JPH04220937A - Resolution evaluating specimen and its manufacture - Google Patents

Resolution evaluating specimen and its manufacture

Info

Publication number
JPH04220937A
JPH04220937A JP40491590A JP40491590A JPH04220937A JP H04220937 A JPH04220937 A JP H04220937A JP 40491590 A JP40491590 A JP 40491590A JP 40491590 A JP40491590 A JP 40491590A JP H04220937 A JPH04220937 A JP H04220937A
Authority
JP
Japan
Prior art keywords
resolution
films
thin film
resolution evaluation
evaluation sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40491590A
Other languages
Japanese (ja)
Inventor
Kenichi Ito
健一 伊藤
Mamoru Ozaki
尾崎 護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP40491590A priority Critical patent/JPH04220937A/en
Publication of JPH04220937A publication Critical patent/JPH04220937A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To heighten the evaluation accuracy for the resolution of a scanning electron microscope by laminating a first films consisting of a first material and a second films consisting of the second material alternately one over another, and providing a plurality of cut surfaces in the thickness direction of the resultant laminate. CONSTITUTION:A resolution evaluating specimen 1 is prepared by laminating the first films 3 consisting of the first material and the second films 4 consisting of the second material alternately on a semiconductor base board 2, and therein cut surfaces A, B extending in the directions perpendicularly intersecting each other are furnished in the thickness direction of the films 3, 4. According to this arrangement where the cut surface of specimen 1 is composed of two surfaces A, B, the correction of astigmatism of a scan type electron microscope can be made quickly and certainly, and also contamination attached to the objective stop of the microscope be found in early stage. Because a vivid observation image is obtained, the evaluation accuracy for the resolution of microscope can be enhanced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、分解能評価技術に関し
、特に走査電子顕微鏡などの光学機器における分解能の
評価に適用して有効な技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resolution evaluation technique, and more particularly to a technique that is effective when applied to the evaluation of resolution in optical instruments such as scanning electron microscopes.

【0002】0002

【従来の技術】半導体集積回路の製造プロセスでは、素
子の微細化に伴って集積回路パターンの観察および寸法
測定などによるプロセス評価技術に一層の高精度化が要
求されていることから、走査電子顕微鏡の分解能の一層
の向上が求められている。
[Background Art] In the manufacturing process of semiconductor integrated circuits, as devices become smaller, there is a need for higher precision in process evaluation techniques such as observation of integrated circuit patterns and dimensional measurements. There is a need for further improvement in resolution.

【0003】走査電子顕微鏡の分解能を評価する方法の
一つに、特開平1−254836号公報に記載された技
術がある。上記文献に記載された分解能評価方法は、半
導体ウエハ上に所定の膜厚の薄膜、例えばSiO2 膜
と多結晶シリコン膜とを交互に何層か堆積した後、この
ウエハを厚さ方向に切断し、この切断面を研磨した後、
一方の薄膜(例えばSiO2 膜)をフッ酸水溶液で選
択的にエッチングすることによって分解能評価試料を作
製する。次に、この試料の上記切断面を走査電子顕微鏡
で観察し、所定の薄膜が確認できるか否かにより、上記
走査電子顕微鏡の分解能の評価、判定を行う。
One of the methods for evaluating the resolution of a scanning electron microscope is a technique described in Japanese Patent Application Laid-Open No. 1-254836. The resolution evaluation method described in the above-mentioned document involves depositing several thin films of a predetermined thickness on a semiconductor wafer, such as a SiO2 film and a polycrystalline silicon film, alternately, and then cutting the wafer in the thickness direction. , after polishing this cut surface,
A resolution evaluation sample is prepared by selectively etching one of the thin films (for example, a SiO2 film) with an aqueous hydrofluoric acid solution. Next, the cut surface of this sample is observed with a scanning electron microscope, and the resolution of the scanning electron microscope is evaluated and determined based on whether a predetermined thin film can be confirmed.

