JPH04221904A - Optical multiplayered interference film - Google Patents
Optical multiplayered interference filmInfo
- Publication number
- JPH04221904A JPH04221904A JP40569090A JP40569090A JPH04221904A JP H04221904 A JPH04221904 A JP H04221904A JP 40569090 A JP40569090 A JP 40569090A JP 40569090 A JP40569090 A JP 40569090A JP H04221904 A JPH04221904 A JP H04221904A
- Authority
- JP
- Japan
- Prior art keywords
- film
- refractive index
- optical
- layer
- low refractive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims description 62
- 239000010408 film Substances 0.000 claims abstract description 201
- 239000012788 optical film Substances 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000000758 substrate Substances 0.000 claims description 8
- 239000010409 thin film Substances 0.000 claims description 3
- 238000002834 transmittance Methods 0.000 abstract description 12
- 230000003595 spectral effect Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 239000011521 glass Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000001629 suppression Effects 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 235000012239 silicon dioxide Nutrition 0.000 description 6
- 239000004408 titanium dioxide Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000007738 vacuum evaporation Methods 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000003086 colorant Substances 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 231100000989 no adverse effect Toxicity 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Optical Filters (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、フィルタなどに用い
る光学多層干渉膜に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an optical multilayer interference film used in filters and the like.
【0002】0002
【従来の技術】光学多層膜を応用した多層膜は、すでに
真空蒸着、イオンプレーティング、スパッタリングなど
の方法により作製され、各種の用途に実用化されている
。そのなかで、ある波長より短い波長のみを透過するも
のをショートパスフィルタと呼んでいる。一般に、ショ
ートパスフィルタは、透過部の透過率分布はなるべく高
くかつ平坦で、不透過(反射)部の透過率分布はなるべ
く低くかつ平坦であることが必要である。反射帯域を広
くとりたいときは、2つの異なった反射波長(光学膜厚
)の多層膜群を積層して、両者の反射帯域をつなげて帯
域拡大を図る。2. Description of the Related Art Multilayer films using optical multilayer films have already been produced by methods such as vacuum evaporation, ion plating, and sputtering, and have been put into practical use for various purposes. Among them, those that transmit only wavelengths shorter than a certain wavelength are called short-pass filters. Generally, in a short-pass filter, it is necessary that the transmittance distribution in the transmitting part be as high and flat as possible, and the transmittance distribution in the non-transmissive (reflecting) part be as low and flat as possible. If you want to widen the reflection band, you can stack multilayer films with two different reflection wavelengths (optical film thicknesses) and connect the two reflection bands to expand the band.
【0003】これらのショートパスフィルタは、通常、
光学膜厚の等しい、高屈折率膜と低屈折率膜を交互に積
層した光学多層干渉膜の、反射域とその短波長側の透過
域の境界を利用して作製する。しかし、この部分には、
図3にみるように、リップルと呼ばれる漣状の特性が現
れるので、これを抑制しなければ、優れたショートパス
特性を得ることができない。[0003] These short-pass filters are usually
It is produced by utilizing the boundary between the reflection region and the transmission region on the shorter wavelength side of an optical multilayer interference film, which is made by alternately laminating high refractive index films and low refractive index films with the same optical film thickness. However, in this part,
As shown in FIG. 3, a ripple-like characteristic called ripple appears, and unless this is suppressed, excellent short-pass characteristics cannot be obtained.
【0004】光学膜厚が全て等しく、単一の主反射波長
をもつ多層膜(単波長構成)のリップル抑制のために最
も一般的に行われるのは、多層膜の第1層と最終層が低
屈折率膜になるような構成にし、その光学膜厚をその他
の層の光学膜厚の半分にすることである。このようにす
ると、リップルがかなり抑制され、優れた特性が得られ
る。[0004] The most common method for suppressing ripples in a multilayer film (single wavelength configuration) in which all optical film thicknesses are equal and has a single main reflection wavelength is to The structure is such that it becomes a low refractive index film, and its optical thickness is half that of the other layers. In this way, ripples are considerably suppressed and excellent characteristics can be obtained.
【0005】[0005]
【発明が解決しようとする課題】しかし、そのように、
最下層(ここでは第1層のことである)に光学膜厚が半
分である低屈折率膜を置く方法は作製上の問題がある。
一般に光学薄膜を作製する場合は、真空蒸着などの方法
が使用されるが、このとき光電式膜厚計を使用すると最
も正確に膜厚を制御できる。これは、真空蒸着機のチャ
ンバー内の蒸着基材近傍に設置されたモニタ用ガラスの
表面に形成される膜の反射率変化を測定して膜厚を制御
する機構である。このとき以下のような問題がある。ま
ず第1に、モニタガラス上に低屈折率膜を蒸着すると、
一般に反射率の低下が起こるので、測定値が小さくなり
、測定精度も低下する。第2に、膜厚を大幅に他の層と
変えると、計器の膜厚測定範囲から出てしまうか、また
は、出なくても測定限界近辺で測定を行うことになり、
膜厚制御が難しいことが多い。[Problem to be solved by the invention] However, in this way,
The method of placing a low refractive index film with half the optical thickness on the bottom layer (here, the first layer) has a manufacturing problem. Generally, when producing optical thin films, methods such as vacuum evaporation are used, but the film thickness can be controlled most accurately by using a photoelectric film thickness meter. This is a mechanism that controls the film thickness by measuring changes in the reflectance of a film formed on the surface of a monitor glass installed near the evaporation substrate in the chamber of a vacuum evaporation machine. At this time, the following problems arise. First of all, when a low refractive index film is deposited on the monitor glass,
Generally, a decrease in reflectance occurs, resulting in smaller measured values and lower measurement accuracy. Second, if the film thickness is significantly different from that of other layers, it will either go out of the film thickness measurement range of the instrument, or even if it does not go out, the measurement will be performed near the measurement limit.
Film thickness control is often difficult.
