JPH04220595A - Fuel aggregate for boiling-water reactor and reactor core of reactor - Google Patents

Fuel aggregate for boiling-water reactor and reactor core of reactor

Info

Publication number
JPH04220595A
JPH04220595A JP2411789A JP41178990A JPH04220595A JP H04220595 A JPH04220595 A JP H04220595A JP 2411789 A JP2411789 A JP 2411789A JP 41178990 A JP41178990 A JP 41178990A JP H04220595 A JPH04220595 A JP H04220595A
Authority
JP
Japan
Prior art keywords
fuel
reactor
boiling water
enrichment
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2411789A
Other languages
Japanese (ja)
Other versions
JP2544249B2 (en
Inventor
Yuzo Inaba
稲葉 勇三
Masanobu Takei
武井 正信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2411789A priority Critical patent/JP2544249B2/en
Publication of JPH04220595A publication Critical patent/JPH04220595A/en
Application granted granted Critical
Publication of JP2544249B2 publication Critical patent/JP2544249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain a fuel aggregate for boiling-water reactor and a reactor core of reactor for enabling fuel to be utilized effectively by using a spectral shift operation effectively. CONSTITUTION:A concentrate level of a lower part in axial direction of a nuclear fission material is set to a higher level than that of a higher part and a content of a combustible poison at a lower part in axial direction is set to a higher level than that at a higher level, a border of the concentrate of these nuclear fission materials is allowed to differ from that of the content of the combustible poison, and furthermore MLHGR is kept to a constant height, thus achieving nearly a constant output profile and at the same time enabling a spectral shift operation to be efficient.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、沸騰水型原子炉の燃料
集合体及び炉心に関し、特に燃焼初期においては軸方向
下部側の出力ピークを高くして核分裂性プルトニウムの
蓄積を図り、燃焼末期にいては、炉心平均ボイド率の減
少と、蓄積した核分裂性プルトニウムを有効に利用する
ことによる反応度の上昇により核燃料物質の有効利用を
行う所謂スペクトルシフト運転を行う沸騰水型原子炉に
好適な燃料集合体及び炉心に関するものである。
[Field of Industrial Application] The present invention relates to fuel assemblies and reactor cores for boiling water reactors, and particularly in the early stages of combustion, the power peak on the axially lower side is increased to accumulate fissile plutonium, and in the final stages of combustion, In this case, it is suitable for boiling water reactors that perform so-called spectral shift operation, which makes effective use of nuclear fuel material by reducing the core average void fraction and increasing reactivity by effectively using accumulated fissile plutonium. It relates to fuel assemblies and reactor cores.

【0002】0002

【従来の技術】図8,図9は従来の沸騰水型原子炉用の
2ストリーム燃料集合体の軸方向濃縮度及びガドリニア
分布を示す説明図である。2ストリーム燃料では2種の
設計の異なる燃料を用意して、それらの炉心装荷比率を
調整したりして、望ましい炉心特性を得るようにする炉
心管理(Core Management) 法の一つ
である。
2. Description of the Related Art FIGS. 8 and 9 are explanatory diagrams showing the axial enrichment and gadolinia distribution of a conventional two-stream fuel assembly for a boiling water nuclear reactor. Two-stream fuel is a core management method in which two types of fuel with different designs are prepared and their core loading ratios are adjusted to obtain desired core characteristics.

【0003】尚、図中の濃縮度は 235Uの全ウラン
量に対する重量%として表わし、ガドリニア量はUO2
+Gd2O3 中のGd2O3 の重量で表わした。ま
た、燃料格子形状は、燃料棒の9行×9列配置の中央部
の3×3の位置に大型ウォータチャンネルを配置した9
×9燃料であり、全発熱燃料棒は72本である。例えば
、図8の例で、3.60%e+11G3.5 は、 2
35U濃縮度が、3.60% でガドリニアは3.5w
t%の燃料棒が11本有ることを示している。尚、全て
の図における0.71%eという上・下端部1/24ず
つは天然ウランブランケットを表わす。
[0003] The enrichment level in the figure is expressed as % by weight of the total uranium amount of 235U, and the amount of gadolinia is UO2.
It is expressed as the weight of Gd2O3 in +Gd2O3. In addition, the fuel lattice shape is a 9x9 structure with a large water channel placed in the 3x3 position in the center of the 9 rows x 9 columns of fuel rods.
x9 fuel, and the total number of heat generating fuel rods is 72. For example, in the example of Figure 8, 3.60%e+11G3.5 is 2
The 35U concentration is 3.60% and the gadolinia is 3.5W.
It shows that there are 11 t% fuel rods. In all figures, 1/24 of the upper and lower ends of 0.71%e represent natural uranium blankets.

