispersion chamber at a position opposite to the particle introduction port. The problem was solved by the means established.

【0006】[0006]

【作用】圧縮気体に同伴されて微粒子導入口から分散室
内に導入された微粒子は、衝突体に衝突し、凝集又は塊
合していた微粒子も個々の粒子に分離して単分散状態と
なる。そして、この微粒子を同伴した気体は微粒子噴出
口から散布室内に入って、急激に圧力が低下して膨張す
る。この結果、単分散状態の微粒子は更に拡散し、散布
室内を層流となって降下し、基板等の物体表面上に均一
に散布される。
[Operation] The fine particles introduced into the dispersion chamber through the fine particle inlet while being entrained by the compressed gas collide with the colliding body, and the fine particles that have been aggregated or aggregated are separated into individual particles and become monodispersed. Then, the gas entrained by the fine particles enters the dispersion chamber through the fine particle jetting port, where the pressure rapidly decreases and the gas expands. As a result, the monodispersed fine particles are further diffused, fall in a laminar flow inside the dispersion chamber, and are uniformly dispersed onto the surface of an object such as a substrate.

【0007】[0007]

【実施例】以下、図面に基づいて本発明の好適な実施例
を説明する。図1は本発明に係る微粒子の散布装置を部
分縦断側面図を以て示したものであり、同図の上部には
、微粒子の定量供給装置10が示されており、同装置1
0は倒置円錐形のホッパー11と、その下部に固着され
た二方コック20とから構成され、ホッパー11内には
撹拌機12が設置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a particulate dispersion device according to the present invention in a partially vertical side view. In the upper part of the figure, a quantitative supply device 10 for fine particles is shown.
0 consists of an inverted conical hopper 11 and a two-way cock 20 fixed to the bottom thereof, and a stirrer 12 is installed inside the hopper 11.

【0008】二方コック20は、上下方向に微粒子通路
22を有するコック本体21と、同通路22に対して直
交して回動する栓25によって構成されている。26は
栓25の外周上、ホッパー11の送給口13と対向する
位置に形成された閉塞穴であり、送給口13の大きさや
微粒子の供給量に応じて、適宜の大きさと深さに設定す
る。27は閉塞穴26と連通して、栓25に形成された
気体流路であり、作動用気体の吸引ライン31と加圧ラ
イン32とに接続される。この実施例では三方弁33を
切り替えることによって、吸引ライン31と加圧ライン
32とが気体流路27に連通するようになっている。ま
た、閉塞穴26と気体流路27の間には、微粒子が通過
できない程度の細孔からなる金属製のスクリーン28が
設けられている。
The two-way cock 20 is composed of a cock body 21 having a particulate passage 22 in the vertical direction, and a stopper 25 that rotates perpendicularly to the passage 22. 26 is a blocking hole formed on the outer periphery of the stopper 25 at a position facing the feed port 13 of the hopper 11, and the hole is made to an appropriate size and depth depending on the size of the feed port 13 and the amount of fine particles supplied. Set. A gas flow path 27 is formed in the stopper 25 and communicates with the blocking hole 26, and is connected to a suction line 31 and a pressurizing line 32 for working gas. In this embodiment, by switching the three-way valve 33, the suction line 31 and the pressurizing line 32 are brought into communication with the gas flow path 27. Further, a metal screen 28 is provided between the blocking hole 26 and the gas flow path 27, and the screen 28 is made of metal and has pores that are large enough to prevent fine particles from passing through.

【0009】本発明において、微粒子の定量供給装置と
しては、ロータリーバルブ等の公知の定量供給装置を採
用することも可能であり、その場合には、微粒子通路2
2の適当な位置に圧縮気体を導入するラインを接続し、
微粒子を後記する分散室40内に圧送できるようにする
ことが必要である。分散室40は円筒形状であり、上部
に微粒子導入口41、下部に微粒子噴出口42を備えて
おり、微粒子導入口41は二方コック本体21の微粒子
通路22に接続されている。
[0009] In the present invention, it is also possible to employ a known quantitative supply device such as a rotary valve as the device for quantitatively supplying fine particles, and in that case, the fine particle passage 2
Connect the line for introducing compressed gas to the appropriate position of 2,
It is necessary to be able to pump the fine particles into a dispersion chamber 40, which will be described later. The dispersion chamber 40 has a cylindrical shape and includes a particle inlet 41 at the top and a particle jet port 42 at the bottom, and the particle inlet 41 is connected to the particle passage 22 of the two-way cock body 21.