【0006】以上の理由により、光学膜厚が半分の低屈
折率膜が最下層にくると正確な膜厚の制御が難しい。こ
の不正確な第1層の上に第2層を形成すると、第2層の
膜厚も不正確になるので、モニタガラスの交換などを行
わなければならないこともあり、コストアップにもつな
がる。反射帯域を広くとるための別の方法として、2つ
の異なった主反射波長(光学膜厚)の多層膜群を積層し
て、両者の反射帯域をつなげて帯域拡大を図る場合(2
波長構成)のリップル制御について述べると、2つの異
なる光学膜厚の多層膜群が相互に干渉を起こすので、は
るかに複雑な干渉作用が発生する。このため、長短2波
長の多層膜群に前記の単波長リップル処理をして積層し
ても、リップルを抑制することは困難である。For the above reasons, when a low refractive index film with half the optical thickness is placed in the bottom layer, it is difficult to accurately control the film thickness. If the second layer is formed on this inaccurate first layer, the thickness of the second layer will also be inaccurate, which may require replacing the monitor glass, leading to an increase in costs. Another method to widen the reflection band is to stack multilayer films with two different main reflection wavelengths (optical film thicknesses) and connect the two reflection bands to expand the band (2
Regarding ripple control of wavelength configuration), since two multilayer film groups with different optical film thicknesses interfere with each other, a much more complex interference effect occurs. For this reason, it is difficult to suppress ripples even if a multilayer film group with two wavelengths, long and short, is subjected to the single wavelength ripple treatment and laminated.
【0007】2波長構成のリップル抑制の方法としては
、従来から、コンピュータのシュミレーションによる膜
構成の「最適化」による方法があった。しかし、この方
法では、各層の膜厚がばらばらになってしまうため作製
が難しくなるばかりでなく、量産時に管理すべき要素が
非常に増えてしまい、特性のばらつきを抑えることが困
難である。Conventionally, as a method for suppressing ripples in a two-wavelength configuration, there has been a method of ``optimizing'' the film configuration through computer simulation. However, this method not only makes manufacturing difficult because the film thickness of each layer varies, but also increases the number of elements to be managed during mass production, making it difficult to suppress variations in characteristics.
【0008】この発明は、このような問題を解決し、広
帯域の反射特性を得ようとし、なおかつ、ショートパス
フィルタの特性を得ようとするとき、透過部の分光透過
率特性をより良く、すなわち透過率をより高くかつ平坦
にし、同時にシャープカット特性にすることができる光
学多層干渉膜を提供することを課題とする。[0008] The present invention solves these problems, and when trying to obtain broadband reflection characteristics and short-pass filter characteristics, it improves the spectral transmittance characteristics of the transmitting part, that is, It is an object of the present invention to provide an optical multilayer interference film that can have higher transmittance, flatness, and sharp cut characteristics at the same time.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
に、この発明は、高屈折率膜と低屈折率膜が基材上に交
互に多層形成されている光学多層干渉薄膜を有し、基材
側から順に;互いに等しい光学膜厚aを有する高屈折率
膜と低屈折率膜が交互に多層形成されている多層膜群A
;互いに等しい光学膜厚bを有する高屈折率膜と低屈折
率膜が1層ずつ重ね合わせて形成されている中間層群B
;および、互いに等しい光学膜厚cを有する高屈折率膜
と低屈折率膜が交互に多層形成されている多層膜群C;
を有し、光学膜厚aが光学膜厚cよりも大きく、かつ、
光学膜厚bが
c+(a−c)/6≦b≦a−(a−c)/6の範囲で
ある光学多層干渉膜を提供する。この膜厚bは、膜厚a
よりも小さく、かつ、膜厚cよりも大きい。[Means for Solving the Problems] In order to solve the above problems, the present invention has an optical multilayer interference thin film in which high refractive index films and low refractive index films are alternately formed on a base material, In order from the base material side; multilayer film group A in which high refractive index films and low refractive index films having mutually equal optical film thicknesses are formed in multiple layers alternately;
; intermediate layer group B formed by overlapping one high refractive index film and one low refractive index film having mutually equal optical film thicknesses b;
; and a multilayer film group C in which high refractive index films and low refractive index films having mutually equal optical film thicknesses c are alternately formed;
, the optical film thickness a is larger than the optical film thickness c, and
An optical multilayer interference film having an optical thickness b in the range of c+(ac)/6≦b≦a-(ac)/6 is provided. This film thickness b is the film thickness a
and larger than the film thickness c.
【0010】この発明では、3つの異なる光学膜厚の膜
群A、BおよびCが、いずれも、それぞれの基材側から
数えて第1層に高屈折率膜を、最終層に低屈折率膜を有
していてもよい。この発明では、多層膜群Cの最終層お
よび最終層の2つ手前の層が低屈折率膜であり、最終層
の光学膜厚が0.4c〜0.7cの範囲、最終層の2つ
手前の層の光学膜厚が1.05c〜1.25cの範囲で
あってもよい。In the present invention, film groups A, B, and C having three different optical film thicknesses have a high refractive index film as the first layer and a low refractive index film as the final layer, counting from the respective base material sides. It may have a membrane. In this invention, the final layer of multilayer film group C and the layer two layers before the final layer are low refractive index films, the optical thickness of the final layer is in the range of 0.4c to 0.7c, and the two final layers are low refractive index films. The optical thickness of the front layer may be in the range of 1.05c to 1.25c.
【0011】光学膜厚の大きい多層膜群Aの全体の層数
は、たとえば10〜20層とされ、光学膜厚の小さい多
層膜群Cの全体の層数は、たとえば10〜20層とされ
る。これら両者AとBに大差がないことが好ましい。The total number of layers in the multilayer film group A having a large optical thickness is, for example, 10 to 20 layers, and the total number of layers in the multilayer film group C having a small optical thickness is, for example, 10 to 20 layers. Ru. It is preferable that there is no significant difference between these two A and B.
