JPH04223257A - Electrode for measurement - Google Patents

Electrode for measurement

Info

Publication number
JPH04223257A
JPH04223257A JP2406929A JP40692990A JPH04223257A JP H04223257 A JPH04223257 A JP H04223257A JP 2406929 A JP2406929 A JP 2406929A JP 40692990 A JP40692990 A JP 40692990A JP H04223257 A JPH04223257 A JP H04223257A
Authority
JP
Japan
Prior art keywords
electrode
conductive
supporting body
conductive filaments
filament
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2406929A
Other languages
Japanese (ja)
Other versions
JP2812455B2 (en
Inventor
Yuichi Iritani
入谷 有一
Akira Miyazaki
明 宮崎
Tatsuo Suzuki
鈴木 辰生
Hideo Senchi
泉地 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikkiso Co Ltd
Original Assignee
Nikkiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikkiso Co Ltd filed Critical Nikkiso Co Ltd
Priority to JP2406929A priority Critical patent/JP2812455B2/en
Publication of JPH04223257A publication Critical patent/JPH04223257A/en
Application granted granted Critical
Publication of JP2812455B2 publication Critical patent/JP2812455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To improve the sensitivity and responsiveness of an electrode by a construction wherein a plurality of conductive filaments are buried in parallel in a nonconductive supporting body and made to project from one end part of the supporting body. CONSTITUTION:A plurality of conductive filaments 2 are buried in parallel in a nonconductive supporting body 1 and made to project from one end part 1a of the supporting body 1. The material of the supporting body 1 is not limited particularly on condition that it has an insulating property, and an oxide, a nitride and a carbide such as epoxy and polyimide and also various ceramics and cermets, for instance, are used therefor. An electrode thus constructed is, so to speak, an aggregate of a number of filament-shaped minute electrodes, and when it is used as an enzyme sensor, for instance, each of the conductive filaments operates as a working electrode. Therefore, high-speed responsiveness and excellent sensitivity can be exhibited.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は例えば酵素サンサーに用
いられる測定用電極に関し、さらに詳しくは、感度と応
答性とに優れた測定用電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring electrode used, for example, in an enzyme sensor, and more particularly to a measuring electrode with excellent sensitivity and responsiveness.

【0002】0002

【従来の技術】従来から、酵素を固定した高分子膜状物
と測定用電極とで電子移行を行なわせ、酵素反応を検出
する酵素センサーが開発されている。
BACKGROUND OF THE INVENTION Enzyme sensors have been developed that detect enzymatic reactions by causing electron transfer between a polymer membrane on which an enzyme is immobilized and a measuring electrode.

【0003】その測定用電極としては金属製や炭素材料
製の棒状体あるいは筒状体などが用いられているが、こ
のような電極を用いた酵素センサーには応答性や感度の
点で改良の余地が残されている。
[0003] Rod-shaped or cylindrical bodies made of metal or carbon materials are used as measurement electrodes, but enzyme sensors using such electrodes require improvements in terms of response and sensitivity. There is room left.

【0004】本発明は上記事情に鑑みてなされたもので
ある。
The present invention has been made in view of the above circumstances.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、より
優れた感度と応答性とを有する測定用電極を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring electrode having better sensitivity and responsiveness.

【0006】[0006]

【前記課題を解決するための手段】前記目的を達成する
ための本発明は、非導電性の支持体中に複数の導電性フ
ィラメントが平行に埋設されるとともに、該複数の導電
性フィラメントが前記支持体の一端部より突出している
ことを特徴とする測定用電極である。
[Means for Solving the Problems] In order to achieve the above object, the present invention includes a plurality of conductive filaments buried in parallel in a non-conductive support, and a plurality of conductive filaments that are This is a measurement electrode characterized by protruding from one end of a support.

【0007】また、前記導電性フィラメントは、炭素繊
維のフィラメントまたは表面に金属膜を形成した炭素繊
維であるのが好適である。
[0007] The conductive filament is preferably a carbon fiber filament or a carbon fiber having a metal film formed on its surface.

【0008】[0008]

【作用】本発明の測定用電極は、非導電性の支持体中に
複数の導電性フィラメントが平行に埋設されるとともに
、該複数の導電性フィラメントが前記支持体の一端部よ
り突出している。
[Operation] In the measuring electrode of the present invention, a plurality of conductive filaments are embedded in parallel in a non-conductive support, and the plurality of conductive filaments protrude from one end of the support.