【0004】0004

【発明が解決しようとする課題】ところが、前記した分
解能評価方法は、試料の一つの切断面のみを観察するた
め、顕微鏡の非点収差の補正に長時間を要し、しかも最
良の像が得られ難いという問題があった。また、試料の
一方向のみを長時間観察していると、顕微鏡の対物絞り
に付着するコンタミネーション(異物)により、像が次
第に不鮮明になるという問題があった。
[Problems to be Solved by the Invention] However, since the resolution evaluation method described above observes only one cross section of the sample, it takes a long time to correct the astigmatism of the microscope, and it is difficult to obtain the best image. There was a problem that it was difficult to Furthermore, when observing only one direction of a sample for a long period of time, there is a problem in that the image gradually becomes unclear due to contamination (foreign matter) adhering to the objective aperture of the microscope.

【0005】本発明の目的は、走査電子顕微鏡における
分解能の評価精度を向上させることのできる技術を提供
することにある。
An object of the present invention is to provide a technique that can improve the accuracy of evaluating resolution in a scanning electron microscope.

【0006】本発明の前記ならびにその他の目的と新規
な特徴は、本明細書の記述および添付図面から明らかに
なるであろう。
The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0007】[0007]

【課題を解決するための手段】本発明の分解能評価試料
は、第一の材料からなる第一の薄膜と、第二の材料から
なる第二の薄膜とを交互に堆積してなる積層膜の厚さ方
向に、互いに直交する方向に延在する二つの切断面を設
けたものである。
[Means for Solving the Problems] The resolution evaluation sample of the present invention is a laminated film formed by alternately depositing a first thin film made of a first material and a second thin film made of a second material. Two cutting surfaces are provided in the thickness direction, extending in directions perpendicular to each other.

【0008】[0008]

【作用】上記した手段によれば、試料の二方向に観察面
を設けたことにより、顕微鏡の非点収差の補正を短時間
で、かつ確実に行うことができる。また、これにより、
顕微鏡の対物絞りに付着するコンタミネーションを早期
に発見することができる。
[Operation] According to the above-described means, by providing observation surfaces in two directions of the sample, the astigmatism of the microscope can be corrected in a short time and reliably. Also, this allows
Contamination adhering to the objective aperture of a microscope can be detected at an early stage.

【0009】[0009]

【実施例】図1は、本発明の一実施例である分解能評価
試料の要部平面図、図2は、この分解能評価試料の要部
断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a plan view of a main part of a resolution evaluation sample which is an embodiment of the present invention, and FIG. 2 is a sectional view of a main part of this resolution evaluation sample.

【0010】図1および図2に示すように、分解能評価
試料1は、例えばシリコンからなる半導体基板2の上に
SiO2 膜からなる第一の薄膜3と、多結晶シリコン
膜からなる第二の薄膜4とを交互に堆積したものである
As shown in FIGS. 1 and 2, a resolution evaluation sample 1 includes a first thin film 3 made of an SiO2 film and a second thin film made of a polycrystalline silicon film on a semiconductor substrate 2 made of silicon, for example. 4 are deposited alternately.

【0011】上記分解能評価試料1において薄膜3,4
の厚さ方向には、互いに直交する方向に延在する切断面
A,Bが設けられている。また、それぞれの切断面A、
Bに露出している上記二種の薄膜3,4の間には、段差
が設けられている。
In the above resolution evaluation sample 1, the thin films 3 and 4
Cut planes A and B extending in directions orthogonal to each other are provided in the thickness direction of the plate. In addition, each cut surface A,
A step is provided between the two types of thin films 3 and 4 exposed to B.

【0012】上記分解能評価試料1は、例えば下記のよ
うにして製造される。まず、図3に示すように、半導体
基板1の表面を熱酸化してSiO2 膜からなる第一の
薄膜3を形成する。そして、上記薄膜3の複数箇所の厚
さを、例えばエリプソメータなどを用いて計測し、それ
らの平均値を薄膜3の厚さ(t)として記録する。薄膜
3の厚さ(t)は、評価の対象となる走査電子顕微鏡の
分解能とほぼ同程度に設定される。
The resolution evaluation sample 1 is manufactured, for example, as follows. First, as shown in FIG. 3, the surface of the semiconductor substrate 1 is thermally oxidized to form a first thin film 3 made of SiO2 film. Then, the thicknesses of the thin film 3 at multiple locations are measured using, for example, an ellipsometer, and the average value thereof is recorded as the thickness (t) of the thin film 3. The thickness (t) of the thin film 3 is set to be approximately the same as the resolution of the scanning electron microscope to be evaluated.