【0010】分散室40内の、微粒子導入口41に対向
する位置には衝突体43を近接して設け、同衝突体43
は適宜の支持手段(図示せず)によって分散室40内に
固着される。本実施例において、衝突体43の形状を球
形としたが、その他円錐体、角錐体等種々の形状とする
ことができる。
A collision body 43 is provided in close proximity to the particle introduction port 41 in the dispersion chamber 40 .
is secured within the dispersion chamber 40 by suitable support means (not shown). In this embodiment, the collision body 43 has a spherical shape, but it may have various other shapes such as a cone or a pyramid.

【0011】また、微粒子の凝集を抑制して、分散効果
を向上させるために、加圧ライン32から弁44を介し
て、圧縮空気用の散気管45を延長し、この散気管45
の先端部を分散室40内の衝突体43の近傍に設けても
よい。この実施例では、圧縮空気用散気管45が4本挿
入され、各散気管45は、円筒状の分散室40の半径方
向に対して35〜55度程度の傾斜角を以て、かつ、水
平方向に対しても35〜55度程度の傾斜角を以て配設
されている。更に、分散室40内には、微粒子の凝集を
抑制して、分散効果を向上させるために、フィルター(
図示せず)を設置してもよい。フィルターの材質および
段数については、微粒子の粒径や種類に応じて適宜のも
のが選ばれるが、例えば、ステンレス製、ナイロン等の
樹脂製のフィルターを上下に3段程度設けることができ
る。
Furthermore, in order to suppress agglomeration of fine particles and improve the dispersion effect, a diffuser pipe 45 for compressed air is extended from the pressurizing line 32 through a valve 44.
The distal end portion may be provided near the collision body 43 within the dispersion chamber 40. In this embodiment, four diffuser pipes 45 for compressed air are inserted, and each diffuser pipe 45 has an inclination angle of about 35 to 55 degrees with respect to the radial direction of the cylindrical dispersion chamber 40, and horizontally. It is also arranged at an inclination angle of about 35 to 55 degrees. Furthermore, in the dispersion chamber 40, a filter (
(not shown) may be installed. The material of the filter and the number of stages are appropriately selected depending on the particle size and type of the fine particles, but for example, filters made of stainless steel or resin such as nylon can be provided in about three stages above and below.

【0012】47は微粒子噴出口42に接続された散布
ノズルであり、同ノズル47の先端部は箱型の散布室5
0内の頂部に開口し、かつ、回転手段48によりノズル
47の先端が水平面を円運動するように構成されている
。ノズル47の先端部は曲げられており、曲げ角度は垂
直方向に対して30度以下であることが好ましい。ノズ
ル47の散布時の回転数は、1〜10回/秒程度が適当
である。なお、微粒子が散布される基板54の面積が狭
い場合には、先端部を曲げたり、回転手段48を設けな
くてもよい。
Reference numeral 47 denotes a dispersion nozzle connected to the particle jetting port 42, and the tip of the nozzle 47 is connected to the box-shaped dispersion chamber 5.
The nozzle 47 is opened at the top of the nozzle 47, and is configured such that the tip of the nozzle 47 moves circularly on a horizontal plane by a rotating means 48. The tip of the nozzle 47 is bent, and the bending angle is preferably 30 degrees or less with respect to the vertical direction. The appropriate rotational speed of the nozzle 47 during spraying is about 1 to 10 times/second. Note that if the area of the substrate 54 on which the fine particles are scattered is narrow, the tip may not be bent or the rotating means 48 may not be provided.