【0004】各図に示すように、天然ウラン部と上部2
ノードを除いて、図9の集合体では濃縮度もガドリニア
濃度も軸方向で一様であり、図8の集合体では濃縮度は
軸方向で一様ではあるが、ガドリニア濃度が軸方向下部
側ほど大きいものである。
As shown in each figure, the natural uranium part and the upper part 2
Except for the nodes, both the enrichment and the gadolinia concentration are uniform in the axial direction in the aggregate in Fig. 9, and the enrichment is uniform in the axial direction in the aggregate in Fig. 8, but the gadolinia concentration is lower in the axial direction. That's how big it is.

【0005】図8,図9で示された燃料集合体は、2ス
トリーム燃料として使用されるものであり、高ガドリニ
ア燃料と低ガドリニア燃料として用いられる。その目的
は、余剰反応度を適切に保ち、少数本の深挿入制御棒の
みで高温運転時の出力分布を調節するためと、冷温時の
原子炉停止余裕を確保することにある。つまり、何らか
の事情で予定のサイクル長さよりもサイクル長さが短く
なった場合に、次サイクルの運転を行なう場合には、サ
イクル初期(BOC)の余剰反応度が高くなり易くなる
ため、通常の平衡サイクルと比較して高ガドリニア燃料
を低ガドリニア燃料よりも多く装荷し、逆に何らかの事
情でサイクル長さが予定より長くなった場合には、確実
に100%出力を得るために、低ガドリニア燃料を相対
的に多く装荷して余剰反応度を高めてやる必要があった
The fuel assembly shown in FIGS. 8 and 9 is used as a two-stream fuel, and is used as a high-gadolinia fuel and a low-gadolinia fuel. The purpose of this is to maintain appropriate surplus reactivity, adjust the power distribution during high-temperature operation with only a small number of deep-inserted control rods, and ensure margin for reactor shutdown during cold temperatures. In other words, if the cycle length becomes shorter than the planned cycle length for some reason, when the next cycle is operated, the excess reactivity at the beginning of the cycle (BOC) tends to increase, so the normal equilibrium Load more high gadolinia fuel than low gadolinia fuel compared to the cycle, and if for some reason the cycle length becomes longer than planned, load low gadolinia fuel to ensure 100% output. It was necessary to increase the surplus reactivity by loading a relatively large amount.

【0006】[0006]

【発明が解決しようとする課題】さて、図8及び図9の
燃料集合体では、以下の欠点があった。図8の集合体で
は、濃縮度もガドリニア濃度も軸方向で一様であるため
、燃焼初期におけるBWR固有の軸方向の上・下部のボ
イド反応度差によりサイクル初期に著しい下部出力ピー
クが起こり、最大線出力密度(MLHGR)が制限値を
超えてしまう可能性があった。
[Problems to be Solved by the Invention] The fuel assemblies shown in FIGS. 8 and 9 have the following drawbacks. In the assembly shown in Fig. 8, since both the enrichment and the gadolinia concentration are uniform in the axial direction, a significant lower output peak occurs at the beginning of the cycle due to the difference in void reactivity between the upper and lower parts in the axial direction, which is unique to BWR in the early stage of combustion. There was a possibility that the maximum linear power density (MLHGR) would exceed the limit value.

【0007】また、図9の集合体では、燃焼初期におけ
る上・下部の増倍率K∞差は、ガドリニアの下部におけ
る増強で小さくなり比較的平坦となるが、その分スペク
トルシフト効果が得られない。また、スペクトルシフト
効果が充分行なわれるような設計とするためのガドリニ
ア量の調整(下部のガドリニア量を減らす)を行なった
場合には、サイクル末での軸方向下部の燃焼が進み、次
サイクルでの軸方向下部の無限増倍率K∞が低下するた
め、スペクトルシフト運転を行なおうとしても、もはや
スペクトルシフト運転を行なうことができないものであ
った。
In addition, in the assembly shown in FIG. 9, the difference in multiplication factor K∞ between the upper and lower parts at the early stage of combustion becomes smaller and relatively flat due to the enhancement of gadolinia in the lower part, but the spectral shift effect cannot be obtained accordingly. . In addition, if the amount of gadolinia is adjusted (reducing the amount of gadolinia in the lower part) in order to achieve a sufficient spectral shift effect, the combustion in the lower part of the axis at the end of the cycle will progress and in the next cycle. Since the infinite multiplication factor K∞ in the axially lower part of the axial direction decreases, even if a spectrum shift operation is attempted, it is no longer possible to perform the spectrum shift operation.

【0008】図9の集合体と類似のものとして、軸方向
下部の無限増倍率K∞を下げるため軸方向下部の濃縮度
を上部よりも低くする設計があるが、そのような設計で
は、さらに次サイクル以降のスペクトルシフト運転がし
難くなるという欠点を有するものであった。
Similar to the assembly shown in FIG. 9, there is a design in which the concentration of the axial lower part is lower than that of the upper part in order to lower the infinite multiplication factor K∞ of the axial lower part. This has the disadvantage that it becomes difficult to perform spectrum shift operation from the next cycle onwards.