【0013】次に、図4に示すように、例えば化学気相
成長法(CVD法)を用いて上記薄膜3の上に多結晶シ
リコン膜からなる第二の薄膜4を堆積する。続いて、薄
膜4の表面を熱酸化してSiO2 膜からなる第一の薄
膜3を形成する。このとき、前記同様、薄膜3の複数箇
所の厚さの平均値を薄膜3の厚さ(t)として記録する
。 このようにして、上記の一連の操作を何回か繰り返し、
図5に示すように、膜厚(t)が既知の第一の薄膜3と
、第二の薄膜4とが交互に何層か堆積された多層膜を形
成する。
Next, as shown in FIG. 4, a second thin film 4 made of polycrystalline silicon is deposited on the thin film 3 using, for example, chemical vapor deposition (CVD). Subsequently, the surface of the thin film 4 is thermally oxidized to form a first thin film 3 made of SiO2 film. At this time, as described above, the average value of the thicknesses of the thin film 3 at a plurality of locations is recorded as the thickness (t) of the thin film 3. In this way, repeat the above series of operations several times,
As shown in FIG. 5, a multilayer film is formed by alternately depositing several layers of a first thin film 3 and a second thin film 4, each of which has a known film thickness (t).

【0014】次に、フォトレジストをマスクに用いたエ
ッチングで上記積層膜をパターニングすることにより、
図6に示すように、上記積層膜の厚さ方向に、互いに直
交する方向に延在する二つの切断面A,Bを形成する。 なお、図6では、その正面(断面)が切断面Aとなって
いる。
Next, by patterning the laminated film by etching using a photoresist as a mask,
As shown in FIG. 6, two cut planes A and B extending in directions orthogonal to each other are formed in the thickness direction of the laminated film. In addition, in FIG. 6, the front (cross section) is the cut plane A.

【0015】次に、上記切断面A,Bのそれぞれに露出
した薄膜3,4のうちの一方の薄膜3(SiO2 膜)
のみを、例えば1:6のフッ酸(HF)水溶液を用いて
選択的にエッチングし、薄膜3,4の間に段差を形成す
ることにより、前記図1および図2に示す分解能評価試
料1が得られる。
Next, one thin film 3 (SiO2 film) of the thin films 3 and 4 exposed on the cut surfaces A and B, respectively.
The resolution evaluation sample 1 shown in FIG. 1 and FIG. can get.

【0016】その後、上記分解能評価試料1の切断面A
,Bのそれぞれを、評価の対象となる走査電子顕微鏡で
観察し、得られた観察画像において薄膜3の厚さ(t)
が確認できるか否かにより、上記走査電子顕微鏡の分解
能を評価、判定する。
After that, cut surface A of the resolution evaluation sample 1
, B with a scanning electron microscope to be evaluated, and in the obtained observation image, the thickness (t) of the thin film 3
The resolution of the scanning electron microscope is evaluated and determined based on whether or not it can be confirmed.

【0017】ここで、上記分解能評価試料1の切断面A
,Bに段差を設けたことにより、例えば試料を電子線で
走査する際に発生する二次電子によって観察画像を得る
走査電子顕微鏡においては、二次電子の放出量に差異を
もたらす原子番号効果およびエッジ効果などがあいまっ
て、切断面A,Bを良好なコントラストで明瞭に観察す
ることができる。
Here, cut surface A of the resolution evaluation sample 1
, B. For example, in a scanning electron microscope that obtains an observation image using secondary electrons generated when a sample is scanned with an electron beam, atomic number effects and Combined with edge effects, the cut surfaces A and B can be clearly observed with good contrast.

【0018】このように、本実施例の分解能評価試料1
によれば、下記の作用、効果を得ることができる。
In this way, the resolution evaluation sample 1 of this example
According to this, the following actions and effects can be obtained.