【0013】散布室50内の下部にはグリッド52が設
けられ、その上に基板54が載置されている。また、散
布室50の内面には帯電防止材を塗布するとよい。符号
49と55は、分散室40と散布室50にそれぞれ設け
たアースであり、英字符号Dは駆動機を示している。
A grid 52 is provided at the lower part of the dispersion chamber 50, and a substrate 54 is placed on the grid 52. Further, it is preferable to apply an antistatic material to the inner surface of the dispersion chamber 50. Reference numerals 49 and 55 are earths provided in the dispersion chamber 40 and the dispersion chamber 50, respectively, and the alphabetical character D indicates a driving machine.

【0014】次に、この実施例の作用を説明する。先ず
、ホッパー11内に予め微粒子15を収容し、この微粒
子15を撹拌機12で十分に混合する。このとき、二方
コック20の栓25に形成された閉塞穴26は下向きに
しておく。続いて、駆動機Dにより栓25を半回転させ
、閉塞穴26とホッパー11の送給口13とを対向させ
ることにより、閉塞穴26内にホッパー11内の微粒子
15の一部を充填する。そこで、三方弁33を切り替え
て気体流路27を吸引ラインと接続すれば、閉塞穴26
内には一定量の微粒子が密に充填される。吸引による減
圧に格別の制限はないが、例えば、−50〜500mm
Hg程度の範囲で一定の減圧に保つことが好ましい。
Next, the operation of this embodiment will be explained. First, fine particles 15 are placed in the hopper 11 in advance, and the fine particles 15 are thoroughly mixed with the stirrer 12. At this time, the closing hole 26 formed in the stopper 25 of the two-way cock 20 is directed downward. Subsequently, the stopper 25 is rotated by a half turn by the driving device D, and a portion of the fine particles 15 in the hopper 11 is filled into the blocking hole 26 by making the blocking hole 26 and the feeding port 13 of the hopper 11 face each other. Therefore, if the three-way valve 33 is switched and the gas flow path 27 is connected to the suction line, the blockage hole 2
A certain amount of fine particles are densely packed inside. There is no particular limit to the pressure reduction by suction, but for example, -50 to 500 mm.
It is preferable to maintain a constant reduced pressure within a range of about Hg.

【0015】次に、栓25を再び半回転し、閉塞穴26
を二方コック20の微粒子通路22と連通させ、ほぼ同
時に、三方弁33を切り替えて気体流路27を加圧ライ
ン32と接続すると、閉塞穴26内の微粒子は微粒子通
路22を経て全量排出される。上記操作を繰り返すこと
により、微粒子が連続的かつ定量的に供給される。前記
微粒子通路22を経て、微粒子導入口41から分散室4
0内に供給された微粒子は衝突体43に衝突し、凝集又
は塊合していた微粒子も個々の粒子に分離して単分散状
態となる。
Next, the stopper 25 is turned half a turn again to close the blocking hole 26.
is communicated with the particulate passage 22 of the two-way cock 20, and almost at the same time, the three-way valve 33 is switched to connect the gas flow passage 27 with the pressurizing line 32, so that all particulates in the blockage hole 26 are discharged through the particulate passage 22. Ru. By repeating the above operation, fine particles are continuously and quantitatively supplied. Through the particle passage 22, from the particle inlet 41 to the dispersion chamber 4.
The fine particles supplied into the colliding body 43 collide with the colliding body 43, and the fine particles that were aggregated or aggregated are separated into individual particles and become monodispersed.

【0016】更に、散気管45からの圧縮空気の噴出力
によって、前記微粒子は単粒子の飛散状態となり、この
微粒子を同伴した空気は微粒子噴出口42に接続された
散布ノズル47を経て、散布室50内に入って、急激に
圧力が低下して膨張する。この結果、単分散状態の微粒
子は更に拡散し、散布室50内を層流となって降下し、
グリッド52で支持された基板54上に均一に散布され
る。基板54とグリッド52の間に、基板54との接触
面積が少なくとも同じである導電性材料からなる平板を
敷いて、基板54を支持する方法は、基板の有する表面
抵抗の影響を受けずに微粒子の散布密度が均一になるの
で好ましい。
Further, due to the jet force of the compressed air from the aeration pipe 45, the fine particles become dispersed as single particles, and the air entrained with the fine particles passes through the spray nozzle 47 connected to the fine particle outlet 42, and enters the scattering chamber. 50, the pressure suddenly drops and it expands. As a result, the monodisperse fine particles further diffuse and descend in the dispersion chamber 50 as a laminar flow.
It is evenly distributed onto a substrate 54 supported by a grid 52. A method of supporting the substrate 54 by laying a flat plate made of a conductive material having at least the same contact area with the substrate 54 between the substrate 54 and the grid 52 is a method of supporting the substrate 54 without being affected by the surface resistance of the substrate. This is preferable because the dispersion density becomes uniform.