【0009】本発明は、安全上、上限値が炉心ごとに決
められている最大線出力密度(Max.Linear 
Heat Generation Rate (kW/
ft) :以下、MLHGRと記す)の発生点を炉心下
部側とし、しかもほぼ一定のMLHGRをサイクル中に
亘って達成するようにし、スペクトルシフト(スペクト
ルシフト:炉心の中性子束のエネルギースペクトルのレ
ベルを高めて、 238U(非核分裂性)の 239P
u(核分裂性)への転換を促がし、炉心の反応度に寄与
させること)を有効に利用するような燃料集合体及び炉
心の構成を有し、従来の軸方向下部の反応度をGd2O
3 の増強または、濃縮度の低下のみにより低下させる
燃料では、充分なスペクトルシフト運転ができないため
、燃料の有効利用が図れないという問題を解決するため
の沸騰水型原子炉用燃料集合体及び原子炉炉心を得るこ
とを目的とする。
[0009] For safety reasons, the present invention is based on the maximum linear power density (Max.Linear
Heat Generation Rate (kW/
ft) :hereinafter referred to as MLHGR) is set at the lower core, and a nearly constant MLHGR is achieved throughout the cycle, and the level of the energy spectrum of the neutron flux in the core is adjusted. Increased to 238U (non-fissionable) 239P
It has a fuel assembly and core configuration that effectively utilizes Gd2O (which promotes conversion to fissionable Gd2O and contributes to the reactivity of the core), and the reactivity of the conventional axial lower part is reduced to Gd2O.
3. Fuel assemblies and nuclear reactors for boiling water reactors are designed to solve the problem that effective use of fuel cannot be achieved because sufficient spectral shift operation cannot be achieved with fuel that is lowered only by increasing or reducing enrichment. The purpose is to obtain a reactor core.

【0010】0010

【課題を解決するための手段】本請求項1に記載の発明
に係る沸騰水型原子炉用燃料集合体では、燃料被覆管内
に核分裂性物質を装填してなる複数本の燃料棒をバンド
ル状に束ねた沸騰水型原子炉用燃料集合体において、前
記核分裂性物質の濃縮度を軸方向下部を上部よりも高く
、且つ前記可燃性毒物含有量を軸方向下部を上部よりも
高くし、前記核分裂性物質の濃縮度の境界と可燃性毒物
含有量の境界とを異ならせたものである。
[Means for Solving the Problems] In the fuel assembly for a boiling water nuclear reactor according to the invention as set forth in claim 1, a plurality of fuel rods each having a fissile material loaded in a fuel cladding tube are arranged in a bundle. In the fuel assembly for a boiling water reactor, the enrichment of the fissile material is higher in the lower part in the axial direction than in the upper part, and the burnable poison content is higher in the lower part in the axial direction than in the upper part, The boundaries of the concentration of fissile material and the boundaries of burnable poison content are made different.

【0011】本請求項2に記載の発明に係る沸騰水型原
子炉炉心では、圧力容器内に複数本の燃料集合体を並設
して燃料集合体部を構成してなる沸騰水型原子炉炉心に
おいて、前記燃料集合体部の核分裂性物質の濃縮度を軸
方向下部を上部よりも高く、且つ可燃性毒物含有量を軸
方向下部を上部よりも高くし、前記濃縮度の境界と可燃
性毒物含有量の境界とを異ならせたものである。
[0011] In the boiling water reactor core according to the invention as set forth in claim 2, a boiling water reactor core is constructed in which a plurality of fuel assemblies are arranged in parallel in a pressure vessel to constitute a fuel assembly portion. In the reactor core, the enrichment of fissile material in the fuel assembly is higher in the axial lower part than in the upper part, and the burnable poison content is higher in the axial lower part than in the upper part, and the enrichment boundary and flammable The boundaries of toxic substance content are different.

【0012】本請求項3に記載の発明に係る沸騰水型原
子炉炉心では、前記請求項2に記載の沸騰水型原子炉炉
心において、前記可燃性毒物含有量の異なる少なくとも
2種類以上の燃料集合体を用いたものである。
[0012] In the boiling water reactor core according to the invention as set forth in claim 3, in the boiling water reactor core as set forth in claim 2, at least two types of fuels having different burnable poison contents are used. It uses aggregates.

【0013】本請求項4に記載の発明に係る沸騰水型原
子炉炉心では、前記請求項2に記載の沸騰水型原子炉炉
心において、軸方向下部の濃縮度を上部よりも高くした
第1の燃料集合体と、軸方向下部の可燃性毒物含有量を
上部よりも高くした第2の燃料集合体とを並設したもの
である。
In the boiling water reactor core according to the invention set forth in claim 4, in the boiling water reactor core set forth in claim 2, the first boiling water reactor core has a higher enrichment degree in the lower part in the axial direction than in the upper part. This is a fuel assembly in which a second fuel assembly in which the burnable poison content in the axially lower part is higher than that in the upper part are arranged side by side.