【0019】(1).分解能評価試料1の切断面を互い
に直交する二つの切断面A,Bで構成したことにより、
切断面を一方向しか有しない従来の分解能評価試料に比
べて、顕微鏡の非点収差の補正を短時間で、かつ確実に
行うことができる。
(1). By configuring the cut plane of resolution evaluation sample 1 into two cut planes A and B that are perpendicular to each other,
Compared to conventional resolution evaluation samples that have a cut plane in only one direction, the astigmatism of the microscope can be corrected more quickly and reliably.

【0020】(2).分解能評価試料1の二方向に観察
面を設けたことにより、顕微鏡の対物絞りに付着するコ
ンタミネーションを早期に発見することができる。
(2). By providing observation surfaces in two directions of the resolution evaluation sample 1, contamination adhering to the objective aperture of the microscope can be detected at an early stage.

【0021】(3).上記(1) および(2) によ
り、鮮明な観察画像が得られるので、走査電子顕微鏡に
おける分解能の評価精度を向上させることができる。
(3). According to (1) and (2) above, a clear observation image can be obtained, so that the accuracy of evaluating the resolution in a scanning electron microscope can be improved.

【0022】図7は、本発明の他の実施例である分解能
評価試料1の要部断面図である。この分解能評価試料1
は、第1の薄膜3,3,3の膜厚(t1 ,t2 ,t
3 )を次第に厚く、すなわち段階的に変化させるよう
にしたものである。これにより、多数の分解能評価試料
1を作成しなくとも、一つの分解能評価試料1を用いて
多様な性能の走査電子顕微鏡の分解能評価を迅速に行う
ことができる。
FIG. 7 is a sectional view of a main part of a resolution evaluation sample 1 which is another embodiment of the present invention. This resolution evaluation sample 1
are the film thicknesses of the first thin films 3, 3, 3 (t1, t2, t
3) is made gradually thicker, that is, it changes in stages. Thereby, without creating a large number of resolution evaluation samples 1, it is possible to quickly evaluate the resolution of scanning electron microscopes with various performances using one resolution evaluation sample 1.

【0023】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。
[0023] Above, the invention made by the present inventor has been specifically explained based on examples, but the present invention is not limited to the above-mentioned examples, and can be modified in various ways without departing from the gist thereof. Needless to say.

【0024】例えば、エッチングで切断面を形成した後
、その切断面をアルミナの微粒子などを用いて研磨する
ことにより、観察面の平坦性を向上させることができる
For example, the flatness of the observation surface can be improved by forming a cut surface by etching and then polishing the cut surface using fine alumina particles or the like.

【0025】分解能評価試料の帯電などに起因して観察
中に画像が不明瞭になったり、観察が不能になったりす
る場合がある。このような場合は、第二の薄膜である多
結晶シリコン膜に所定の導電形の不純物を導入したり、
試料の最上層にAl膜やW(タングステン)膜などの導
電膜を堆積したりすることにより、上記不具合を回避し
、分解能の評価を円滑、かつ迅速に行うことができる。
[0025]Due to charging of the resolution evaluation sample, the image may become unclear or observation may become impossible during observation. In such cases, impurities of a predetermined conductivity type may be introduced into the polycrystalline silicon film that is the second thin film, or
By depositing a conductive film such as an Al film or a W (tungsten) film on the top layer of the sample, the above problems can be avoided and resolution evaluation can be performed smoothly and quickly.

【0026】第一および第二の薄膜を構成する材料は、
SiO2 膜および多結晶シリコン膜の組み合わせに限
らず、他のいかなる材料の組み合わせであってもよい。
[0026] The materials constituting the first and second thin films are:
It is not limited to the combination of SiO2 film and polycrystalline silicon film, but may be a combination of any other materials.

【0027】第一および第二の薄膜の形成方法は、熱酸
化法やCVD法に限らず、スパッタ法その他、膜厚の制
御性の良好な方法であればいかなる方法でもよい。
The method for forming the first and second thin films is not limited to the thermal oxidation method or the CVD method, but may be any method other than the sputtering method as long as the film thickness can be well controlled.