【0017】散布室50内に導入された空気は、基板上
に乗らなかった微粒子とともにグリッド52を通過して
外部に出るが、この微粒子は回収して再度使用すること
ができる。なお、微粒子が0.1〜20μm程度の粒径
領域では、静電気力による凝集が生じたり、室内壁面に
付着したりすることがあるが、アース49、55を設け
ることにより、ある程度これを回避することができる。 また、基板上への微粒子の散布密度は、散布ノズル47
と基板54間の距離、散布操作の繰り返し回数、閉塞穴
26の容積などを変更することにより制御することがで
きる。
The air introduced into the dispersion chamber 50 passes through the grid 52 and exits to the outside together with the fine particles that did not land on the substrate, but these fine particles can be recovered and used again. In addition, in the particle size range of about 0.1 to 20 μm, fine particles may aggregate due to electrostatic force or adhere to indoor walls, but this can be avoided to some extent by providing earths 49 and 55. be able to. Furthermore, the scattering density of fine particles onto the substrate is determined by the scattering nozzle 47.
This can be controlled by changing the distance between the substrate 54 and the substrate 54, the number of times the spraying operation is repeated, the volume of the blocking hole 26, etc.

【0018】〔実施例1〕図1に示した装置を用いて、
平均粒径6.3μmのシリカ微粒子を、30cm×30
cmサイズのガラス基板上に散布した。散布条件として
は、シリカ微粒子の散布量は0.15g、空気使用量は
15リットル、散布時間は2秒であった。そのときの散
布結果を表1に示す。
[Example 1] Using the apparatus shown in FIG.
Silica fine particles with an average particle size of 6.3 μm were placed in a 30 cm x 30
It was dispersed onto a cm-sized glass substrate. As for the spraying conditions, the amount of silica fine particles sprayed was 0.15 g, the amount of air used was 15 liters, and the spraying time was 2 seconds. Table 1 shows the spraying results at that time.

【0019】〔実施例2〕サイズが50cm×50cm
の基板を用いた以外は実施例1と同じ散布条件で、ガラ
ス基板上に微粒子を散布した。そのときの散布結果を表
1に示す。
[Example 2] Size is 50cm x 50cm
Fine particles were sprayed onto a glass substrate under the same spraying conditions as in Example 1, except that the substrate was used. Table 1 shows the spraying results at that time.

【0020】[0020]

【表1】[Table 1]

【0021】表1から、本発明装置を使用して微粒子を
散布すると、ガラス基板上には微粒子が均一に分散され
、3個以上の凝集粒子が観察されなかったことが分かる
Table 1 shows that when fine particles were dispersed using the apparatus of the present invention, the fine particles were uniformly dispersed on the glass substrate, and no aggregated particles of three or more were observed.

【0022】[0022]

【発明の効果】本発明の微粒子の散布装置は、微粒子導
入口から分散室内に供給された微粒子が、衝突体に衝突
して単分散状態となるので、散布室内に設けられた基板
上に微粒子を均一に単分散させることができるという効
果を有する。従って、微粒子導入口から微粒子を定量的
に供給すれば、基板上に散布密度のばらつきを小さくし
て散布することができ、液晶用セルに用いられるガラス
基板上に微粒子を散布する装置として好適である。
[Effects of the Invention] In the particle dispersion device of the present invention, the particles supplied into the dispersion chamber from the particle inlet collide with the colliding body and become monodispersed. It has the effect of being able to uniformly monodisperse. Therefore, by quantitatively supplying fine particles from the fine particle inlet, it is possible to scatter fine particles onto the substrate with less variation in scattering density, making it suitable as a device for scattering fine particles onto glass substrates used in liquid crystal cells. be.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る微粒子の散布装置の一実施例を示
す部分縦断側面図である。
FIG. 1 is a partially vertical side view showing an embodiment of a particulate dispersion device according to the present invention.

