JPH04221921A - Optical isolator for diagonal incidence - Google Patents

Optical isolator for diagonal incidence

Info

Publication number
JPH04221921A
JPH04221921A JP41362190A JP41362190A JPH04221921A JP H04221921 A JPH04221921 A JP H04221921A JP 41362190 A JP41362190 A JP 41362190A JP 41362190 A JP41362190 A JP 41362190A JP H04221921 A JPH04221921 A JP H04221921A
Authority
JP
Japan
Prior art keywords
light
polarizing beam
optical isolator
beam splitter
polarizers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41362190A
Other languages
Japanese (ja)
Inventor
Nobuhisa Asanuma
浅沼 信久
Tatsuyuki Uchino
達之 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP41362190A priority Critical patent/JPH04221921A/en
Publication of JPH04221921A publication Critical patent/JPH04221921A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To use polarization beam splitters as polarizers and to prevent the degradation in transmittance generated when an isolator is disposed to incline with an optical axis in order to prevent the return of the reflected light from the plane of the polarizers to a light source. CONSTITUTION:The two polarizers 21, 23 constituting the optical isolator are constituted of the polarization beam splitters. The incident angles of the light source light on the respective incident surfaces of a Faraday rotor 25 and the respective polarizers are so set as to incline in the direction there the transmittance of this incident light does not degrade.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は斜入射用光アイソレータ
に関し、殊に光アイソレータを構成する素子で反射する
光が光源側に戻ることを防止した斜入射用光アイソレー
タに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical isolator for oblique incidence, and more particularly to an optical isolator for oblique incidence that prevents light reflected by elements constituting the optical isolator from returning to the light source side.

【0002】0002

【従来技術】光源としてレーザダイオード等を用いた光
伝送回路においては、光源が光部品や受光素子等、伝送
回路途中に配置した回路素子で反射することが多く、該
反射光がレーザダイオードの発振器内に戻って再びレー
ザダイオードに入射すると、レーザダイオードの発振動
作を不安定にし、その結果雑音が発生し易くなって伝送
品質が劣化するという問題を生じる。
[Prior Art] In an optical transmission circuit using a laser diode or the like as a light source, the light source is often reflected by a circuit element placed in the transmission circuit, such as an optical component or a light receiving element, and the reflected light is transmitted to the oscillator of the laser diode. If the light returns to the inside and enters the laser diode again, the oscillation operation of the laser diode becomes unstable, resulting in a problem in that noise is more likely to occur and transmission quality deteriorates.

【0003】この問題点を解決するために従来より非相
反伝送機能を有する光アイソレータを用い、前記反射戻
り光を低減せしめる手段が一般に用いられている。
In order to solve this problem, conventionally, an optical isolator having a non-reciprocal transmission function has been used as a means for reducing the reflected return light.

【0004】図3は従来より用いられていた光アイソレ
ータの基本構成を示す図であって、透過偏波方向が互い
に45度異なるように配置された偏光子1と偏光子(検
光子)3との間にファラデー回転角45度を与える磁気
光学結晶より構成したファラデー素子5及び該ファラデ
ー素子5に対して磁化を飽和せしめるための永久磁石7
から構成されている。
FIG. 3 is a diagram showing the basic configuration of a conventionally used optical isolator, in which a polarizer 1 and a polarizer (analyzer) 3 are arranged so that their transmitted polarization directions differ by 45 degrees from each other. a Faraday element 5 made of a magneto-optical crystal that provides a Faraday rotation angle of 45 degrees between the two; and a permanent magnet 7 for saturating the magnetization of the Faraday element 5.
It consists of

【0005】このように構成された光アイソレータにお
いて、レーザダイオード9より出射した光は、図3に示
すように偏光子1を透過することによりX軸に平行な直
線偏光となり、次段のファラデー素子5においてその直
線偏光の偏波面が光進行方向(z軸)に直角方向即ち、
y軸方向に45度回転し、後方の偏光子3に入射する。
In the optical isolator constructed in this manner, the light emitted from the laser diode 9 becomes linearly polarized light parallel to the X axis by passing through the polarizer 1 as shown in FIG. 5, the polarization plane of the linearly polarized light is perpendicular to the light traveling direction (z-axis), that is,
It is rotated 45 degrees in the y-axis direction and enters the polarizer 3 at the rear.