【0028】以上の説明では、走査電子顕微鏡用の分解
能評価試料について説明したが、これに限らず、一般の
荷電粒子ビームを用いる観察装置、さらには光学機器の
分解能評価試料に広く適用することができる。
In the above explanation, a resolution evaluation sample for a scanning electron microscope has been explained, but the present invention is not limited to this, and can be widely applied to observation devices using general charged particle beams, and furthermore, to resolution evaluation samples for optical instruments. can.

【0029】[0029]

【発明の効果】本願によって開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
以下の通りである。
[Effects of the Invention] Among the inventions disclosed in this application, the effects obtained by the typical inventions will be briefly explained as follows.
It is as follows.

【0030】第一の材料からなる第一の薄膜と、第二の
材料からなる第二の薄膜とを交互に堆積してなる積層膜
の互いに直交する方向に二つの切断面を設けた本発明の
分解能評価試料によれば、走査電子顕微鏡における分解
能の評価精度を向上させることができる。
[0030] In the present invention, two cut surfaces are provided in mutually orthogonal directions in a laminated film formed by alternately depositing a first thin film made of a first material and a second thin film made of a second material. According to the resolution evaluation sample, it is possible to improve the accuracy of resolution evaluation in a scanning electron microscope.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例である分解能評価試料の要部
平面図である。
FIG. 1 is a plan view of a main part of a resolution evaluation sample that is an embodiment of the present invention.

【図2】この分解能評価試料の要部断面図である。FIG. 2 is a sectional view of a main part of this resolution evaluation sample.

【図3】この分解能評価試料の製造方法を示す半導体基
板の要部断面図である。
FIG. 3 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing this resolution evaluation sample.

【図4】この分解能評価試料の製造方法を示す半導体基
板の要部断面図である。
FIG. 4 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing this resolution evaluation sample.

【図5】この分解能評価試料の製造方法を示す半導体基
板の要部断面図である。
FIG. 5 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing this resolution evaluation sample.

【図6】この分解能評価試料の製造方法を示す半導体基
板の要部断面図である。
FIG. 6 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing this resolution evaluation sample.

【図7】本発明の他の実施例である分解能評価試料の要
部断面図である。
FIG. 7 is a cross-sectional view of a main part of a resolution evaluation sample according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  分解能評価試料 2  半導体基板 3  薄膜 4  薄膜 A  切断面 B  切断面 1 Resolution evaluation sample 2 Semiconductor substrate 3 Thin film 4 Thin film A Cut surface B Cut surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  第一の材料からなる第一の薄膜と、第
二の材料からなる第二の薄膜とを交互に堆積してなる積
層膜に、互いに直交する方向に延在する二つの切断面を
設けたことを特徴とする分解能評価試料。
Claim 1: Two cuts extending in directions orthogonal to each other in a laminated film formed by alternately depositing a first thin film made of a first material and a second thin film made of a second material. A resolution evaluation sample characterized by having a surface.
【請求項2】  前記第一または第二の薄膜のいずれか
一方の膜厚を段階的に変化させたことを特徴とする請求
項1記載の分解能評価試料。
2. The resolution evaluation sample according to claim 1, wherein the thickness of either the first or second thin film is changed stepwise.
【請求項3】  前記第一および第二の薄膜の間に、前
記切断面に沿って段差を設けたことを特徴とする請求項
1または2記載の分解能評価試料。
3. The resolution evaluation sample according to claim 1, wherein a step is provided between the first and second thin films along the cut surface.
【請求項4】  第一の材料からなる第一の薄膜と、第
二の材料からなる第二の薄膜とを、少なくとも一方の膜
厚を測定しながら交互に堆積することにより、積層膜を
形成する工程と、フォトレジストをマスクに用いたエッ
チングで前記積層膜をパターニングすることにより、前
記積層膜に互いに直交する方向に延在する二つの切断面
を形成する工程とを有していることを特徴とする請求項
1または2記載の分解能評価試料の製造方法。
4. A laminated film is formed by alternately depositing a first thin film made of a first material and a second thin film made of a second material while measuring the thickness of at least one of the films. and a step of patterning the laminated film by etching using a photoresist as a mask to form two cut surfaces extending in directions orthogonal to each other in the laminated film. The method for producing a resolution evaluation sample according to claim 1 or 2.
【請求項5】  第一の材料からなる第一の薄膜と、第
二の材料からなる第二の薄膜とを、少なくとも一方の膜
厚を測定しながら交互に堆積することにより、積層膜を
形成する工程と、フォトレジストをマスクに用いたエッ
チングで前記積層膜をパターニングすることにより、前
記積層膜に互いに直交する方向に延在する二つの切断面
を形成する工程と、前記それぞれの切断面に露出した前
記第一および第二の薄膜のいずれか一方を選択的にエッ
チングすることにより、前記第一および第二の薄膜の間
に段差を設ける工程とを有していることを特徴とする請
求項3記載の分解能評価試料の製造方法。
5. Forming a laminated film by alternately depositing a first thin film made of a first material and a second thin film made of a second material while measuring the thickness of at least one of the films. a step of patterning the laminated film by etching using a photoresist as a mask to form two cut surfaces extending in directions orthogonal to each other in the laminated film; A step of providing a step between the first and second thin films by selectively etching one of the exposed first and second thin films. A method for producing a resolution evaluation sample according to item 3.
JP40491590A 1990-12-21 1990-12-21 Resolution evaluating specimen and its manufacture Pending JPH04220937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40491590A JPH04220937A (en) 1990-12-21 1990-12-21 Resolution evaluating specimen and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40491590A JPH04220937A (en) 1990-12-21 1990-12-21 Resolution evaluating specimen and its manufacture