【0009】このような測定用電極は、いわば多数のフ
ィラメント状微小電極の集合体であり、例えば酵素セン
サーとして用いると、各導電性フィラメントが作用電極
として作用するので、高速応答性と優れた感度とを発揮
することができる。
[0009] Such measurement electrodes are, so to speak, an assembly of many filament-like microelectrodes, and when used, for example, as an enzyme sensor, each conductive filament acts as a working electrode, resulting in high-speed response and excellent sensitivity. and can demonstrate.

【0010】0010

【実施例】−測定用電極の構造− 本発明の測定用電極は、図1に示すように、基本的に非
導電性の支持体1中に複数の導電性フィラメント2を平
行に埋設し、かつ該複数の導電性フィラメント2を前記
支持体1の一端部1aより突出させてなる。
[Example] - Structure of measurement electrode - As shown in Fig. 1, the measurement electrode of the present invention has a plurality of conductive filaments 2 buried in parallel in a basically non-conductive support 1, The plurality of conductive filaments 2 are made to protrude from one end 1a of the support 1.

【0011】各構成要素の詳細は以下の通りである。[0011] Details of each component are as follows.

【0012】−支持体−本発明に用いる支持体としては
、絶縁性を備えている限りその材質に特に制限はなく、
例えばエポキシ、ポリイミド、ポリウレタン、ポリエチ
レン、ポリ塩化ビニルなどの樹脂;シリコン、アルミニ
ウム、チタンなどの酸化物、窒化物、炭化物;各種セラ
ミックスならびに各種サーメットなどを挙げることがで
きる。
- Support - The material of the support used in the present invention is not particularly limited as long as it has insulating properties.
Examples include resins such as epoxy, polyimide, polyurethane, polyethylene, and polyvinyl chloride; oxides, nitrides, and carbides such as silicon, aluminum, and titanium; various ceramics, and various cermets.

【0013】前記支持体の長さ、径、形状については、
測定用電極の使用目的に応じて適宜に設定されるもので
あり、特に制約はない。
Regarding the length, diameter, and shape of the support body,
It is set appropriately depending on the purpose of use of the measurement electrode, and there are no particular restrictions.

【0014】−導電性フィラメント− 前記支持体に端部を除いて埋設される導電性フィラメン
トとしては、導電性を備えている限り任意の材料のフィ
ラメントを用いることが可能である。
-Conductive filament- As the conductive filament buried in the support except for its ends, a filament of any material can be used as long as it has conductivity.

【0015】その材料を挙げると、炭素繊維;白金や金
、銀等に代表される金属;導電性高分子などがある。 これらのうちでも、炭素繊維が特に好ましい。
Examples of such materials include carbon fiber; metals such as platinum, gold, and silver; and conductive polymers. Among these, carbon fiber is particularly preferred.

【0016】炭素繊維が特に好ましい理由としては、導
電性が良好であることに加え、酵素センサーなどに用い
た場合に水素や酸素ガス発生の過電圧が大きいこと、電
極の先端表面から突出したフィラメント間に、酵素や電
子伝達物質等を含む機能性材料を保持・固定し易いこと
、繊維径を3μmから100 μmと自由に選択するこ
とができること、任意の断面形状のものが選べること、
などを挙げることができる。
[0016] The reasons why carbon fiber is particularly preferable are that in addition to its good conductivity, when used in enzyme sensors etc., the overvoltage of hydrogen and oxygen gas generation is large, and that the carbon fiber is It is easy to hold and fix functional materials including enzymes and electron transfer substances, the fiber diameter can be freely selected from 3 μm to 100 μm, and any cross-sectional shape can be selected.
etc. can be mentioned.

【0017】なお、導電性フィラメントとして上記の金
属フィラメントが望ましい場合があるが、細い金属フィ
ラメントでは直径20μm前後にすると、切れ易いとい
う問題がある。
[0017] Although the above metal filament is desirable as the conductive filament in some cases, there is a problem in that a thin metal filament with a diameter of about 20 μm is easily broken.