【0006】該偏光子3に入射した直線偏光は、その偏
波方向が該偏光子3の容易透過偏波方向と一致している
ため、損失を受けることなく透過する。
[0006] The linearly polarized light incident on the polarizer 3 is transmitted without loss because its polarization direction coincides with the easily transmitted polarization direction of the polarizer 3.

【0007】一方、光アイソレータに逆方向から入射す
る戻り光は図4に示す如く、偏光子3の容易透過偏波方
向と一致した成分の直線偏光のみが通過し、ファラデー
素子に入射する。
On the other hand, as shown in FIG. 4, of the return light incident on the optical isolator from the opposite direction, only the linearly polarized light of the component matching the easily transmitted polarization direction of the polarizer 3 passes through and enters the Faraday element.

【0008】該ファラデー素子5は、非相反性のため、
逆方向からの入射光に対しても前述した順方向の場合と
同一方向に45度回転し、その結果y軸に対し平行な偏
波方向を有する直線偏光が出射し、偏光子1の容易透過
偏光方向と直交しているため該偏光子を透過せず光源で
あるレーザダイオード9に反射光が戻ることがない。と
ころで、光アイソレータの伝送経路上に存する前記各素
子等の光学部品はそれ自体が信号光を反射させるため、
この反射光が光源に戻ると、上記の場合と同様に光源た
るレーザダイオードの発振が不安定化する。
Since the Faraday element 5 is non-reciprocal,
The incident light from the opposite direction is also rotated by 45 degrees in the same direction as the forward direction described above, and as a result, linearly polarized light having a polarization direction parallel to the y-axis is emitted, and is easily transmitted through the polarizer 1. Since it is perpendicular to the polarization direction, the reflected light does not pass through the polarizer and does not return to the laser diode 9, which is the light source. By the way, since the optical components such as the above-mentioned elements existing on the transmission path of the optical isolator themselves reflect the signal light,
When this reflected light returns to the light source, the oscillation of the laser diode serving as the light source becomes unstable, similar to the above case.

【0009】この問題を解決するため従来は、素子等の
表面にアンチ・リフレクションコーティング(AR)を
施して反射を抑えていたが、上記コーティングに要する
コストが高くなるという問題であった。
In order to solve this problem, anti-reflection coating (AR) has conventionally been applied to the surface of elements to suppress reflection, but the problem has been that the cost required for the coating increases.

【0010】このようなところから、従来図5に示すよ
うに光アイソレータ全体を光路に対して所定角度θだけ
傾けることによって各素子1、3、5からの各反射光R
、R、Rがレーザダイオード9に戻り入射しないように
構成することにより低コストで反射光による影響を回避
する対策が行われていた。
From this point of view, conventionally, as shown in FIG. 5, each reflected light R from each element 1, 3, 5 is
, R, and R do not return to the laser diode 9 and thereby avoid the influence of reflected light at low cost.

【0011】上記各対策によって戻り光及びアイソレー
タ内部素子の反射光による影響を解消しており夫々一応
の効果は達成している。
[0011] The above-mentioned measures eliminate the influence of the returned light and the reflected light from the internal elements of the isolator, and each achieves a certain degree of effect.

【0012】ところで、従来の光アイソレータに用いら
れる偏光子としては、一般にルチル結晶が用いられてお
り、このルチル結晶を偏光子として用いる限り、アイソ
レータ全体を傾けて設置しても特性上問題は生じないが
、ルチル結晶には高価であるという欠点がある。
By the way, rutile crystal is generally used as a polarizer used in conventional optical isolators, and as long as this rutile crystal is used as a polarizer, there will be no problem in terms of characteristics even if the entire isolator is installed tilted. However, rutile crystals have the disadvantage of being expensive.