【0014】本請求項5に記載の発明に係る沸騰水型原
子炉炉心では、前記請求項4に記載の沸騰水型原子炉炉
心において、前記可燃性毒物含有量の異なる少なくとも
2種類以上の燃料集合体を用いたものである。
[0014] In the boiling water reactor core according to the invention set forth in claim 5, in the boiling water reactor core set forth in claim 4, at least two types of fuels having different burnable poison contents are used. It uses aggregates.

【0015】[0015]

【作用】本発明は、核分裂性物質の濃縮度を軸方向下部
を上部よりも高く、且つ可燃性毒物含有量を軸方向下部
を上部よりも高くし、これら核分裂性物質の濃縮度の境
界と可燃性毒物含有量の境界とを異ならせたものとして
、更にMLHGRをある一定の高さに保ち、またほぼ一
定の出力分布を達成しつつスペクトルシフト運転を有効
にするものである。
[Operation] The present invention makes the concentration of fissile material higher in the axial lower part than in the upper part, and the burnable poison content in the axial lower part than in the upper part, and the boundary between the enrichment levels of these fissile materials. In addition to different burnable poison content boundaries, the MLHGR is maintained at a certain level and a substantially constant power distribution is achieved while enabling spectrum shift operation.

【0016】即ち具体的な例として、集合体軸方向下部
側において、ガドリニア量を多くし、且つ濃縮度も高め
、更に、軸方向では、ガドリニア量と、濃縮度の境界は
一致させないものである。これは、濃縮度及び可燃性毒
物であるガドリニア含有量の両方の境界を軸方向中央部
付近で一致させた場合、軸方向下部のかなり下側(軸方
向を24分割した場合の下部より5ノード付近)に起こ
る出力ピークを小さくするためである。つまり、両方の
境界を異ならせた場合には、後述の図2及び図3に模式
的に比較したように、それほど出力ピークの大きくなら
ない軸方向中央部の反応度を高めることになるのみであ
り、MLHGRはそれほど大きくならないからである。
That is, as a specific example, the amount of gadolinia is increased and the degree of enrichment is increased on the lower side in the axial direction of the aggregate, and furthermore, the boundary between the amount of gadolinia and the degree of enrichment is not made to coincide in the axial direction. . If the boundaries of both the enrichment level and the content of gadolinia, which is a burnable poison, coincide near the center of the axis, this will be far below the lower part of the axis (5 nodes below the lower part when dividing the axis into 24 parts). This is to reduce the output peak that occurs in the vicinity. In other words, if both boundaries are made different, as schematically compared in FIGS. 2 and 3, which will be described later, the reactivity will only be increased in the central part in the axial direction where the output peak is not so large. , MLHGR does not become so large.

【0017】尚、図2は、境界が異なる場合の無限増倍
率K∞の比較を、図3は、境界が同一の場合の無限増倍
率K∞の比較を示す。尚、無限増倍率K∞は軸方向ボイ
ド分布を考慮した実炉心に即した場合のものである。
Note that FIG. 2 shows a comparison of the infinite multiplication factors K∞ when the boundaries are different, and FIG. 3 shows a comparison of the infinite multiplication factors K∞ when the boundaries are the same. Incidentally, the infinite multiplication factor K∞ is based on an actual reactor core taking into consideration the axial void distribution.

【0018】本発明による燃料集合体を装荷した炉心で
は、サイクル初期(BOC)において軸方向下部の出力
が抑えられるが、中央部の出力は高くなり、全体として
は比較的軸方向下部の出力が高く、炉心平均ボイド率が
大きくなる。これにより、中性子スペクトルが硬化し、
核分裂性Puの蓄積が促進される(ボイド率が大きくな
ると中性子の減速能が低下し中性子スペクトルが硬化(
中性子束のエネルギーレベルが高くなる)し、非核分裂
性の 238Uの中性子の共鳴吸収が増え、核分裂性の
 239Uへの転換が促される)こととなる。
In a reactor core loaded with a fuel assembly according to the present invention, the output in the lower axial direction is suppressed at the beginning of the cycle (BOC), but the output in the central portion increases, and overall the output in the lower axial direction is relatively low. This increases the core average void fraction. This hardens the neutron spectrum and
Accumulation of fissile Pu is promoted (as the void ratio increases, the neutron moderation ability decreases and the neutron spectrum becomes hardened) (
The energy level of the neutron flux increases), the resonance absorption of non-fissile 238U neutrons increases, and the conversion to fissile 239U is promoted).