【0012】0012
【作 用】上記特定の3つの膜群A、Bおよ
びCからなる膜構成にすると、たとえば、図3および4
にみるように、非常に平坦で高い透過特性をもつショー
トパスフィルタができる。膜厚や構成が、請求項1に示
す範囲から外れた場合は、リップルの抑制効果が弱くな
ったり、ショートパス特性が崩れたりし、実用的な特性
は得られない。[Function] When the film structure is made up of the above-mentioned three specific film groups A, B and C, for example, FIGS. 3 and 4
As shown in , a short-pass filter with extremely flat and high transmission characteristics can be created. If the film thickness or structure deviates from the range shown in claim 1, the ripple suppressing effect will be weakened or the short-pass characteristics will deteriorate, making it impossible to obtain practical characteristics.
【0013】この発明では、最終層以外に膜厚が他と大
きく異なる層がないので膜厚計測が容易である。最終層
は膜厚が半分の低屈折率膜にすることは避けられないが
、この場合には、最終層以前に前層で高屈折率膜の蒸着
を行っており、すでにモニタガラスの反射率がかなり高
くなっているので、低屈折率膜の蒸着の反射率低下によ
る測定精度の低下はあまり問題ではなくなる。また、最
終層であるから後の層の膜厚への悪影響はない。[0013] In this invention, since there is no layer other than the final layer whose thickness differs greatly from other layers, it is easy to measure the thickness. It is inevitable that the final layer should be a low refractive index film with half the film thickness, but in this case, a high refractive index film has been deposited as a previous layer before the final layer, and the reflectance of the monitor glass has already been is considerably high, so the reduction in measurement accuracy due to the reduction in reflectance due to the deposition of a low refractive index film is no longer a problem. Furthermore, since it is the final layer, there is no adverse effect on the thickness of subsequent layers.
【0014】蒸着の手順からも、全ての膜厚の変更は高
屈折率膜の蒸着から始まるので、そのつどモニタガラス
を交換すれば、低屈折率膜から蒸着を始める必要がない
。中間層群Bは、高屈折率膜と低屈折率膜が各1層でな
ければならない。リップル抑制が十分にできないからで
ある。多層膜群AとCとの順番が反対であると、リップ
ル抑制が十分にできなくなる。[0014] Also from the vapor deposition procedure, all film thickness changes start with the vapor deposition of a high refractive index film, so if the monitor glass is replaced each time, there is no need to start vapor deposition from a low refractive index film. The intermediate layer group B must have one high refractive index film and one low refractive index film. This is because ripple cannot be suppressed sufficiently. If the order of multilayer film groups A and C is reversed, ripples cannot be suppressed sufficiently.
【0015】最終層の2つ手前の層(最終層から3層目
)(低屈折率膜)の光学膜厚を他の交互層の膜厚の1.
05〜1.25倍の範囲とすると、リップル抑制に微妙
な影響を与える。このような構成にせず、この層の膜厚
を他の基本構成層と同じにしてもリップル抑制は十分可
能である(図5参照)。しかし、特性が微妙に異なった
ものになるので、光学多層干渉膜の目的や用途に合わせ
てどちらにするかを適宜選択すればよい。The optical thickness of the layer two layers before the final layer (the third layer from the final layer) (low refractive index film) is set to 1.5 times the thickness of the other alternating layers.
A range of 0.05 to 1.25 times has a subtle effect on ripple suppression. Even if the thickness of this layer is made the same as that of the other basic constituent layers without using such a structure, ripples can be sufficiently suppressed (see FIG. 5). However, since the characteristics will be slightly different, it is only necessary to appropriately select one according to the purpose and use of the optical multilayer interference film.
【0016】[0016]
【実 施 例】以下に、この発明を、その実施例を
表す図面を参照しながら、詳しく説明する。図1は、こ
の発明の光学多層干渉膜の1実施例を示す。基材1の上
に多層膜群A、中間層群Bおよび多層膜群Cがこの順に
積層されるように形成されている。[Embodiments] The present invention will be explained in detail below with reference to drawings showing embodiments thereof. FIG. 1 shows one embodiment of the optical multilayer interference film of the present invention. A multilayer film group A, an intermediate layer group B, and a multilayer film group C are formed on a base material 1 so as to be laminated in this order.
【0017】多層膜群Aは、長波長側の膜群であり、光
学膜厚(主反射波長。以下同様)aの大きい膜群である
。互いに等しい光学膜厚aを有する高屈折率膜H1 と
低屈折率膜L1 が交互に多層形成されている。多層膜
群Cは、短波長側の膜群であり、光学膜厚cの小さい膜
群である(c<a)。互いに等しい光学膜厚cを有する
高屈折率膜H3 と低屈折率膜L3が交互に多層形成さ
れている。The multilayer film group A is a film group on the long wavelength side, and is a film group with a large optical film thickness (main reflection wavelength; the same applies hereinafter) a. High refractive index films H1 and low refractive index films L1 having the same optical film thickness a are alternately formed in multiple layers. The multilayer film group C is a film group on the short wavelength side, and is a film group with a small optical film thickness c (c<a). High refractive index films H3 and low refractive index films L3 having the same optical film thickness c are alternately formed in multiple layers.
【0018】中間層群Bは、中間調整層であり、互いに
等しい光学膜厚bを有する高屈折率膜H2 と低屈折率
膜L2 が1層ずつ重ね合わせて形成されている。中間
層群Bの各層の光学膜厚bは、
c+(a−c)/6≦b≦a−(a−c)/6の範囲で
ある。bがこの範囲を外れると、リップル抑制効果がな
くなる(図11および12参照)。The intermediate layer group B is an intermediate adjustment layer, and is formed by overlapping one high refractive index film H2 and one low refractive index film L2 having the same optical film thickness b. The optical thickness b of each layer of the intermediate layer group B is in the range of c+(ac)/6≦b≦a−(ac)/6. When b is out of this range, the ripple suppression effect disappears (see FIGS. 11 and 12).