【0013】このため、コスト低減対策としては、偏光
子として低廉な偏光ビームスプリッタ(Polariz
ed  Beam  Splitter。以下、「PB
S」という。)を用いることが好ましい。偏光ビームス
プリッタは、周知のように二つの直角プリズムの端面同
志を全体形状が立方体或は直方体となるように接合する
とともに、該接合面に偏光膜を介在させたものであるが
、ルチル結晶と異なり透過する偏光面方向が一義的に決
まっているため、入射光の偏波方向と偏光ビームスプリ
ッタの透過偏光面方向との間の関係が僅かでも捻じれて
平行でなくなると透過率が低下するという特性を有して
いる。
Therefore, as a cost reduction measure, an inexpensive polarizing beam splitter (Polariz
ed Beam Splitter. Below, “PB
It's called "S". ) is preferably used. As is well known, a polarizing beam splitter is a device in which the end surfaces of two right-angled prisms are joined together so that the overall shape is a cube or a rectangular parallelepiped, and a polarizing film is interposed on the joined surface, but rutile crystal and Since the direction of the polarization plane that is transmitted is uniquely determined, the transmittance will decrease if the relationship between the polarization direction of the incident light and the direction of the transmitted polarization plane of the polarizing beam splitter is twisted even slightly and is no longer parallel. It has the following characteristics.

【0014】このため、コスト低減のためにルチル結晶
に代えて偏光ビームスプリッタを偏光子として用いた場
合に、素子反射光による戻りを防止するために上記許容
角度の範囲内でアイソレータ全体を伝送経路に対して所
定角度傾けて設置することが不可能である。
For this reason, when a polarizing beam splitter is used as a polarizer instead of a rutile crystal to reduce costs, the entire isolator is used as a transmission path within the above-mentioned allowable angle range in order to prevent return due to element reflected light. It is impossible to install the device at a predetermined angle.

【0015】その理由は、上記のようにアイソレータ内
に配置される2つの偏光ビームスプリッタの法線は互い
に45度捻じれた位置関係で配置されているため、前方
の偏光ビームスプリッタ1の法線とレーザダイオード9
の偏波面との平行性を維持し得る範囲内でアイソレータ
全体を傾斜させたとしても後方のビームスプリッタの偏
波面がファラディ素子を通過した光のそれをずれたもの
となり、該偏光ビームスプリッタ1を透過してからファ
ラデー素子5によって偏波面を45度回転された後の透
過光の偏波面は、後方の偏光ビームスプリッタ3の透過
偏波方向と平行でないものとなる。このため、光透過損
失が極めて大きくなる。
The reason for this is that the normal lines of the two polarizing beam splitters arranged in the isolator are twisted by 45 degrees to each other as described above, so the normal line of the polarizing beam splitter 1 in front and laser diode 9
Even if the entire isolator is tilted within a range that can maintain parallelism with the polarization plane of After the polarization plane of the transmitted light is rotated by 45 degrees by the Faraday element 5, the polarization plane of the transmitted light is not parallel to the transmitted polarization direction of the rear polarizing beam splitter 3. Therefore, light transmission loss becomes extremely large.

【0016】[0016]

【発明の目的】本発明は上記に鑑みてなされたものであ
り、コスト低減を実現するために偏光ビームスプリッタ
を偏光子として用いるとともに、透過損失を増加するこ
となくビームスプリッタ内部素子面からの反射光の戻り
を防止することができる斜入射用光アイソレータを提供
することを目的としている。
OBJECTS OF THE INVENTION The present invention has been made in view of the above, and uses a polarizing beam splitter as a polarizer to realize cost reduction, and also reduces reflection from the internal element surface of the beam splitter without increasing transmission loss. It is an object of the present invention to provide an optical isolator for oblique incidence that can prevent light from returning.

【0017】[0017]

【発明の概要】上記目的を達成するため本発明は、光源
光の光路上に配置したファラデー回転子と、該ファラデ
ー回転子の前後位置に夫々配置した偏光子とを備えた光
アイソレータにおいて、前記2つの偏光子を偏光ビーム
スプリッタによって構成すると共に、前記ファラデー回
転子と2つの偏光子の各入射面に対する前記光源光の入
射角度を夫々該入射光の透過率を低下させない方向に傾
斜するように設定したことを特徴としている。即ち、従
来の如く、アイソレータ全体を傾けることを止めて、ア
イソレータ内部素子を夫々個別に傾斜させたことを特徴
とするものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an optical isolator including a Faraday rotator disposed on the optical path of light from a light source, and polarizers disposed in front and rear positions of the Faraday rotator. The two polarizers are constituted by polarizing beam splitters, and the angle of incidence of the light source light with respect to each incident surface of the Faraday rotator and the two polarizers is tilted in a direction that does not reduce the transmittance of the incident light. It is characterized by having been set. That is, the present invention is characterized in that the isolator internal elements are individually tilted instead of tilting the entire isolator as in the conventional case.