【0019】更に、サイクル中期(MOC)から末期(
EOC)にかけては、ガドリニアの反応度価値が軸方向
の上・下部でともに小さく、ほぼ等しくなることと下部
側の濃縮度が燃焼初期において高かったことにより、あ
いかわらず軸方向下部の出力が高く、同様にして核分裂
性Puの蓄積が促進される。
Furthermore, from the mid-cycle (MOC) to the end-cycle (
EOC), the reactivity value of gadolinia is small and almost equal in both the upper and lower parts of the axis, and the enrichment in the lower part was high in the early stage of combustion, so the output in the lower part of the axis remains high, and the same This promotes the accumulation of fissile Pu.

【0020】このため、スペクトルシフト運転に伴い次
サイクルに移行した場合でも、下部側の反応度が、核分
裂性の 235Uの量が多いために、前サイクルと同様
の軸方向出力分布を得ることができる。つまり、各サイ
クルにおいて、ほぼ一定の軸方向出力分布を達成するこ
とができる上に、充分なスペクトルシフト運転を行なう
ことができ、MLHGRをある一定の高さにしつつ、燃
料の有効利用を図ることができることとなる。
[0020] Therefore, even when moving to the next cycle due to spectrum shift operation, it is not possible to obtain the same axial power distribution as in the previous cycle because the reactivity on the lower side is large in the amount of fissile 235U. can. In other words, in each cycle, it is possible to achieve a nearly constant axial power distribution, and also to perform sufficient spectral shift operation, keeping the MLHGR at a certain level and making effective use of fuel. will be possible.

【0021】なお、本発明は燃料集合体内について適用
することも可能であるし、また、例えば2種の燃料集合
体間にわたって適用させることも可能である。つまり、
集合体1体について、図2に示した特性を持たせること
もできるし、一方の集合体には、図2の左側に示した特
性を、もう一方の集合体には図2の右側に示した特性を
持たせ、両方の集合体をほぼ同数ずつ炉心に装荷し、炉
心全体として図2に示した特性を持たせることもできる
Note that the present invention can be applied within a fuel assembly, or can be applied, for example, between two types of fuel assemblies. In other words,
One aggregate can have the characteristics shown in Figure 2, or one aggregate can have the characteristics shown on the left side of Figure 2, and the other aggregate can have the characteristics shown on the right side of Figure 2. It is also possible to load almost the same number of both assemblies into the reactor core so that the core as a whole has the characteristics shown in FIG.

【0022】[0022]

【実施例】図1は本発明の一実施例の沸騰水型原子炉用
の2ストリーム燃料集合体の軸方向濃縮度及びガドリニ
ア分布を示す説明図、図2は本発明の燃料集合体の構成
を模式的に示した説明図、図3は従来の燃料集合体の構
成を模式的に示した説明図である。
[Example] Fig. 1 is an explanatory diagram showing the axial enrichment and gadolinia distribution of a two-stream fuel assembly for a boiling water reactor according to an embodiment of the present invention, and Fig. 2 is a configuration of the fuel assembly of the present invention. FIG. 3 is an explanatory diagram schematically showing the configuration of a conventional fuel assembly.

【0023】図に示すように、集合体軸方向下部の濃縮
度を上部よりも高くし、集合体下部の可燃性毒物である
ガドリニア含有量を上部よりも高くし、且つ、濃縮度の
境界と可燃性毒物含有量の境界を異ならせたものである
。即ち、集合体軸方向下部側において、ガドリニア量を
多くし、且つ、濃縮度も高めるというものであり、更に
、軸方向では、ガドリニア量と、濃縮度の境界は一致さ
せないものである。このため、出力分布を平坦にしなが
ら、スペクトルシフト運転を有効にするものであり、尚
且、両方の境界を異ならせたために、MLHGRはそれ
ほど大きくならないものである。
As shown in the figure, the concentration of the lower part in the axial direction of the aggregate is made higher than that of the upper part, and the content of gadolinia, which is a burnable poison, in the lower part of the aggregate is made higher than that of the upper part, and the boundary between the enrichment levels and The boundaries of burnable poison content are different. That is, on the lower side in the axial direction of the aggregate, the amount of gadolinia is increased and the degree of enrichment is also increased, and furthermore, the boundary between the amount of gadolinia and the degree of enrichment is not made to coincide in the axial direction. Therefore, the spectral shift operation is made effective while flattening the output distribution, and since both boundaries are made different, the MLHGR does not become so large.

【0024】本実施例の図1、前記従来の比較例1,2
の図8,図9及び境界を同一にした比較例4の図10に
示した各燃料集合体は、高ガドリニア燃料と低ガドリニ
ア燃料を平均して下記の表1の特性を持ち、ほぼ同一の
物質量を有している。
FIG. 1 of this embodiment and the conventional comparative examples 1 and 2
Each of the fuel assemblies shown in Figures 8 and 9 of , and Figure 10 of Comparative Example 4 with the same boundaries has the characteristics shown in Table 1 below by averaging the high gadolinia fuel and the low gadolinia fuel, and has almost the same characteristics. It has a certain amount of substance.