【0019】高屈折率膜は、たとえば二酸化チタンなど
から、低屈折率膜は、たとえば二酸化珪素などから形成
されている。形成方法は、たとえば、真空蒸着など上述
の膜形成方法が採用される。膜厚の管理も上述の光電式
膜厚計などが利用されるが、これに限定するものではな
い。図2は、この発明の光学多層干渉膜の別の1実施例
を示す。この光学多層干渉膜は、図1に示すものにおい
て、多層膜群が異なっている(図中、C’で示す)こと
以外は図1に示すものと同じである。多層膜群C’では
、最終層L5 および最終層の2つ手前の層L4 が低
屈折率膜であり、最終層L5 の光学膜厚が0.4c〜
0.7cの範囲、最終層の2つ手前の層L4 の光学膜
厚が1.05c〜1.25cの範囲である。The high refractive index film is made of, for example, titanium dioxide, and the low refractive index film is made of, for example, silicon dioxide. As the formation method, for example, the above-mentioned film formation method such as vacuum evaporation is employed. Although the above-mentioned photoelectric film thickness meter and the like are used to manage the film thickness, it is not limited thereto. FIG. 2 shows another embodiment of the optical multilayer interference film of the present invention. This optical multilayer interference film is the same as that shown in FIG. 1 except that the multilayer film group is different (indicated by C' in the figure). In the multilayer film group C', the final layer L5 and the layer L4 two layers before the final layer are low refractive index films, and the optical film thickness of the final layer L5 is 0.4c~
The optical film thickness of the layer L4 two layers before the final layer is in the range of 1.05c to 1.25c.
【0020】以下に、この発明の具体的な実施例および
比較例を示すが、この発明は下記実施例に限定されない
。
−実施例1−
この実施例は、この発明の光学多層干渉膜が青色フィル
タである場合の1実施例である。[0020] Specific examples and comparative examples of the present invention are shown below, but the present invention is not limited to the following examples. -Example 1- This example is an example in which the optical multilayer interference film of the present invention is a blue filter.
【0021】舞台照明等に用いる照明青色フィルタを次
のようにして作製した。長波長側反射層(多層膜群A。
以下同様)の各層の光学膜厚aを194nm、主反射波
長775nm;短波長側反射層(多層膜群C。以下同様
)の光学膜厚cを155nm、主反射波長620nm;
中間層群Bの各層の光学膜厚bを174nm、主反射波
長698nmとした。二酸化チタンを高屈折率膜に、二
酸化珪素を低屈折率膜に使用した。長波長側反射層を1
2層、中間層群を2層、短波長側反射層を16層、この
順にガラス基材上に真空蒸着法により、基材側から各層
群の第1層が高屈折率膜、第2層が低屈折率膜となるよ
うに形成した。高屈折率膜と低屈折率膜が交互になるよ
うにした。
短波長側反射層のうち、最終層(空気側からみて第1層
:低屈折率膜)の光学膜厚を0.5倍に、空気側から第
3層の膜(低屈折率膜)の光学膜厚を1.1倍とした。
これにより良好な青色フィルタが得られた。図6にみる
ように、このフィルタは、必要な青色の透過率が高く、
長波長側の赤などの成分をほぼ除去できるので、照明用
として優れた効率と美しい光色を示すことができた。A blue illumination filter for use in stage lighting etc. was produced as follows. The optical thickness a of each layer of the long wavelength side reflective layer (multilayer film group A; the same applies hereinafter) is 194 nm, and the main reflection wavelength is 775 nm; the optical thickness c of the short wavelength side reflective layer (multilayer film group C; the same applies below) is 155 nm. , main reflection wavelength 620 nm;
The optical thickness b of each layer of intermediate layer group B was 174 nm, and the main reflection wavelength was 698 nm. Titanium dioxide was used for the high refractive index film, and silicon dioxide was used for the low refractive index film. 1 reflective layer on the long wavelength side
2 layers, 2 layers of intermediate layer groups, 16 layers of short wavelength side reflective layers, and in this order, the first layer of each layer group is a high refractive index film, and the second layer is a high refractive index film. was formed so that it became a low refractive index film. High refractive index films and low refractive index films were arranged alternately. Among the short wavelength side reflective layers, the optical film thickness of the final layer (first layer as viewed from the air side: low refractive index film) is increased by 0.5 times, and that of the third layer film (low refractive index film) from the air side. The optical film thickness was increased by 1.1 times. As a result, a good blue filter was obtained. As shown in Figure 6, this filter has a high transmittance for the necessary blue color.
Since red and other components on the long wavelength side can be almost completely removed, it has demonstrated excellent efficiency and beautiful light color for lighting applications.
【0022】−実施例2−この実施例は、この発明の光
学多層干渉膜が紫色フィルタである場合の1実施例であ
る。舞台照明等に用いる照明紫色フィルタを次のように
して作製した。長波長側反射層の各層の光学膜厚aを1
69nm、主反射波長675nm;短波長側反射層の光
学膜厚cを135nm、主反射波長540nm;中間層
群Bの各層の光学膜厚bを152nm、主反射波長60
8nmとした。二酸化チタンを高屈折率膜に、二酸化珪
素を低屈折率膜に使用した。長波長側反射層を12層、
中間層群を2層、短波長側反射層を16層、この順にガ
ラス基材上に真空蒸着法により、基材側から各層群の第
1層が高屈折率膜、第2層が低屈折率膜となるように形
成した。高屈折率膜と低屈折率膜が交互になるようにし
た。短波長側反射層のうち、最終層(空気側からみて第
1層:低屈折率膜)の光学膜厚を0.5倍に、空気側か
ら第3層の膜(低屈折率膜)の光学膜厚を1.1倍とし
た。これにより良好な紫色フィルタが得られた。図7に
みるように、このフィルタは、必要な紫色の透過率が高
く、長波長側の赤などの成分をほぼ除去できるので、照
明用として優れた効率と美しい光色を示すことができた
。- Example 2 - This example is an example in which the optical multilayer interference film of the present invention is a violet filter. A lighting purple filter used for stage lighting etc. was produced as follows. The optical thickness a of each layer of the long wavelength side reflective layer is 1
69 nm, main reflection wavelength 675 nm; optical film thickness c of the short wavelength side reflection layer is 135 nm, main reflection wavelength 540 nm; optical film thickness b of each layer of intermediate layer group B is 152 nm, main reflection wavelength 60
It was set to 8 nm. Titanium dioxide was used for the high refractive index film, and silicon dioxide was used for the low refractive index film. 12 long wavelength side reflective layers,
Two intermediate layers and 16 short-wavelength reflective layers are deposited in this order on a glass substrate using a vacuum evaporation method, so that the first layer of each layer group is a high refractive index film and the second layer is a low refractive index film from the substrate side. It was formed so as to form a film with a high density. High refractive index films and low refractive index films were arranged alternately. Among the short wavelength side reflective layers, the optical film thickness of the final layer (first layer as viewed from the air side: low refractive index film) is increased by 0.5 times, and that of the third layer film (low refractive index film) from the air side. The optical film thickness was increased by 1.1 times. This resulted in a good purple filter. As shown in Figure 7, this filter has a high transmittance for the necessary violet color and can almost eliminate components such as red on the long wavelength side, so it was able to exhibit excellent efficiency and beautiful light color for lighting applications. .