【0018】[0018]

【発明の実施例】以下、添付図面に示した好適な実施例
に基づいて本発明を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on preferred embodiments shown in the accompanying drawings.

【0019】図1は本発明の一実施例の概略構成を示す
説明図であり、この光アイソレータ20は、透過偏波方
向が互いに45度異なるように配置された偏光ビームス
プリッタ(偏光子)21と23との間にファラデー回転
角45度を与える磁気光学結晶より構成したファラデー
素子25及び該ファラデー素子25を磁化せしめるため
の永久磁石27から構成されている。
FIG. 1 is an explanatory diagram showing a schematic configuration of an embodiment of the present invention. This optical isolator 20 includes polarizing beam splitters (polarizers) 21 arranged so that the transmitted polarization directions differ by 45 degrees from each other. The faraday element 25 is composed of a magneto-optical crystal that provides a Faraday rotation angle of 45 degrees between

【0020】この実施例は、レーザダイオード29から
の光源光Lに対する各偏光ビームスプリッタ21、23
の各入射面の姿勢を、直交入射する姿勢よりも夫々所定
角度θ1 だけ傾斜するように配置した構成が特徴的で
ある。
In this embodiment, each polarizing beam splitter 21, 23 for the light source light L from the laser diode 29
The configuration is characterized in that the postures of each of the incident surfaces are arranged to be inclined by a predetermined angle θ1 relative to the posture of orthogonal incidence.

【0021】同図において鎖線で示しているのが、図3
の従来例の素子の配置状態であり、実線で示しているの
が本発明の実施例の配置状態である。
In the figure, the chain line in FIG.
The solid line shows the arrangement of elements in the conventional example, and the solid line shows the arrangement in the embodiment of the present invention.

【0022】この図から明らかなように従来は入射面2
1a,23aが光源光Lと直交するように偏光ビームス
プリッタを配置していたのに対して、本発明では各偏光
ビームスプリッタ21、23を上記直交する姿勢よりも
所定角度θ1 だけ容易透過偏波方向と平行に傾斜させ
ている。
As is clear from this figure, conventionally the entrance plane 2
Whereas the polarizing beam splitters 1a and 23a are arranged so that they are perpendicular to the light source light L, in the present invention, each polarizing beam splitter 21 and 23 is arranged so that the polarized beams are easily transmitted by a predetermined angle θ1 than the orthogonal orientation. It is tilted parallel to the direction.

【0023】図2(a) は、図1の偏光ビームスプリ
ッタ21の入射面21aの正面図であり、点線は容易透
過偏波方向を示す仮想線である。この偏光ビームスプリ
ッタ21は点線で示す容易透過偏波方向に平行に入射面
21aが背面の出射面よりも上向きとなるように傾斜し
ているため、x軸方向の偏波面を有した入射光を透過率
を低下させることなく透過させることができる。
FIG. 2(a) is a front view of the entrance surface 21a of the polarizing beam splitter 21 of FIG. 1, and the dotted line is an imaginary line indicating the easily transmitted polarization direction. This polarizing beam splitter 21 is tilted parallel to the easily transmitted polarization direction shown by the dotted line so that the incident surface 21a is upward than the output surface on the rear surface, so that it can split the incident light having a polarization plane in the x-axis direction. It can be transmitted without reducing the transmittance.

【0024】また、後方の偏光ビームスプリッタ23の
容易透過偏波方向は、図2(b) に示すように前方の
偏光ビームスプリッタ21の容易透過偏波方向に対して
45度回転した状態に設定されているとともに、点線で
示す容易透過偏波方向に平行にθ1 だけ傾斜している
。このため、ファラデー素子25によって45度回転し
た偏波面を有した入射光を透過率を低下させることなく
透過させることができる。
Furthermore, the easily transmitted polarization direction of the rear polarizing beam splitter 23 is set to be rotated by 45 degrees with respect to the easily transmitted polarization direction of the front polarizing beam splitter 21, as shown in FIG. 2(b). It is also tilted by θ1 parallel to the direction of easily transmitted polarization shown by the dotted line. Therefore, the incident light having a plane of polarization rotated by 45 degrees can be transmitted through the Faraday element 25 without reducing the transmittance.