【0025】[0025]

【表1】[Table 1]

【0026】また表中の、Σ(WGi・NGi・NNi
) は、総ガドリニア量を表わす指標であり、WGi,
NGi,NNi は、軸方向分割域iにおけるガドリニ
ア重量(wt%) 、ガドリニア入燃料棒本数、領域i
の軸方向ノード数を表わし、比較例1,2,3と実施例
では、殆ど同一のガドリニア量を用いていることがわか
り、平均濃縮度がすべてのケースで同一であることから
、燃焼度もしくは、反応度の利得は、燃料設計次第とい
うことになる。
[0026] Also, in the table, Σ(WGi・NGi・NNi
) is an index representing the total amount of gadolinia, WGi,
NGi,NNi are the gadolinia weight (wt%) in the axial division area i, the number of fuel rods containing gadolinia, and the area i
The number of nodes in the axial direction of , the reactivity gain depends on the fuel design.

【0027】尚、図10の燃料集合体では、スペクトル
シフト運転を行なうには、最良の設計ではあるが、サイ
クル初期に非常に大きな下部出力ピークが起こり、設計
としては制限値を満たさず不可能であるものである。
Although the fuel assembly shown in FIG. 10 has the best design for spectrum shift operation, a very large lower output peak occurs at the beginning of the cycle, making it impossible for the design to meet the limit value. It is something that is.

【0028】尚、各ケースについて制御棒(C/R) 
を挿入せず、サイクルを通じて一定の出力で運転したと
した場合の炉心燃焼計算であるヘーリング計算及び、実
際のC/R操作を考慮に入れた炉心燃焼計算である制御
棒計画を実施した。炉心は1100MWe 級BWR/
5であり、764本の燃料集合体より構成されており、
取替体数は15ケ月運転を想定し、232体としている
。計算結果を下記の表2に示す。
[0028] In each case, the control rod (C/R)
A Hering calculation, which calculates the core burn-up assuming that the reactor is operated at a constant power throughout the cycle without inserting a C/R operation, and a control rod plan, which calculates the core burn-up taking into account actual C/R operations, were carried out. The core is a 1100 MWe class BWR/
5, consisting of 764 fuel assemblies,
The number of replacement units is assumed to be 232 units, assuming a 15-month operation. The calculation results are shown in Table 2 below.

【0029】[0029]

【表2】[Table 2]

【0030】尚、本特性解析は、集合体の細部の設計に
計算結果が依存しないようにするため、すべてのケース
で、同一の局所ピーキング係数、同一の制御棒計画を用
いた。表2の特性として、ヘーリング計算結果の寿命お
よびその他の特性には殆ど差がない一方、制御棒計画で
のサイクル寿命とMLHGRは、各ケースでかなりの差
異があることがわかる。
In this characteristic analysis, the same local peaking coefficient and the same control rod plan were used in all cases in order to prevent the calculation results from depending on the detailed design of the assembly. As for the characteristics in Table 2, it can be seen that while there is almost no difference in the life and other characteristics of the Hering calculation results, there are considerable differences in the cycle life and MLHGR in the control rod plan in each case.

【0031】図4はこの点を解り易くするために制御棒
計画でのMLHGRとサイクル寿命の関係をプロットし
た線図である。図4に示すように、それほどMLHGR
を上げることなく、本実施例での寿命が大きくなってい
ることがわかる。
FIG. 4 is a diagram plotting the relationship between MLHGR and cycle life in a control rod plan in order to make this point easier to understand. As shown in Figure 4, the MLHGR
It can be seen that the life span in this example is increased without any increase.

【0032】更に、図5,図6,図7はMLHGR発生
ハンドルでの出力分布をBOC,MOC,EOCについ
て示した線図である。図中、実線の本実施例では、軸方
向下部での出力の変化は、BOCからEOCにかけて小
さく、このことから、次のサイクルにおいても、本制御
棒計画と同様のスペクトルシフト運転を行なうことが可
能であることがわかる。破線及び2点鎖線の比較例1,
3においては、本制御棒計画では、図4に示したように
サイクル寿命の大幅な利得が見られたが、次サイクルで
は、スペクトルシフト運転を行ないにくく、総合的にみ
てそれほどの寿命利得にはつながらないこと、また、図
5,図6に示すように、BOCからMOCにかけて下部
出力ピークが大きく、MLHGRが高くなるという欠点
を有することが示された。
Furthermore, FIGS. 5, 6, and 7 are diagrams showing the output distribution at the MLHGR generation handle for BOC, MOC, and EOC. In this example, indicated by the solid line in the figure, the change in output at the lower axial direction is small from BOC to EOC, and from this it is possible to perform the same spectral shift operation as in this control rod plan in the next cycle as well. It turns out that it is possible. Comparative example 1 of broken line and two-dot chain line,
3, with this control rod plan, a significant gain in cycle life was seen as shown in Figure 4, but in the next cycle, it was difficult to perform spectrum shift operation, and overall it was not possible to achieve that much gain in life. Furthermore, as shown in FIGS. 5 and 6, the lower output peak is large from BOC to MOC, and the MLHGR is high.