【0023】−実施例3−この実施例は、この発明の光
学多層干渉膜が赤外カットフィルタである場合の1実施
例である。照明に用いる赤外線カットフィルタを次のよ
うにして作製した。長波長側反射層の各層の光学膜厚a
を269nm、主反射波長1075nm;短波長側反射
層の光学膜厚cを215nm、主反射波長860nm;
中間層群Bの各層の光学膜厚bを241nm、主反射波
長968nmとした。二酸化チタンを高屈折率膜に、二
酸化珪素を低屈折率膜に使用した。長波長側反射層を1
2層、中間層群を2層、短波長側反射層を16層、この
順にガラス基材上に真空蒸着法により、基材側から各層
群の第1層が高屈折率膜、第2層が低屈折率膜となるよ
うに形成した。高屈折率膜と低屈折率膜が交互になるよ
うにした。
短波長側反射層のうち、最終層(空気側からみて第1層
:低屈折率膜)の光学膜厚を0.5倍に、空気側から第
3層の膜(低屈折率膜)の光学膜厚を1.1倍とした。
これにより良好な特性のフィルタが得られた。図8にみ
るように、このフィルタは、必要な可視域の透過率がほ
ぼ一様に高く、また、反射域が広いので白熱電球の赤外
放射域のほとんどを反射でき、照明用として優れた効率
と90%以上の高い熱線カット率を示すことができた。- Example 3 - This example is an example in which the optical multilayer interference film of the present invention is an infrared cut filter. An infrared cut filter used for lighting was produced as follows. Optical film thickness a of each layer of the long wavelength side reflective layer
269 nm, main reflection wavelength 1075 nm; optical film thickness c of the short wavelength side reflection layer 215 nm, main reflection wavelength 860 nm;
The optical thickness b of each layer of intermediate layer group B was 241 nm, and the main reflection wavelength was 968 nm. Titanium dioxide was used for the high refractive index film, and silicon dioxide was used for the low refractive index film. 1 reflective layer on the long wavelength side
2 layers, 2 layers of intermediate layer groups, 16 layers of short wavelength side reflective layers, and in this order, the first layer of each layer group is a high refractive index film, and the second layer is a high refractive index film. was formed so that it became a low refractive index film. High refractive index films and low refractive index films were arranged alternately. Among the short wavelength side reflective layers, the optical film thickness of the final layer (first layer as viewed from the air side: low refractive index film) is increased by 0.5 times, and that of the third layer film (low refractive index film) from the air side. The optical film thickness was increased by 1.1 times. As a result, a filter with good characteristics was obtained. As shown in Figure 8, this filter has almost uniformly high transmittance in the necessary visible range, and has a wide reflection range, so it can reflect most of the infrared radiation range of incandescent bulbs, making it an excellent choice for lighting. We were able to demonstrate efficiency and a high heat ray cutting rate of over 90%.
【0024】−実施例4−この実施例は、この発明の光
学多層干渉膜が青色分解鏡である場合の1実施例である
。液晶投射式のテレビ(プロジェクションテレビ)には
、R.(赤)、G.(緑)、B.(青)の3原色を分解
、合成するため、45°使用の選択反射反射鏡が用いら
れる。このうち、B.(青)の分解のための青選択透過
鏡をつぎのようにして作製した。Example 4 This example is an example in which the optical multilayer interference film of the present invention is a blue separation mirror. LCD projection televisions (projection televisions) have R. (red), G. (green), B. In order to separate and combine the three primary colors (blue), a 45° selective reflection reflector is used. Of these, B. A blue selective transmission mirror for decomposition of (blue) was prepared as follows.
【0025】長波長側反射層の各層の光学膜厚aを20
0nm、主反射波長800nm;短波長側反射層の光学
膜厚cを160nm、主反射波長640nm;中間層群
Bの各層の光学膜厚bを180nm、主反射波長720
nmとした。
二酸化チタンを高屈折率膜に、二酸化珪素を低屈折率膜
に使用した。長波長側反射層を12層、中間層群を2層
、短波長側反射層を16層、この順にガラス基材上に真
空蒸着法により、基材側から各層群の第1層が高屈折率
膜、第2層が低屈折率膜となるように形成した。高屈折
率膜と低屈折率膜が交互になるようにした。短波長側反
射層のうち、最終層(空気側からみて第1層:低屈折率
膜)の光学膜厚を0.5倍に、空気側から第3層の膜(
低屈折率膜)の光学膜厚を1.1倍とした。The optical thickness a of each layer of the long wavelength side reflective layer is 20
0 nm, main reflection wavelength 800 nm; optical film thickness c of the short wavelength side reflection layer is 160 nm, main reflection wavelength 640 nm; optical film thickness b of each layer of intermediate layer group B is 180 nm, main reflection wavelength 720
It was set as nm. Titanium dioxide was used for the high refractive index film, and silicon dioxide was used for the low refractive index film. 12 long-wavelength reflecting layers, 2 intermediate layer groups, and 16 short-wavelength reflecting layers are deposited in this order onto a glass substrate using a vacuum evaporation method, so that the first layer of each layer group has a high refractive index from the substrate side. The second layer was formed as a low refractive index film. High refractive index films and low refractive index films were arranged alternately. Among the short wavelength side reflective layers, the optical film thickness of the final layer (first layer as seen from the air side: low refractive index film) was increased by 0.5 times, and the third layer film (from the air side) was increased by 0.5 times.