【0018】このような場合も、上記炭素繊維の表面に
目的とする金属膜を蒸着、電着あるいは無電解メッキな
どの手段により形成させれば、容易に金属フィラメント
を製作することができる。しかも、この金属フィラメン
トは下地フィラメントが金属である場合と異なり、目的
金属膜のピンホールの有無は問題とならない。
Even in such a case, a metal filament can be easily produced by forming a desired metal film on the surface of the carbon fiber by means such as vapor deposition, electrodeposition, or electroless plating. Moreover, unlike the case where the base filament is metal, the presence or absence of pinholes in the target metal film does not matter with this metal filament.

【0019】本発明に用いる導電性フィラメントは前述
したように、支持体の一端部より突出しているが、その
突出部分の長さ、導電性フィラメント同士の間隔、導電
性フィラメントの径を目的に応じて制御することが可能
である。
As mentioned above, the conductive filaments used in the present invention protrude from one end of the support, and the length of the protruding portion, the spacing between the conductive filaments, and the diameter of the conductive filaments may be adjusted depending on the purpose. It is possible to control the

【0020】例えば、図1および図3において、各導電
性フィラメントの径をd、導電性フィラメント同士の間
隔をS、突出部分の長さをkとすれば、kおよびdを被
測定物質の拡散層の厚さよりも小さく、Sを被測定物質
の拡散層の厚さよりも大きくすると、高速応答性(π方
向)が得られる。
For example, in FIGS. 1 and 3, if the diameter of each conductive filament is d, the interval between the conductive filaments is S, and the length of the protruding portion is k, then k and d are the diffusion of the substance to be measured. When S is smaller than the thickness of the layer and larger than the thickness of the diffusion layer of the substance to be measured, high-speed response (in the π direction) can be obtained.

【0021】また、kがdに比べて大きければ大きい程
、より高い感度を得ることができる。
Furthermore, the larger k is compared to d, the higher the sensitivity can be obtained.

【0022】−測定用電極の応用− 本発明の測定用電極は、例えば酵素サンサーの作用電極
として好適に用いることができる。
- Application of measurement electrode - The measurement electrode of the present invention can be suitably used, for example, as a working electrode of an enzyme sensor.

【0023】例えば図4に示す酵素センサーは、作用電
極である本発明の測定用電極Aと、この側面に形成した
対照電極3とを備えている。
For example, the enzyme sensor shown in FIG. 4 includes a measuring electrode A of the present invention, which is a working electrode, and a reference electrode 3 formed on the side surface of the measuring electrode A.

【0024】測定用電極Aの先端部1aから突出した導
電性フィラメント2は、機能性材料としての高分子膜状
物4に埋め込まれている。
The conductive filament 2 protruding from the tip 1a of the measuring electrode A is embedded in a polymer film 4 as a functional material.

【0025】高分子膜状物4は、例えば高分子マトリッ
クス中に酵素および/または酸化還元物質を固定してな
るもので、酸化還元物質および/または酵素は、そのま
ま高分子マトリックス中に添加してもよいが、好ましく
は高分子材料に共有結合により固定し、得られる固定粒
子を高分子マトリックス中に配合するのがよい。もちろ
ん、本発明の測定用電極の特徴として、上記酸化還元物
質および/または酵素を導電性フィラメントの表面に直
接固定することも可能である。
The polymer membrane 4 is, for example, one in which an enzyme and/or a redox substance is immobilized in a polymer matrix, and the redox substance and/or enzyme is added to the polymer matrix as is. However, it is preferable to immobilize the particles to a polymeric material by covalent bonding and blend the resulting immobilized particles into a polymeric matrix. Of course, as a feature of the measurement electrode of the present invention, it is also possible to directly immobilize the redox substance and/or enzyme on the surface of the conductive filament.

【0026】かかる酵素センサーによる測定では、まず
被検体中の生化学物質、例えば試料溶液中のグルコース
が前記高分子膜状物中の酸化型の酵素により酵素反応を
受け、グルコノラクトンと水素イオンとに変化する。こ
れにより酵素は還元型酵素に変わる。次に、この還元型
酵素は酸化型の酸化還元物質と反応して、再び酸化型酵
素に変化する一方、酸化型の酸化還元物質は還元型に変
化する。この還元型の酸化還元物質は作用電極に電子を
放出し、再び酸化型に変化する。その結果、作用電極と
対照電極との間にグルコース濃度に比例した電流が流れ
、この電流値によって間接的にグルコース濃度が決定さ
れる。
In measurement using such an enzyme sensor, first, a biochemical substance in the specimen, such as glucose in a sample solution, undergoes an enzymatic reaction by an oxidized enzyme in the polymeric membrane, and is converted into gluconolactone and hydrogen ions. and change. This converts the enzyme into a reduced enzyme. Next, this reduced enzyme reacts with the oxidized redox substance and changes back into the oxidized enzyme, while the oxidized redox substance changes into the reduced form. This reduced redox substance releases electrons to the working electrode and changes back to its oxidized form. As a result, a current proportional to the glucose concentration flows between the working electrode and the reference electrode, and the glucose concentration is indirectly determined by this current value.