【0033】以上のように、本発明では、MLHGRを
ある程度低くしながら、充分なスペクトルシフト運転を
連続して行なう手法として有効なものであると言うこと
ができる。
As described above, it can be said that the present invention is effective as a method for continuously performing sufficient spectrum shift operation while lowering the MLHGR to some extent.

【0034】[0034]

【発明の効果】以上説明したように、本発明は、核分裂
性物質の濃縮度を軸方向下部を上部よりも高く、且つ可
燃性毒物含有量を軸方向下部を上部よりも高くし、これ
ら核分裂性物質の濃縮度の境界と可燃性毒物含有量の境
界とを異ならせたものとして、出力分布を平坦にするも
のであり、特にMLHGRをそれほど上げることなく、
スペクトルシフト運転による寿命の利得を得ることがで
きる。
As explained above, the present invention makes the concentration of fissile material higher in the axial lower part than in the upper part, and the burnable poison content in the axial lower part is higher than in the upper part. By making the boundaries of the concentration of toxic substances and the boundaries of burnable poison content different, the output distribution is made flat, and in particular, without increasing the MLHGR significantly,
Lifetime gains can be obtained through spectral shift operation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例の沸騰水型原子炉用の2スト
リーム燃料集合体の軸方向濃縮度及びガドリニア分布を
示す説明図である。
FIG. 1 is an explanatory diagram showing the axial enrichment and gadolinia distribution of a two-stream fuel assembly for a boiling water nuclear reactor according to an embodiment of the present invention.

【図2】本発明の燃料集合体の構成を模式的に示した説
明図である。
FIG. 2 is an explanatory diagram schematically showing the configuration of a fuel assembly of the present invention.

【図3】従来の燃料集合体の構成を模式的に示した説明
図である。
FIG. 3 is an explanatory diagram schematically showing the configuration of a conventional fuel assembly.

【図4】制御棒計画でのMLHGRとサイクル寿命の関
係をプロットした線図である。
FIG. 4 is a diagram plotting the relationship between MLHGR and cycle life in a control rod plan.

【図5】MLHGR発生ハンドルでの出力分布をBOC
について示した線図である。
[Figure 5] BOC output distribution at MLHGR generation handle
FIG.

【図6】MLHGR発生ハンドルでの出力分布をMOC
について示した線図である。
[Figure 6] MOC the output distribution at the MLHGR generation handle
FIG.

【図7】MLHGR発生ハンドルでの出力分布をEOC
について示した線図である。
[Figure 7] EOC output distribution at MLHGR generation handle
FIG.

【図8】従来の沸騰水型原子炉用の2ストリーム燃料集
合体の軸方向濃縮度及びガドリニア分布を示す説明図で
ある。
FIG. 8 is an explanatory diagram showing the axial enrichment and gadolinia distribution of a conventional two-stream fuel assembly for a boiling water reactor.

【図9】別の従来の沸騰水型原子炉用の2ストリーム燃
料集合体の軸方向濃縮度及びガドリニア分布を示す説明
図である。
FIG. 9 is an explanatory diagram showing the axial enrichment and gadolinia distribution of another conventional two-stream fuel assembly for a boiling water reactor.