Publications (1)

Publication Number Publication Date
JPH04220937A true JPH04220937A (en) 1992-08-11

Family

ID=18514565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40491590A Pending JPH04220937A (en) 1990-12-21 1990-12-21 Resolution evaluating specimen and its manufacture

Country Status (1)

Country Link
JP (1) JPH04220937A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078679A (en) * 2005-08-16 2007-03-29 National Institute Of Advanced Industrial & Technology Standard specimen for probe geometry evaluation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007078679A (en) * 2005-08-16 2007-03-29 National Institute Of Advanced Industrial & Technology Standard specimen for probe geometry evaluation

Similar Documents

Publication Publication Date Title
US6218264B1 (en) Method of producing a calibration standard for 2-D and 3-D profilometry in the sub-nanometer range
JP2008134103A (en) Standard member for calibration, its manufacturing method and scanning electron microscope using standard member for calibration
US7453571B1 (en) Dimensional calibration standards
US5804460A (en) Linewidth metrology of integrated circuit structures
JP4749537B2 (en) Method for forming alignment features in or on a multilayer semiconductor structure
US6749968B2 (en) Method for fabricating a thin-membrane stencil mask and method for making a semiconductor device using the same
JP2002228562A (en) Sample preparing method for transmission electron microscope
JPH04220937A (en) Resolution evaluating specimen and its manufacture
US6756241B2 (en) Method of manufacturing semiconductor device and system for manufacturing the same
US7233077B2 (en) Semiconductor device
KR101015176B1 (en) Method for manufacturing transfer mask substrate, transfer mask substrate and transfer mask
JP2694115B2 (en) Calibration / measurement reference structure, method for forming the same, and measurement method using the same
US6210842B1 (en) Method for fabricating stencil mask
JP2002333412A (en) Standard sample for electronic probe microanalyser and manufacturing method of standard sample
JPH08255817A (en) Line-width measurement of integrated circuit structure
JP2001085300A (en) Method for detecting mark and manufacture of electron beam device and semiconductor device
JP2693477B2 (en) Resolution evaluation sample, resolution evaluation method using the same, and scanning electron microscope including the same
JP4333107B2 (en) Transfer mask and exposure method
JPH07218201A (en) Scale for plane distance calibration, manufacture thereof and plane distance calibration method
JP3104899B2 (en) Plane distance scale
JP3028078B2 (en) Sample for transmission electron microscope and method for producing the same
JPH11101724A (en) Method for manufacturing sample for measuring crystal lattice distorting and method for measuring crystal lattice distortion
JP2002118159A (en) Method for measuring impurity concentration profile and method for measuring thickness of thin film material
TW586175B (en) Critical dimension control wafer and method of making the same
KR100989879B1 (en) Method for manufacturing a cross-sectional binding device and apparatus using the same