The optical film thickness of the low refractive index film) was increased to 1.1 times.
【0026】これにより透過部が平坦で高透過率の良好
なシャープカットフィルタが得られた。図9にみるよう
に、このフィルタは反射域が広く、長波長側の赤などの
成分をほぼ完全に除去できるので、純粋な光色を得るこ
とができる。図9に示す特性は45°使用時のものであ
る。
−実施例5−
この実施例は、この発明の光学多層干渉膜が紫外フィル
タである場合の1実施例である。[0026] As a result, a sharp-cut filter with a flat transmission part and high transmittance was obtained. As shown in FIG. 9, this filter has a wide reflection range and can almost completely remove components such as red on the long wavelength side, so that pure light color can be obtained. The characteristics shown in FIG. 9 are those when used at 45°. -Example 5- This example is an example in which the optical multilayer interference film of the present invention is an ultraviolet filter.
【0027】紫外線照射装置などに用いる紫外線フィル
タをつぎのようにして作製した。このフィルタは、水銀
灯等の光源から放射される成分のうち、紫外線だけを透
過するものである。水銀灯などは、可視域の放射が非常
に多いので、これが熱の発生につながり、低温処置の障
害になる。長波長側反射層の各層の光学膜厚aを144
nm、主反射波長575nm;短波長側反射層の光学膜
厚cを115nm、主反射波長460nm;中間層群B
の各層の光学膜厚bを129nm、主反射波長518n
mとした。二酸化チタンを高屈折率膜に、二酸化珪素を
低屈折率膜に使用した。長波長側反射層を12層、中間
層群を2層、短波長側反射層を16層、この順にガラス
基材上に真空蒸着法により、基材側から各層群の第1層
が高屈折率膜、第2層が低屈折率膜となるように形成し
た。高屈折率膜と低屈折率膜が交互になるようにした。
短波長側反射層のうち、最終層(空気側からみて第1層
:低屈折率膜)の光学膜厚を0.5倍に、空気側から第
3層の膜(低屈折率膜)の光学膜厚を1.1倍とした。An ultraviolet filter for use in an ultraviolet irradiation device was produced as follows. This filter transmits only ultraviolet rays among components emitted from a light source such as a mercury lamp. Since mercury lamps emit a large amount of radiation in the visible range, this leads to the generation of heat, which is an obstacle to low-temperature treatment. The optical thickness a of each layer of the long wavelength side reflective layer is 144
nm, main reflection wavelength 575 nm; optical film thickness c of short wavelength side reflection layer 115 nm, main reflection wavelength 460 nm; intermediate layer group B
The optical thickness b of each layer is 129 nm, and the main reflection wavelength is 518 nm.
It was set as m. Titanium dioxide was used for the high refractive index film, and silicon dioxide was used for the low refractive index film. 12 long-wavelength reflecting layers, 2 intermediate layer groups, and 16 short-wavelength reflecting layers are deposited in this order onto a glass substrate using a vacuum evaporation method, so that the first layer of each layer group has a high refractive index from the substrate side. The second layer was formed as a low refractive index film. High refractive index films and low refractive index films were arranged alternately. Among the short wavelength side reflective layers, the optical film thickness of the final layer (first layer as viewed from the air side: low refractive index film) is increased by 0.5 times, and that of the third layer film (low refractive index film) from the air side. The optical film thickness was increased by 1.1 times.
【0028】これにより良好な特性のフィルタが得られ
た。図10にみるように、このフィルタは、必要な紫外
域の透過率が平坦で高く、可視域の反射率がほぼ一様に
高く、優れた効率と高い熱線カットを示すことができた
。
−比較例1−
実施例1において、中間層の各層の光学膜厚を160n
mにしたこと以外は実施例1と同様にした。[0028] As a result, a filter with good characteristics was obtained. As shown in FIG. 10, this filter had a flat and high transmittance in the necessary ultraviolet region, a nearly uniformly high reflectance in the visible region, and was able to exhibit excellent efficiency and high heat ray cut. - Comparative Example 1 - In Example 1, the optical thickness of each layer of the intermediate layer was 160n.
The same procedure as in Example 1 was carried out except that m was used.
【0029】得られたフィルタの透過特性は、図11に
みるとおりであり、リップル抑制効果がない。
−比較例2−
実施例1において、中間層の各層の光学膜厚を187n
mにしたこと以外は実施例1と同様にした。The transmission characteristics of the obtained filter are as shown in FIG. 11, and there is no ripple suppressing effect. - Comparative Example 2 - In Example 1, the optical thickness of each layer of the intermediate layer was 187n.
The same procedure as in Example 1 was carried out except that m was used.
【0030】得られたフィルタの透過特性は、図12に
みるとおりであり、リップル抑制効果がない。
−比較例3−
実施例1において、中間層を高屈折率膜および低屈折率
膜をそれぞれ2層(全4層)にしたこと以外は実施例1
と同様にした。The transmission characteristics of the obtained filter are as shown in FIG. 12, and there is no ripple suppressing effect. - Comparative Example 3 - Example 1 except that the intermediate layer was made of two high refractive index films and two low refractive index films (total 4 layers).
I did the same thing.
【0031】得られたフィルタの透過特性は、図13に
みるとおりであり、リップル抑制が十分ではない。
−比較例4−
実施例1において、多層膜群Aと多層膜群Cの順番を反
対にしたこと以外は実施例1と同様にした。The transmission characteristics of the obtained filter are as shown in FIG. 13, and ripple suppression is not sufficient. - Comparative Example 4 - Example 1 was carried out in the same manner as in Example 1 except that the order of multilayer film group A and multilayer film group C was reversed.