【図10】比較のための沸騰水型原子炉用の2ストリー
ム燃料集合体の軸方向濃縮度及びガドリニア分布を示す
説明図である。
FIG. 10 is an explanatory diagram showing the axial enrichment and gadolinia distribution of a two-stream fuel assembly for a boiling water reactor for comparison.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  燃料被覆管内に核分裂性物質を装填し
てなる複数本の燃料棒をバンドル状に束ねた沸騰水型原
子炉用燃料集合体において、前記核分裂性物質の濃縮度
を軸方向下部を上部よりも高く、且つ前記可燃性毒物含
有量を軸方向下部を上部よりも高くし、前記核分裂性物
質の濃縮度の境界と可燃性毒物含有量の境界とを異なら
せたことを特徴とする沸騰水型原子炉用燃料集合体。
Claim 1: In a fuel assembly for a boiling water reactor in which a plurality of fuel rods each having a fissile material loaded into a fuel cladding tube are bundled together, the enrichment of the fissile material is adjusted to the lower part in the axial direction. is higher than the upper part, and the burnable poison content is higher in the axial lower part than in the upper part, and the boundary of the enrichment degree of the fissile material and the boundary of the burnable poison content are different. Fuel assembly for boiling water reactors.
【請求項2】  圧力容器内に複数本の燃料集合体を並
設して燃料集合体部を構成してなる沸騰水型原子炉炉心
において、前記燃料集合体部の核分裂性物質の濃縮度を
軸方向下部を上部よりも高く、且つ可燃性毒物含有量を
軸方向下部を上部よりも高くし、前記濃縮度の境界と可
燃性毒物含有量の境界とを異ならせたことを特徴とする
沸騰水型原子炉炉心。
[Claim 2] In a boiling water reactor core in which a plurality of fuel assemblies are arranged in parallel in a pressure vessel to constitute a fuel assembly section, the enrichment of fissile material in the fuel assembly section is controlled. A boiling device characterized in that the lower part in the axial direction is higher than the upper part, and the burnable poison content is higher in the lower part in the axial direction than the upper part, and the boundary of the enrichment level and the boundary of the burnable poison content are different. Water reactor core.
【請求項3】  前記請求項2に記載の沸騰水型原子炉
炉心において、前記可燃性毒物含有量の異なる少なくと
も2種類以上の燃料集合体を用いたことを特徴とする沸
騰水型原子炉炉心。
3. The boiling water reactor core according to claim 2, characterized in that at least two types of fuel assemblies having different burnable poison contents are used. .
【請求項4】  前記請求項2に記載の沸騰水型原子炉
炉心において、軸方向下部の濃縮度を上部よりも高くし
た第1の燃料集合体と、軸方向下部の可燃性毒物含有量
を上部よりも高くした第2の燃料集合体とを並設したこ
とを特徴とする沸騰水型原子炉炉心。
4. The boiling water reactor core according to claim 2, wherein the first fuel assembly has a higher enrichment in the axial lower part than the upper part, and a burnable poison content in the axial lower part. A boiling water reactor core characterized in that a second fuel assembly is installed in parallel with the second fuel assembly which is higher than the upper part.
【請求項5】  前記請求項4に記載の沸騰水型原子炉
炉心において、前記可燃性毒物含有量の異なる少なくと
も2種類以上の燃料集合体を用いたことを特徴とする沸
騰水型原子炉炉心。
5. The boiling water reactor core according to claim 4, characterized in that at least two types of fuel assemblies having different burnable poison contents are used. .
JP2411789A 1990-12-20 1990-12-20 Fuel assembly and reactor core for boiling water reactors Expired - Lifetime JP2544249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2411789A JP2544249B2 (en) 1990-12-20 1990-12-20 Fuel assembly and reactor core for boiling water reactors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2411789A JP2544249B2 (en) 1990-12-20 1990-12-20 Fuel assembly and reactor core for boiling water reactors

Publications (2)

Publication Number Publication Date
JPH04220595A true JPH04220595A (en) 1992-08-11
JP2544249B2 JP2544249B2 (en) 1996-10-16

Family

ID=18520729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2411789A Expired - Lifetime JP2544249B2 (en) 1990-12-20 1990-12-20 Fuel assembly and reactor core for boiling water reactors

Country Status (1)

Country Link
JP (1) JP2544249B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179391A (en) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ Fuel flux having enrichment devided axially

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179391A (en) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ Fuel flux having enrichment devided axially

Also Published As

Publication number Publication date
JP2544249B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
Uchikawa et al. Conceptual design of innovative water reactor for flexible fuel cycle (FLWR) and its recycle characteristics
Elzayat et al. Chemical spectral shift control method for VVER-1000 LEU fuel assembly benchmark
Kim et al. Once-through thorium fuel cycle options for the advanced PWR core
JP4088735B2 (en) Nuclear fuel assemblies and boiling water reactor cores
JPH04220595A (en) Fuel aggregate for boiling-water reactor and reactor core of reactor
JP3124046B2 (en) LWR fuel assemblies
JP3514869B2 (en) Fuel assemblies for boiling water reactors
JP4713224B2 (en) Boiling water reactor fuel assembly set and core
JPH0555836B2 (en)
JP3943624B2 (en) Fuel assembly
JP2610254B2 (en) Boiling water reactor
JP2012137378A (en) Initial loading core, fuel assembly used for the same, and operation method of boiling-water reactor
JPS6361990A (en) Fuel aggregate
JP3075749B2 (en) Boiling water reactor
JP2966877B2 (en) Fuel assembly
JP2972917B2 (en) Fuel assembly
JPH02232595A (en) Fuel loading of boiling nuclear reactor
JPS6151275B2 (en)
JPS61147183A (en) Fuel aggregate
JP3441149B2 (en) Reactor core
JP3596831B2 (en) Boiling water reactor core
JP2963712B2 (en) Fuel assembly for boiling water reactor
Bender et al. Boiling water reactor reload fuel for high burnup: 9 x 9 with internal water channel
JPH0452914B2 (en)
Nagano et al. Basic evaluation on nuclear characteristics of BWR high burnup MOX fuel and core

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514