【0025】尚、ファラデー素子25は方向性を有しな
いため、いずれの方向に傾斜させてもよい。
Note that since the Faraday element 25 has no directionality, it may be tilted in any direction.

【0026】このように構成した光アイソレータにおい
て、レーザダイオード29より出射し偏光子21を透過
した光成分はX軸に平行な直線偏光となり、次段のファ
ラデー素子25においてその直線偏光の偏波面がy軸方
向に45度回転し、後方の偏光子23に入射する。
In the optical isolator configured as described above, the light component emitted from the laser diode 29 and transmitted through the polarizer 21 becomes linearly polarized light parallel to the X axis, and the polarization plane of the linearly polarized light is changed in the Faraday element 25 at the next stage. The light is rotated 45 degrees in the y-axis direction and enters the rear polarizer 23.

【0027】該偏光子23に入射した直線偏光は、その
偏波方向が該偏光子23の容易透過偏波方向と一致して
いるため、損失を受けることなく透過する。
The linearly polarized light incident on the polarizer 23 is transmitted without loss because its polarization direction coincides with the easily transmitted polarization direction of the polarizer 23.

【0028】一方、光アイソレータに逆方向から入射す
る戻り光は前記従来例において説明したのと同様に偏光
子23の容易透過偏波方向と一致した成分の直線偏光の
みが通過し、ファラデー素子25に入射する。
On the other hand, as for the return light incident on the optical isolator from the opposite direction, only the linearly polarized light of the component matching the easily transmitted polarization direction of the polarizer 23 passes through the Faraday element 25, as described in the conventional example. incident on .

【0029】該ファラデー素子25は、非相反性のため
、前述した順方向の場合と同一方向に45度回転し、そ
の結果y軸に対し平行な偏波方向を有する直線偏光が出
射し、偏光子1の容易透過偏光方向と直交しているため
該偏光子を透過せず光源であるレーザダイオード29に
反射光が戻ることがない。
Since the Faraday element 25 is non-reciprocal, it is rotated by 45 degrees in the same direction as in the forward direction described above, and as a result, linearly polarized light having a polarization direction parallel to the y-axis is emitted. Since it is perpendicular to the direction of easily transmitted polarization of the polarizer 1, the reflected light does not pass through the polarizer and does not return to the laser diode 29, which is the light source.

【0030】次に、上記各素子21、25及び23で反
射してレーザダイオード29に戻ろうとする各反射光は
、各素子21、25、23の入射面が光源光の光軸に対
してθ1 だけ傾いている為に、レーザダイオード29
に入射することがなくなる。
Next, each reflected light that is reflected by each of the above-mentioned elements 21, 25, and 23 and returns to the laser diode 29 is transmitted when the incident surface of each element 21, 25, and 23 is at an angle of θ1 with respect to the optical axis of the light source light. Because the laser diode is tilted by 29
It will no longer be incident on .

【0031】前記各偏光ビームスプリッタ21、23と
しては、例えば夫々2つの直角プリズムを立方体或は直
方体となるように接合するとともに、互いの接合面にS
iとSiO 2の薄膜を多層に積層したものを用いる。 尚、一般には円筒中に上述した各素子を配置し該円筒自
体を永久磁石にするか、円筒周面に永久磁石を付加した
構成となろう。
Each of the polarizing beam splitters 21 and 23 is constructed by, for example, joining two right-angled prisms to form a cube or a rectangular parallelepiped, and an S
A multilayer stack of thin films of i and SiO 2 is used. In general, the above-mentioned elements are arranged in a cylinder and the cylinder itself is made into a permanent magnet, or a permanent magnet is added to the circumferential surface of the cylinder.