【0032】得られたフィルタの透過特性は、図14に
みるとおりであり、リップル抑制が十分ではない。
−実施例6−
実施例1において、リップル処理を行わなかった(最終
層および空気側から3層目の膜(低屈折率膜)の光学膜
厚を他の交互層の膜厚と同じにした。以下同様)こと以
外は実施例1と同様にした。The transmission characteristics of the obtained filter are as shown in FIG. 14, and ripple suppression is not sufficient. - Example 6 - In Example 1, ripple treatment was not performed (the optical thickness of the final layer and the third layer from the air side (low refractive index film) was made the same as the thickness of the other alternating layers. The same procedure as in Example 1 was carried out except for the following.
【0033】得られたフィルタの透過特性は、図15に
みるとおりである。
−実施例7−
実施例2において、リップル処理を行わなかったこと以
外は実施例2と同様にした。得られたフィルタの透過特
性は、図16にみるとおりである。The transmission characteristics of the obtained filter are as shown in FIG. -Example 7- In Example 2, the same procedure as Example 2 was carried out except that the ripple treatment was not performed. The transmission characteristics of the obtained filter are as shown in FIG.
【0034】−実施例8−
実施例5において、リップル処理を行わなかったこと以
外は実施例5と同様にした。得られたフィルタの透過特
性は、図17にみるとおりである。なお、図3〜17に
おいて、横軸は波長〔nm〕を、縦軸は透過率(tra
nsmittance)〔%〕を表す。-Example 8- The same procedure as Example 5 was carried out except that the ripple treatment was not performed. The transmission characteristics of the obtained filter are as shown in FIG. In addition, in FIGS. 3 to 17, the horizontal axis represents wavelength [nm], and the vertical axis represents transmittance (tra).
nsmittance) [%].
【0035】[0035]
【発明の効果】この発明は、次のような効果を奏する。
全体に膜構成が簡単であり作製が容易であり、再現性の
よい安定した生産が可能である。歩留まりが向上し、コ
ストダウンができる。他のリップル抑制方法よりも優れ
たリップル抑制が可能であり、優れた広帯域反射ショー
トパスフィルタを得ることができる。[Effects of the Invention] The present invention has the following effects. The overall membrane structure is simple, easy to manufacture, and stable production with good reproducibility is possible. Yield can be improved and costs can be reduced. It is possible to achieve better ripple suppression than other ripple suppression methods, and it is possible to obtain an excellent broadband reflective short-pass filter.
【図1】この発明の光学多層干渉膜の1実施例の説明図
である。FIG. 1 is an explanatory diagram of one embodiment of an optical multilayer interference film of the present invention.
【図2】この発明の光学多層干渉膜の別の1実施例(リ
ップル抑制処理品の1例)の膜構成を示す説明図である
。FIG. 2 is an explanatory diagram showing the film structure of another embodiment of the optical multilayer interference film of the present invention (an example of a ripple suppressed product).
【図3】従来の交互層からなる光学多層干渉膜の特性を
示すグラフである。FIG. 3 is a graph showing the characteristics of a conventional optical multilayer interference film consisting of alternating layers.
【図4】この発明の光学多層干渉膜であってリップル抑
制処理品の特性を示すグラフである。FIG. 4 is a graph showing the characteristics of the optical multilayer interference film of the present invention treated for ripple suppression.
【図5】この発明の光学多層干渉膜であって、最終層か
ら3層目の処理をしないときの特性を示すグラフである
。FIG. 5 is a graph showing the characteristics of the optical multilayer interference film of the present invention when the third to last layer is not processed.
【図6】実施例1の光学多層干渉膜(青色フィルタ)の
特性を示すグラフである。6 is a graph showing the characteristics of the optical multilayer interference film (blue filter) of Example 1. FIG.
【図7】実施例2の光学多層干渉膜(紫色フィルタ)の
特性を示すグラフである。7 is a graph showing the characteristics of the optical multilayer interference film (purple filter) of Example 2. FIG.
【図8】実施例3の光学多層干渉膜(赤外線カットフィ
ルタ)の特性を示すグラフである。8 is a graph showing the characteristics of the optical multilayer interference film (infrared cut filter) of Example 3. FIG.
【図9】実施例4の光学多層干渉膜(青色分解鏡)の特
性を示すグラフである。9 is a graph showing the characteristics of the optical multilayer interference film (blue resolving mirror) of Example 4. FIG.
【図10】実施例5の光学多層干渉膜(紫外線透過フィ
ルタ)の特性を示すグラフである。10 is a graph showing the characteristics of the optical multilayer interference film (ultraviolet transmission filter) of Example 5. FIG.
【図11】比較例1の光学多層干渉膜の特性を示すグラ
フである。11 is a graph showing the characteristics of the optical multilayer interference film of Comparative Example 1. FIG.
【図12】比較例2の光学多層干渉膜の特性を示すグラ
フである。12 is a graph showing the characteristics of the optical multilayer interference film of Comparative Example 2. FIG.
【図13】比較例3の光学多層干渉膜の特性を示すグラ
フである。13 is a graph showing the characteristics of the optical multilayer interference film of Comparative Example 3. FIG.
【図14】比較例4の光学多層干渉膜の特性を示すグラ
フである。14 is a graph showing the characteristics of the optical multilayer interference film of Comparative Example 4. FIG.
【図15】実施例6の光学多層干渉膜の特性を示すグラ
フである。15 is a graph showing the characteristics of the optical multilayer interference film of Example 6. FIG.
【図16】実施例7の光学多層干渉膜の特性を示すグラ
フである。16 is a graph showing the characteristics of the optical multilayer interference film of Example 7. FIG.
【図17】実施例8の光学多層干渉膜の特性を示すグラ
フである。17 is a graph showing the characteristics of the optical multilayer interference film of Example 8. FIG.