【符号の説明】 10    定量供給装置 11    ホッパー 20    2方弁 27    気体流路 40    分散室 41    微粒子導入口 42    微粒子噴出口 43    衝突体 45    散気管 50    散布室 54    基板[Explanation of symbols] 10   Quantitative supply device 11 Hopper 20 2-way valve 27 Gas flow path 40 Dispersion room 41 Particulate inlet 42 Particulate spout 43 Collider 45 Diffusion pipe 50 Spreading room 54 Board

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  微粒子分散室の一端に、外部から微粒
子を圧縮気体と共に受け入れる微粒子導入口を設けると
共に、該分散室の他端には微粒子噴出口を備えて、同噴
出口を散布室内に開口させ、更に、前記分散室内であっ
て前記微粒子導入口に対向する位置に、衝突体を近接し
て配設したことを特徴とする微粒子の散布装置。
Claim 1: A particulate inlet is provided at one end of the particulate dispersion chamber for receiving particulates from the outside together with compressed gas, and a particulate jetting port is provided at the other end of the dispersing chamber, and the jetting part is opened into the dispersion chamber. and a particle dispersion device further comprising: an impactor disposed close to the dispersion chamber at a position facing the particle introduction port.
JP41388090A 1990-12-26 1990-12-26 Device for scattering fine particles Pending JPH04223444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41388090A JPH04223444A (en) 1990-12-26 1990-12-26 Device for scattering fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41388090A JPH04223444A (en) 1990-12-26 1990-12-26 Device for scattering fine particles

Publications (1)

Publication Number Publication Date
JPH04223444A true JPH04223444A (en) 1992-08-13

Family

ID=18522435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41388090A Pending JPH04223444A (en) 1990-12-26 1990-12-26 Device for scattering fine particles

Country Status (1)

Country Link
JP (1) JPH04223444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127169A (en) * 1991-10-31 1993-05-25 Sharp Corp Spacer material spreader for liquid crystal display panel
JP2006126496A (en) * 2004-10-28 2006-05-18 Ulvac Japan Ltd Head module and printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127169A (en) * 1991-10-31 1993-05-25 Sharp Corp Spacer material spreader for liquid crystal display panel
JP2006126496A (en) * 2004-10-28 2006-05-18 Ulvac Japan Ltd Head module and printer

Similar Documents

Publication Publication Date Title
JP2886342B2 (en) Solid particle coating equipment
US4112517A (en) Mixing apparatus
JPH04223444A (en) Device for scattering fine particles
US20010003351A1 (en) Dry particulate disperson system and flow control device therefor
US4872786A (en) Solid particulate aerosol generator
JP3169969B2 (en) How to spray fine particles on a substrate
GB2385810A (en) Product coating method and apparatus
JP3487610B2 (en) Spraying device for fine particles
JPH03153215A (en) Quantitative supply device and scattering device for particulate
JPH09108518A (en) Precoat agent supply apparatus in dust collector
JPH02241572A (en) Device for spreading fine particle
JPH0785783B2 (en) Method and apparatus for applying solid ultrafine particles
JPH0576819A (en) Coating method for powder and grain
JP2005500100A (en) Method and apparatus for coating pharmaceutical products
JP2967286B2 (en) Method and apparatus for dispersing spacer powder on liquid crystal substrate
JP3675510B2 (en) Ejector for powder ejection, powder coated substrate manufacturing apparatus, and powder coated substrate manufacturing method
JPS63274445A (en) Powder treatment apparatus
JPS62247833A (en) Method for continuously granulating powder
JPS62114640A (en) Granulation coating apparatus
SU1738318A1 (en) Apparatus for mixing peat liquid components
JPH04253029A (en) Method and device for dispersing spacer to substrate of liquid crystal display panel
JPS61249532A (en) Dispersing method for powdery granular particles
JPS6384626A (en) Method for coating fine particle
JP2507274B2 (en) Powder processing equipment
JP2000350959A (en) Method, apparatus and facility for powder atomization electrostatic coating