【0032】上述のように本発明に於ては光アイソレー
タを構成する各素子の入射面を夫々光源光の光軸方向と
直交する姿勢よりも所定角度傾斜させるとともに、偏光
ビームスプリッタからなる偏光子の該傾斜方向を偏光子
の容易透過偏光方向と光の偏波面との平行性を維持し得
る方向となるように設定しているため、消光比の劣化を
防ぎながらも、素子からの反射光が光源に戻ることを防
止できる。
As described above, in the present invention, the entrance plane of each element constituting the optical isolator is tilted at a predetermined angle with respect to the orientation perpendicular to the optical axis direction of the light source light, and a polarizer consisting of a polarizing beam splitter is used. The direction of inclination of the polarizer is set to be a direction that maintains parallelism between the easily transmitted polarization direction of the polarizer and the plane of polarization of the light, so while preventing deterioration of the extinction ratio, the light reflected from the element is can be prevented from returning to the light source.

【0033】なお、従来の光アイソレータにおいて、各
偏光ビームスプリッタ等の素子自体を傾斜させる構成に
ついて何人も想到しなかった理由は、偏光子として従来
のようにルチル結晶を用いる限り、どのように傾斜させ
ても消光比の劣化が生じない。
[0033] The reason why no one has thought of a configuration in which elements such as polarizing beam splitters themselves are tilted in conventional optical isolators is that as long as rutile crystal is used as a polarizer as in the past, there is no way to tilt the elements themselves. Even if the temperature is increased, the extinction ratio does not deteriorate.

【0034】従って、図5に示す如く、夫々の素子をす
べて平行に配置した光アイソレータ全体を僅か傾ける方
が、夫々の素子を傾けるより、はるかに製造が容易であ
ったからであろう。
Therefore, as shown in FIG. 5, it would have been much easier to manufacture the optical isolator by slightly tilting the entire optical isolator in which all the elements were arranged in parallel than by tilting each element.

【0035】これに対して本発明者は、上記不利益を甘
受しても余りあるメリットとして、上記構成が消光比の
劣化を招くことなく戻り光の光源への入射を防止するこ
とができるという効果を発見し、この発見に基づいて本
発明を完成するに至ったものである。
On the other hand, the present inventor believes that the above-mentioned structure can prevent the return light from entering the light source without causing deterioration of the extinction ratio, as an advantage that is worth accepting the above-mentioned disadvantages. This effect was discovered, and the present invention was completed based on this discovery.

【0036】[0036]

【発明の効果】以上のように本発明によれば、コスト低
減を実現するために偏光ビームスプリッタを偏光子とし
て用いるとともに、各素子の入射面に対する光源光の入
射角度を90度よりも所定角度傾けて設定して素子面か
らの反射光の戻りを防止した場合においても、偏光ビー
ムスプリッタの光透過率が低下することを防止すること
ができる。
As described above, according to the present invention, in order to realize cost reduction, a polarizing beam splitter is used as a polarizer, and the incident angle of the light source light with respect to the incident surface of each element is set at a predetermined angle rather than 90 degrees. Even when the polarizing beam splitter is set at an angle to prevent the reflected light from returning from the element surface, it is possible to prevent the light transmittance of the polarizing beam splitter from decreasing.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の光アイソレータにおける各
素子の配置を示す説明図。
FIG. 1 is an explanatory diagram showing the arrangement of each element in an optical isolator according to an embodiment of the present invention.

【図2】(a) は本発明における前方の偏光ビームス
プリッタの入射面の正面図、(b) は後方の偏光ビー
ムスプリッタの入射面の正面図である。
FIG. 2(a) is a front view of the entrance surface of the front polarizing beam splitter in the present invention, and FIG. 2(b) is a front view of the entrance surface of the rear polarizing beam splitter.

【図3】従来の光アイソレータの構成説明図。FIG. 3 is an explanatory diagram of the configuration of a conventional optical isolator.

【図4】図2の光アイソレータに逆方向から入射する戻
り光の説明図。
FIG. 4 is an explanatory diagram of return light entering the optical isolator in FIG. 2 from the opposite direction.

【図5】他の従来に係る光アイソレータの配置状態説明
図である。
FIG. 5 is an explanatory diagram of the arrangement of another conventional optical isolator.