【0027】[0027]

【発明の効果】本発明の測定用電極は、非導電性の支持
体中に複数の導電性フィラメントを平行に埋設し、該導
電性フィラメントを前記支持体の一端部より突出させる
ものであり、目的に応じてその形状を制御することが可
能であるので、例えば酵素センサーの作用電極として用
いた場合に、優れた感度と応答性とを発揮することがで
きる。
[Effects of the Invention] The measurement electrode of the present invention has a plurality of conductive filaments buried in parallel in a non-conductive support, and the conductive filaments protrude from one end of the support, Since its shape can be controlled depending on the purpose, it can exhibit excellent sensitivity and responsiveness when used as a working electrode of an enzyme sensor, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の測定用電極の概略的説明図である。FIG. 1 is a schematic explanatory diagram of a measurement electrode of the present invention.

【図2】本発明の測定用電極の一例を示す斜視図である
FIG. 2 is a perspective view showing an example of a measurement electrode of the present invention.

【図3】図2のIII −III 線に沿う断面図であ
る。
FIG. 3 is a sectional view taken along line III-III in FIG. 2;

【図4】本発明の測定用電極を適用した酵素センサーの
一例を示す断面図である。
FIG. 4 is a sectional view showing an example of an enzyme sensor to which the measurement electrode of the present invention is applied.

【符号の説明】[Explanation of symbols]

1    支持体 1a  支持体の一端部 2    導電性フィラメント 1 Support 1a One end of the support 2 Conductive filament

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  非導電性の支持体中に複数の導電性フ
ィラメントが平行に埋設されるとともに、該複数の導電
性フィラメントが前記支持体の一端部より突出している
ことを特徴とする測定用電極。
1. A measuring device characterized in that a plurality of conductive filaments are buried in parallel in a non-conductive support, and the plurality of conductive filaments protrude from one end of the support. electrode.
【請求項2】  前記導電性フィラメントが、炭素繊維
のフィラメントまたは表面に金属膜を形成した炭素繊維
である請求項1に記載の測定用電極。
2. The measurement electrode according to claim 1, wherein the conductive filament is a carbon fiber filament or a carbon fiber with a metal film formed on its surface.
JP2406929A 1990-12-26 1990-12-26 Measurement electrode Expired - Fee Related JP2812455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2406929A JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2406929A JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Publications (2)

Publication Number Publication Date
JPH04223257A true JPH04223257A (en) 1992-08-13
JP2812455B2 JP2812455B2 (en) 1998-10-22

Family

ID=18516547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406929A Expired - Fee Related JP2812455B2 (en) 1990-12-26 1990-12-26 Measurement electrode

Country Status (1)