1 基材 A 光学膜厚の大きい多層膜群 B 中間膜群 C 光学膜厚の小さい多層膜群 H1 高屈折率膜 H2 高屈折率膜 H3 高屈折率膜 L1 低屈折率膜 L2 低屈折率膜 L3 低屈折率膜 L4 低屈折率膜 L5 低屈折率膜 1 Base material A Multilayer film group with large optical thickness B Intermediate film group C. Multilayer film group with small optical film thickness H1 High refractive index film H2 High refractive index film H3 High refractive index film L1 Low refractive index film L2 Low refractive index film L3 Low refractive index film L4 Low refractive index film L5 Low refractive index film
Claims (3)
互に多層形成されている光学多層干渉薄膜を有し、基材
側から順に;互いに等しい光学膜厚aを有する高屈折率
膜と低屈折率膜が交互に多層形成されている多層膜群A
;互いに等しい光学膜厚bを有する高屈折率膜と低屈折
率膜が1層ずつ重ね合わせて形成されている中間層群B
;および、互いに等しい光学膜厚cを有する高屈折率膜
と低屈折率膜が交互に多層形成されている多層膜群C;
を有し、光学膜厚aが光学膜厚cよりも大きく、かつ、
光学膜厚bがc+(a−c)/6≦b≦a−(a−c)
/6の範囲である光学多層干渉膜。Claim 1: An optical multilayer interference thin film in which a high refractive index film and a low refractive index film are alternately formed in multiple layers on a base material, in order from the base material side; a high refractive index film having mutually equal optical film thickness a; Multilayer film group A in which a high refractive index film and a low refractive index film are alternately formed in multiple layers.
; intermediate layer group B formed by overlapping one high refractive index film and one low refractive index film having mutually equal optical film thicknesses b;
; and a multilayer film group C in which high refractive index films and low refractive index films having mutually equal optical film thicknesses c are alternately formed;
, the optical film thickness a is larger than the optical film thickness c, and
Optical film thickness b is c+(a-c)/6≦b≦a-(a-c)
/6 optical multilayer interference film.
よびCが、いずれも、それぞれの基材側から数えて第1
層に高屈折率膜を、最終層に低屈折率膜を有する請求項
1記載の光学多層干渉膜。2. Film groups A, B, and C having three different optical film thicknesses all have the first layer counted from the respective substrate side.
2. The optical multilayer interference film according to claim 1, comprising a high refractive index film in each layer and a low refractive index film in the final layer.
つ手前の層が低屈折率膜であり、最終層の光学膜厚が0
.4c〜0.7cの範囲、最終層の2つ手前の層の光学
膜厚が1.05c〜1.25cの範囲である請求項1ま
たは2記載の光学多層干渉膜。[Claim 3] Final layer and final layer 2 of multilayer film group C
The previous layer is a low refractive index film, and the optical thickness of the final layer is 0.
.. 3. The optical multilayer interference film according to claim 1, wherein the optical thickness of the layer two layers before the final layer is in the range of 1.05c to 1.25c.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40569090A JPH04221904A (en) | 1990-12-25 | 1990-12-25 | Optical multiplayered interference film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40569090A JPH04221904A (en) | 1990-12-25 | 1990-12-25 | Optical multiplayered interference film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04221904A true JPH04221904A (en) | 1992-08-12 |
Family
ID=18515298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP40569090A Pending JPH04221904A (en) | 1990-12-25 | 1990-12-25 | Optical multiplayered interference film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04221904A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08503312A (en) * | 1992-10-29 | 1996-04-09 | ザ・ダウ・ケミカル・カンパニー | Formable reflective multilayer objects |
JP2006060014A (en) * | 2004-08-20 | 2006-03-02 | Nippon Dempa Kogyo Co Ltd | Optical low-pass filter |
-
1990
- 1990-12-25 JP JP40569090A patent/JPH04221904A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08503312A (en) * | 1992-10-29 | 1996-04-09 | ザ・ダウ・ケミカル・カンパニー | Formable reflective multilayer objects |
JP2006060014A (en) * | 2004-08-20 | 2006-03-02 | Nippon Dempa Kogyo Co Ltd | Optical low-pass filter |
JP4643202B2 (en) * | 2004-08-20 | 2011-03-02 | 日本電波工業株式会社 | Optical low-pass filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8425035B2 (en) | Spectacle lens with color-neutral anti-reflection coating and method of making the same | |
CN108680981B (en) | Preparation method of deep ultraviolet narrow-band optical filter | |
US4793669A (en) | Multilayer optical filter for producing colored reflected light and neutral transmission | |
USRE33729E (en) | Multilayer optical filter for producing colored reflected light and neutral transmission | |
US7106516B2 (en) | Material with spectrally selective reflection | |
CN105388625B (en) | A kind of wearing display beam splitter and preparation method thereof | |
US8002442B2 (en) | Color filter and method for its manufacture | |
JP2003248108A (en) | Selectively reflecting optical device | |
JP2007171735A (en) | Wide band anti-reflection film | |
CN113467101A (en) | Double progressive lens and preparation method thereof | |
JPH04221904A (en) | Optical multiplayered interference film | |
JP4095344B2 (en) | Trimming filter | |
JPH05241017A (en) | Optical interference multilayered film having yellow filter function | |
US20090002816A1 (en) | Selective Reflecting for Laser Projector | |
JPH04221903A (en) | Optical multilayered interference film | |
JP2003139947A (en) | Optical filter | |
JP2815951B2 (en) | Anti-reflective coating | |
JPS5811901A (en) | Multilayered semipermeable mirror | |
JP3002002B2 (en) | Bandpass filter | |
CN116661039A (en) | Grating sheet and manufacturing method thereof, and manufacturing method of visible light narrow-band filter | |
CN219225125U (en) | Low-angle effect fluorescent bandpass filter combined structure | |
US20040036973A1 (en) | Multi-layer interference filter having colored reflectance and substantially uniform transmittance and methods of manufacturing the same | |
JPH07244204A (en) | Dual wavelength anti-reflection film | |
JPH0536388A (en) | Tungsten halogen lamp | |
JP2003121119A (en) | Film thickness monitoring apparatus and method therefor |