【符号の説明】[Explanation of symbols]

1、21  偏光子(偏光ビームスプリッタ)3、23
  偏光子(偏光ビームスプリッタ)5、25  ファ
ラデー素子 7、27  永久磁石 9、29  レーザダイオード
1, 21 Polarizer (polarizing beam splitter) 3, 23
Polarizer (polarizing beam splitter) 5, 25 Faraday element 7, 27 Permanent magnet 9, 29 Laser diode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  光源の光路上に配置したファラデー回
転子と、該ファラデー回転子の前後位置に夫々配置した
偏光子とを備えた光アイソレータにおいて、前記2つの
偏光子を偏光ビームスプリッタによって構成すると共に
、前記ファラデー回転子と2つの偏光子の各入射面に対
する前記光源光の入射角度を夫々該入射光の透過率を低
下させない方向に傾斜するように設定したことを特徴と
する斜入射光アイソレータ。
1. An optical isolator comprising a Faraday rotator disposed on the optical path of a light source and polarizers disposed in front and rear positions of the Faraday rotator, wherein the two polarizers are configured by a polarizing beam splitter. and an oblique incidence optical isolator, characterized in that the angle of incidence of the light source light on each of the incident surfaces of the Faraday rotator and the two polarizers is set to be inclined in a direction that does not reduce the transmittance of the incident light. .
【請求項2】  前記偏光ビームスプリッタは、2つの
直角プリズムを立方体又は直方体等の6面体となるよう
に接合するとともに、互いの接合面にSiとSiO 2
の薄膜を多層に積層してなることを特徴とする請求項1
記載の斜入射用光アイソレータ。
2. The polarizing beam splitter has two right-angled prisms joined together to form a hexahedron such as a cube or a rectangular parallelepiped, and Si and SiO 2 are added to the joint surfaces of each other.
Claim 1 characterized in that the thin film is laminated in multiple layers.
The optical isolator for oblique incidence described above.
【請求項3】  前記偏光ビームスプリッタの傾斜方向
が、該偏光ビームスプリッタを構成する前記プリズム接
合面の法線が透過直進する偏光光の偏光面と平行である
ことを特徴とする請求項(1) 又は請求項2記載の斜
入射用光アイソレータ。
3. The inclination direction of the polarizing beam splitter is such that the normal line of the prism joint surface constituting the polarizing beam splitter is parallel to the plane of polarization of the polarized light that passes through and travels straight. ) or the oblique incidence optical isolator according to claim 2.
JP41362190A 1990-12-25 1990-12-25 Optical isolator for diagonal incidence Pending JPH04221921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41362190A JPH04221921A (en) 1990-12-25 1990-12-25 Optical isolator for diagonal incidence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41362190A JPH04221921A (en) 1990-12-25 1990-12-25 Optical isolator for diagonal incidence

Publications (1)

Publication Number Publication Date
JPH04221921A true JPH04221921A (en) 1992-08-12

Family

ID=18522220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41362190A Pending JPH04221921A (en) 1990-12-25 1990-12-25 Optical isolator for diagonal incidence

Country Status (1)

Country Link
JP (1) JPH04221921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090375A (en) * 2014-07-30 2014-10-08 华为技术有限公司 Optical isolating device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104090375A (en) * 2014-07-30 2014-10-08 华为技术有限公司 Optical isolating device and method

Similar Documents

Publication Publication Date Title
US5631771A (en) Optical isolator with polarization dispersion and differential transverse deflection correction
US4770505A (en) Optical isolator
JPH04221921A (en) Optical isolator for diagonal incidence
JPH07191280A (en) Optical isolator
JP3161885B2 (en) Optical isolator
JPH01241502A (en) Polarizing element for optical isolator
JP2686453B2 (en) Optical isolator
JP3176180B2 (en) Optical isolator
JPS6257012B2 (en)
JP2516463B2 (en) Polarization-independent optical isolator
JP2610174B2 (en) Optical isolator
JP2002296544A (en) 3-port miniaturized optical circulator
JP3006687B2 (en) Optical isolator
JPH04221922A (en) Polarization independent type optical isolator
JP2989983B2 (en) Optical isolator
JPS6230607B2 (en)
JP2840711B2 (en) Optical isolator
JPS61102621A (en) Optical isolator
JPH06265820A (en) Optical passive component
JPH06317703A (en) Polarization-independent beam splitter and optical parts formed by using the same
JPS60238813A (en) Optical isolator
JPH07191279A (en) Optical isolator
JPH09258135A (en) Optical circulator
JPH0532826Y2 (en)
JPH04366806A (en) Optical circulator