Country Link
JP (1) JP2812455B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004928A1 (en) * 1993-08-11 1995-02-16 Commonwealth Scientific And Industrial Research Organisation A microelectrode assembly
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor
WO2004003538A2 (en) * 2002-06-28 2004-01-08 November Aktiengesellschaft Multi-electrode device for detecting an analyte
JPWO2007086268A1 (en) * 2006-01-24 2009-06-18 独立行政法人産業技術総合研究所 Microelectrode and manufacturing method thereof
WO2010103174A1 (en) * 2009-03-09 2010-09-16 Oulun Yliopisto A carbon fiber multichannel electrode for measuring electrical and chemical activity in biological tissue and a process for making the electrode
WO2011095313A1 (en) * 2010-02-02 2011-08-11 Roche Diagnostics Gmbh Biosensor and methods for manufacturing
JP2013164375A (en) * 2012-02-13 2013-08-22 National Institute Of Advanced Industrial & Technology Heat-proof pressure-resistant corrosion resistance microelectrode
WO2014139494A1 (en) * 2013-03-12 2014-09-18 Westfälische Wilhelms-Universität Münster Micro electrode liquid measurement cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004928A1 (en) * 1993-08-11 1995-02-16 Commonwealth Scientific And Industrial Research Organisation A microelectrode assembly
JP2000512743A (en) * 1996-05-16 2000-09-26 センデックス メディカル,インク. Sensor having microminiature through-holes and method of manufacturing such a sensor
WO2004003538A2 (en) * 2002-06-28 2004-01-08 November Aktiengesellschaft Multi-electrode device for detecting an analyte
WO2004003538A3 (en) * 2002-06-28 2004-04-22 November Ag Molekulare Medizin Multi-electrode device for detecting an analyte
JPWO2007086268A1 (en) * 2006-01-24 2009-06-18 独立行政法人産業技術総合研究所 Microelectrode and manufacturing method thereof
JP4982899B2 (en) * 2006-01-24 2012-07-25 独立行政法人産業技術総合研究所 Microelectrode and manufacturing method thereof
WO2010103174A1 (en) * 2009-03-09 2010-09-16 Oulun Yliopisto A carbon fiber multichannel electrode for measuring electrical and chemical activity in biological tissue and a process for making the electrode
WO2011095313A1 (en) * 2010-02-02 2011-08-11 Roche Diagnostics Gmbh Biosensor and methods for manufacturing
US8721850B2 (en) 2010-02-02 2014-05-13 Roche Diagnostics Operations, Inc. Biosensor and methods for manufacturing
JP2013164375A (en) * 2012-02-13 2013-08-22 National Institute Of Advanced Industrial & Technology Heat-proof pressure-resistant corrosion resistance microelectrode
WO2014139494A1 (en) * 2013-03-12 2014-09-18 Westfälische Wilhelms-Universität Münster Micro electrode liquid measurement cell
DE202014010453U1 (en) 2013-03-12 2015-09-10 Westfälische Wilhelms-Universität Münster Micro electrode fluid measuring cell (MDE)

Also Published As

Publication number Publication date
JP2812455B2 (en) 1998-10-22

Similar Documents

Publication Publication Date Title
JP3947356B2 (en) Microsphere-containing sensor
JP2740587B2 (en) Micro composite electrode and method of manufacturing the same
FI96517C (en) Enzyme electrodes and process for their preparation
Dayton et al. Faradaic electrochemistry at microvoltammetric electrodes
Claussen et al. Electrochemical glutamate biosensing with nanocube and nanosphere augmented single-walled carbon nanotube networks: a comparative study
Urban et al. Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications
JP4590477B2 (en) Electrochemical sensors with improved selectivity and enhanced sensitivity
CN1180250C (en) Electrochemical biosensor test strip, fabrication method thereof and electrochemical biosensor
US11035820B2 (en) Carbon nanofiber sensor for non-enzymatic glucose detection and methods of glucose detection using such carbon nanofiber sensor
US8715981B2 (en) Electrochemical biosensor
EP1078253B1 (en) Microelectrode system
KR101159012B1 (en) Electrode for electrochemical biosensor and biosensor including the same
Roy et al. Vertically aligned carbon nanotube probes for monitoring blood cholesterol
US20070000776A1 (en) Biosensor and production method therefor
Yang et al. Nanopillar films with polyoxometalate-doped polyaniline for electrochemical detection of hydrogen peroxide
US20100084267A1 (en) Pair of measuring electrodes, biosensor comprising a pair of measuring electrodes of this type, and production process
US20060008667A1 (en) Mesoporous platinum electrode and method for detecting biochemical substrate using the mesoporous platinum electrode
Adabi et al. Electrodeposition of nickel on electrospun carbon nanofiber mat electrode for electrochemical sensing of glucose
JPH04223257A (en) Electrode for measurement
Cronenberg et al. Oxygen-independent glucose microsensor based on glucose oxidase
US5256271A (en) Method of immobilizing biofunctional material, and element prepared thereby, and measurement by using the same element
US5269903A (en) Microbioelectrode and method of fabricating the same
Subbaiah et al. Metal and metal oxide based advanced ceramics for electrochemical biosensors-A short review
JP3913289B2 (en) Glucose biosensor
US11959874B2 (en) Nanostructure featuring nano-topography with optimized electrical and biochemical properties

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980630

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees