JPH04218998A - Magnetic shilding structure - Google Patents

Magnetic shilding structure

Info

Publication number
JPH04218998A
JPH04218998A JP8046491A JP8046491A JPH04218998A JP H04218998 A JPH04218998 A JP H04218998A JP 8046491 A JP8046491 A JP 8046491A JP 8046491 A JP8046491 A JP 8046491A JP H04218998 A JPH04218998 A JP H04218998A
Authority
JP
Japan
Prior art keywords
cylinder
magnetic field
permeability material
magnetic
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8046491A
Other languages
Japanese (ja)
Other versions
JP2825363B2 (en
Inventor
Hirotoshi Irisawa
入澤 大逸
Akito Yahara
矢原 昭人
Hironori Matsuba
松葉 博則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3080464A priority Critical patent/JP2825363B2/en
Priority to DE69124221T priority patent/DE69124221D1/en
Priority to PCT/JP1991/001279 priority patent/WO1992006576A1/en
Priority to EP91916939A priority patent/EP0503085B1/en
Priority to CA002069637A priority patent/CA2069637A1/en
Publication of JPH04218998A publication Critical patent/JPH04218998A/en
Priority to US08/308,474 priority patent/US6486393B1/en
Application granted granted Critical
Publication of JP2825363B2 publication Critical patent/JP2825363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E40/641

Abstract

PURPOSE:To realize a magnetic field far lower than an outside magnetic field by arranging high-permeability cylindrical members, which have openings along the longitudinal direction of a cylindrical shield substance, inside that cylindrical shield substance, leaving space with the cylindrical inwall. CONSTITUTION:One high-permeability material FM each is arranged in the positions 800mm from the center of a superconductive cylinder SC, both whose ends are opened. The sizes of the superconductive cylinder SC are 100mm in inside diameter, 240mm in length, and 5mm in thickness. The high-permeability material cylinder FM is 10mm in length and 10000 in permeability, and the outside diameter Dmm is changed. As a result of measurement, it comes out that if the high-permeability material cylinder FM, which has an outside diameter 1/5 or more times as large as the superconductive cylinder SC, is arranged inside the superconductive cylinder SC, the shield effect more excellent than the superconductor cylinder simple can be gotten, and also the more the outside diameter of the high-permeability material cylinder FM approximates to the inside diameter of the superconductive cylinder SC, the more excellent shield effect can be obtained.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は超電導体を利用した磁気
シールドの構造に関するものである。 【0002】 【従来の技術】超電導体を利用した磁気シールド構造と
は、マイスナー効果を利用する磁気シールド構造であり
、例えばマイスナー効果を有する材料を円筒状に形成し
てシールド体とし、これを臨界温度TC 以下に冷却し
て、超電導状態に転移させてシールド体を反磁性体とす
ることにより、磁束をシールド外部に押し出し、シール
ド内部空間を磁気シールドするものである。 【0003】一方、超電導体を利用しない、通常使用さ
れている高透磁率材でのシールド構造では、例えば高透
磁率材料で円筒状のシールド体を構成した場合には、磁
場中にこのシールド体が保持されると、シールド体に沿
って磁気誘導が生じ、結果的に磁場の方向を変更させて
、内部空間を磁気シールドするものである。 【0004】 【発明が解決しようとする課題】このような超電導体を
利用した磁気シールド構造では、例えば円筒状のシール
ド体の磁気遮蔽効率は、円筒の中心軸に平行な磁場(縦
磁場)に対する遮蔽効率は良いが、中心軸に垂直な磁場
(横磁場)に対する遮蔽効率は良くないため、円筒の内
径に比して長さを長くしなければならないという問題点
があった。 【0005】一方、高透磁率材による例えば円筒状のシ
ールド体では、横磁場より縦磁場の遮蔽効率が良くなく
、またその有限な透磁率のために1層では遮蔽効率が高
くないので、高い遮蔽効率を得るために円筒を数層重ね
、外層を内層より長くする構造をとらなければならなか
った。その結果、高透磁率材でも、より外側の円筒ほど
長さが長くなり、また使用可能な容積が大きければさら
に径方向、軸方向共に長くなるため、コストが高くなる
という問題点もあった。 【0006】本発明の目的は以上の種々の点に鑑みてな
されたものであって、性質の異なる磁気シールド材を組
み合わせることにより磁気シールド性能を向上させ、使
用可能な高い磁場遮蔽空間を増し、従って外部磁場より
非常に低い磁場を効率よく実現できる磁気シールド構造
の提供を目的とする。 【0007】 【課題を解決するための手段】本請求項1に記載の発明
に係る磁気シールド構造では、臨界温度以下の冷却時に
、常電導状態から超電導状態へ転移してマイスナー効果
を発現する超電導材料からなる筒状のシールド体の磁気
シールド構造において、前記筒状のシールド体内部に該
筒状のシールド体の長手方向に沿った開口を有する筒状
高透磁率部材を筒内壁と間隔を開けて配設したものであ
る。 【0008】本請求項2に記載の発明に係る磁気シール
ド構造では、前記請求項1に記載の磁気シールド構造に
おいて、複数の前記筒状高透磁率部材を径方向及び/又
は長手方向に間隔を開けて多重及び/又は多層に配設し
たものである。 【0009】 【作用】マイスナー効果を発現する材料からなる筒状の
シールド体は、その外部からの磁界に対してレンツの法
則に従って遮蔽電流を流し、反磁界を形成する。この反
磁界により外部から円筒内部に侵入する磁界を減衰させ
る。 【0010】例えば、超電導体円筒の内部磁場Hiの理
論式は、各方向の外部磁場Hoに対して、次のように表
せる。 横磁場;  Hi=Ho・exp(−1.84(Z/r
))    …(1) 縦磁場;  Hi=Ho・ex
p(−3.83(Z/r))    …(2) (但し
、Zは開放端からの距離、rは円筒の半径である。) これらの式から明らかなように超電導体円筒の磁気遮蔽
効率は、円筒の中心軸 に平行な磁場(縦磁場)に対して高いが、中心軸に垂直
な磁場(横磁場)に対して低い。従って横磁場を効果的
に減衰させれば、非常によい磁場遮蔽空間を得ることが
できる。 【0011】図17に超電導体円筒に横磁場を印加した
ときの超電導体円筒内部の侵入磁気ベクトルの模式図を
示す。図のように、円筒軸上では横方向の磁場だけ手、
径方向では端部に近い程竪方向成分が増加していること
が判る。このように分布する内部侵入磁界を高透磁率部
材の磁気誘導という性質を利用して、縦方向成分を横方
向成分に変えることで磁気的に短絡させ、内部への侵入
量を減少させる。但し、高透磁率部材には残留磁場があ
るので、残留磁場が影響を及ぼさない位置に配置する必
要がある。 【0012】本発明では、臨界温度以下の冷却時に、常
電導状態から超電導状態へ転移してマイスナー効果を発
現する超電導材料からなる筒状のシールド体の磁気シー
ルド構造において、前記筒状のシールド体内部に該筒状
のシールド体の長手方向に沿った開口を有する筒状高透
磁率部材を筒内壁と間隔を開けて配設したため、マイス
ナー効果を発現する材料からなる筒状シールド体の長手
軸上の中心方向に減衰分布を示す侵入磁界に対して、筒
状高透磁率部材に磁気誘導が生じ、その結果、侵入磁界
が磁気的に短絡し、筒状のシールド体内部に侵入する磁
界をさらに減少させるものである。 【0013】具体的には、筒状高透磁率部材を、超電導
筒中心部から端部方向に亙って配設したもの、端部近傍
に配設したもの、複数の筒状高透磁率部材を端部近傍に
長手方向に積層したもの、複数の筒状高透磁率部材を径
方向に積層したもの等がある。特に、複数の筒状高透磁
率部材を径方向及び/又は長手方向に間隔を開けて多重
及び/又は多層に配設したものでは、筒状高透磁率部材
を単独で用いる場合よりも筒状のシールド体内部に侵入
する磁界をさらに減少させるものである。 【0014】尚、筒状高透磁率部材の形状は、超電導材
料からなる筒状のシールド体内部に挿入可能で、筒状高
透磁率部材に磁気誘導が生じ、侵入磁界が磁気的に短絡
する形状のものであれば、如何なる形状のものでも使用
可能である。具体的には、構成部材の肉厚よりも大きな
筒長を有する両端開放又は片端開放の筒であり、筒の断
面形状は円を始め、楕円、多角形等を取り得る。また、
長手方向に沿って内径が縮径するテーパ形状のもの、内
部及び外部に凹凸が形成され内外部の断面形状が異なる
もの、端部の開口に比べて内部開口が広がったもの、筒
が蛇腹になったもの、L字型,T字型,H字型,+字型
,コ字型形状のもの、更にそれらの組合わせをも含む。 【0015】また、超電導材料からなる筒状のシールド
体内径に対する筒状高透磁率部材の外径の割合は、後述
する実施例で示した通り、単独で用いる場合には、超電
導体材料からなる筒状のシールド体の内径の1/5以上
の外径を有する筒状高透磁率部材を超電導体円筒内部に
配置すると超電導体円筒単体よりも良い遮蔽効果が得ら
れる。 【0016】さて、一般に無限長の高透磁率材円筒に均
一な横磁場Hscを掛けたときの遮蔽効果(Hi/Hs
c)は、 Hi/Hsc=2r/μ・t      …(3) と
表される。ここでμは透磁率、tは肉厚、rは円筒半径
である。式(3) から他の形状の場合も類推できるが
、一般に透磁率が大きい程遮蔽効果も大きく成ることが
判る。また、一般的に肉厚が大きい程遮蔽効果は大きい
ことが式(3) から類推できる。 【0017】 【実施例】(実施例1:外径の効果) 図1は外径Dの大きさを変更する高透磁率材円筒を配設
した断面図であり、両端開放のビスマス系酸化物超電導
体製円筒(BiSrCaCuO)(以下、超電導体円筒
という)の中心から80mmの位置にそれぞれ1つの高
透磁率材円筒を配設した。前者のサイズは内径 100
mm、長さ 240mm、肉厚5mmである。後者は長
さ10mm、肉厚 0.2mm、透磁率 10000で
、外径Dmmを変えている。 【0018】超電導体円筒に対して均一な横磁場1[G
]をかけて円筒軸上の磁界分布を測定した。図2は高透
磁率材円筒の外径Dmmを変えた時の超電導体円筒軸上
の内部磁界分布Hi(z)(以下、全ての実施例でzは
超電導体円筒の開放端からの距離わ示す)を示す線図で
ある。図2において、SCは高透磁率材円筒を使用しな
い超電導体円筒単体の場合の内部磁界分布Hsc(z)
、□は外径=20mm、●は外径=30mm、×は外径
=40mm、○は外径=60mm、+は外径=80mm
を各々示している。 【0019】図2より、超電導体円筒単体の場合よりも
高透磁率材円筒を挿入した場合の方が、超電導体円筒中
心位置での侵入磁界が減少している。これは侵入磁界の
縦方向成分を高透磁率材円筒が磁気誘導により縦方向成
分を横方向成分に変え、磁気的に短絡させたためである
。 【0020】図3は高透磁率材円筒の外径Dと遮蔽効果
との関係を表した線図である。即ち、図2に示した磁界
分布Hi(z)の超電導体円筒中心位置z=120 に
おける磁界Hsc(120) で規格化したものを遮蔽
効果とし、高透磁率材円筒の外径の関数として表した線
図である。 尚、規格化は前述の(3) 式に従って次のようにして
行った。 遮蔽効果=Hi(120)/Hsc(120) 【00
21】図3に示す通り、高透磁率材円筒の外径が超電導
体の内径の近づくにつれて遮蔽効果が良くなっているこ
とがわかる。これは超電導体円筒内部の系方向に増加す
る侵入磁界の縦方向成分を高透磁率材円筒の外径を大き
くすることで、より多くの縦方向成分を横方向成分に変
え、磁気的に短絡させたためである。逆に、外径が20
mmの場合、遮蔽効果が1であり、高透磁率材円筒の効
果が全くないことを示している。この範囲の径方向では
侵入磁界の縦方向成分が小さいために磁気的な短絡効果
がほとんど得られない。 【0022】以上の結果から、超電導体円筒の内径の1
/5以上の外径を有する高透磁率材円筒を超電導体円筒
内部に配設すると超電導体円筒単体よりも良い遮蔽効果
が得られる。また、高透磁率材円筒の外径が超電導体円
筒の内径に近づくほど、良い遮蔽効果を得られることが
判明した。 【0023】図4は片端開放の超電導体円筒に高透磁率
材円筒を配設した断面図である。即ち、片端開放の超電
導体円筒の底面から80mmの位置に1つの高透磁率材
円筒を配設した。前者のサイズは内径 100mm、長
さ 120mm、肉厚5mmである。後者は長さ10m
m、肉厚 0.2mm、透磁率 10000で、外径D
mmを変えている。超電導体円筒に対して均一な横磁場
1[G]をかけて、円筒軸上の底面から30mmの位置
における磁界を測定した。前述の式(3) に従ってz
=90における遮蔽効果で表すと、図3とほぼ一致する
結果が得られた。高透磁率材円筒は、片端開放超電導体
円筒の場合も両端開放超電導体円筒の場合と全く同じ遮
蔽効果を及ぼす。 【0024】図5は両端開放の超電導体円筒にテーパ形
状の高透磁率材円筒を配設した断面図である。即ち、両
端開放の超電導体円筒の中心から80mmの位置にそれ
ぞれ1つの高透磁率材円筒を配設した。前者のサイズは
内径 100mm、長さ 240mm、肉厚5mmであ
る。後者は最大外径80mm、最小外径60mm、高さ
10mm、肉厚 0.2mm、透磁率10000である
。超電導体円筒に対して均一な横磁場1[G]をかけて
、円筒軸上の中心位置における磁界を測定した。同様に
式(3) に従ってz=120 における遮蔽効果は、
0.45が得られた。以上のことから、開口が両端で変
わらない高透磁率材円筒に限らず、開口が縮径している
テーパ形状の高透磁率材円筒においても良い遮蔽効果が
得られることが判った。 【0025】(実施例2:長さの効果1,中心部近傍)
図6は長さ2Pを変更する高透磁率材円筒を配設した断
面図である。即ち、両端開放のビスマス系酸化物超電導
体製円筒(BiSrCaCuO)中に高透磁率材円筒を
配設した。前者のサイズは内径100 mm、長さ15
0 mm、肉厚5mmである。後者は内径75mm、肉
厚2mm、透磁率10000 、長さ2Pmmである。 【0026】図6に示すように両端開放の高透磁率材円
筒を超電導体円筒内部に各円筒の軸が一致するように配
設してその長さ2Pを変えて実験を行った。各組合わせ
円筒に対して垂直になるように均一な横磁場1[G]を
かけた。 【0027】図7は高透磁率材円筒の長さ2Pを変えた
時の超電導体円筒軸上の内部磁界分布を示す線図である
。図7中のSC75は超電導体円筒(P=75mm)単
体の内部磁界分布を表し、SC+FM25は超電導体円
筒と高透磁率材円筒と高透磁率材円筒(P=25mm)
を組合わせた場合の内部磁界分布を示す。この図より明
らかに超電導体円筒単体の場合に比べて超電導体円筒と
高透磁率材円筒を組合わせた場合の方がより低い磁場分
布を示していることが判る。特に、高透磁率材円筒の長
さが長くなるにつれて中心位置での磁界は低くなってい
る。同時に、例えば 0.1[G]の遮蔽空間について
みると高透磁率材円筒の長さが長くなるにつれて遮蔽空
間が広がっている。高透磁率材円筒(P=65mm)の
組合わせの場合を見ると 0.1[G]の遮蔽空間を見
ると円筒中心から50mm程度まで広がっている。これ
を超電導体円筒単体で得るためには内径100mm の
場合に長さ225mm 以上が必要である。 【0028】図8は高透磁率材円筒の長さ種々変化させ
た時の内部磁界を示す線図である。図において、内部磁
界とは円筒体中心位置での磁界であり、■は超電導体円
筒と高透磁率材円筒とを組合わせた場合の結果、□は高
透磁率材円筒単体の場合の結果を示す。図8より、高透
磁率材円筒単体の場合、長さPが60mmより長くなる
と中心位置での磁界が一定になることがわかる。 【0029】これは長さを長くするほど前述の式(1)
 に従って遮蔽効率が良くなる超電導体円筒と異なり、
無限に長い高透磁率材円筒を仮定した式(3) で得ら
れる以上の遮蔽効率を有限の長さを持つ高透磁率材円筒
単体では得られないことから自明である。超電導体円筒
と高透磁率材円筒を組合わせた場合でも同様に、高透磁
率材円筒の長さPが60mmを越えると中心位置での磁
界が一定になっている。従って、組合わせた場合の遮蔽
効率は、高透磁率材円筒の遮蔽効果に依存している。以
上の結果から、超電導体円筒内部に高透磁率材円筒を配
設した場合、高透磁率材円筒の長さを長くするほど低磁
場空間が広がることが判明した。 【0030】(実施例3:長さの効果2,端部近傍)図
9は長さLを変更する高透磁率材円筒を配設した断面図
である。即ち、両端開放のビスマス系酸化物超電導体製
円筒(BiSrCaCuO)(以下、超電導体円筒とい
う)の中心から80mmの位置にそれぞれ1つの高透磁
率材円筒を配設した。前者のサイズは内径 100mm
、長さ 240mm、肉厚5mmである。後者は外径7
0mm、肉厚 0.2mm、透磁率10000で、長さ
Lmmを変えている。 【0031】超電導体円筒に対して均一な横磁場1[G
]をかけて超電導体円筒中心位置の磁界を測定した。図
10は高透磁率材円筒の長さLと遮蔽効果との関係を表
した線図である。即ち、前述の式(3) で示した遮蔽
効果をz=120 の位置で表し、高透磁率材円筒の長
さLの関数としたものである。この図から、高透磁率材
円筒の長さLを長くするほど遮蔽効果が良くなっている
ことが判る。 【0032】また、長さが30mmを越えると遮蔽効果
がほぼ一定になっており、それ以上長くしてもより良い
遮蔽効果は得られないことも判明した。これは超電導体
円筒内部の磁場勾配中に高透磁率材円筒を配設すると、
高透磁率材が有限の透磁率をもつため、ある長さ以上に
長くすれば磁気的に飽和し、その結果磁気誘導が生じに
くくなり、遮蔽効果が一定になると考えられる。 【0033】(実施例4:積層の効果1,長手方向の積
層) 図11は2つの高透磁率材円筒を超電導体円筒の長手方
向に積層配設した断面図である。即ち、両端開放のビス
マス系酸化物超電導体製円筒(BiSrCaCuO)(
以下、超電導体円筒という)の中心から80mm及び6
0mmの位置にそれぞれ高透磁率材円筒を配設した断面
図である。超電導体円筒のサイズは内径 100mm、
長さ 240mm、肉厚5mmである。高透磁率材円筒
は長さ70mm、肉厚 0.2mm、透磁率10000
である。 【0034】超電導体円筒に対して均一な横磁場1[G
]をかけて円筒軸上の磁界分布を測定した。図12は2
つの高透磁率材円筒を長手方向に積層配設した際の超電
導体円筒軸上の内部磁界分布Hi(z)を示す線図であ
る。尚、比較の為に実施例1のL=10mm、30mm
の内部磁界分布も示す。図12おいて、SCは高透磁率
材円筒を使用しない超電導体円筒単体の場合の内部磁界
分布Hsc(z)、□はL=10mm、●はL=30m
m、×はL=10mm×2(図11参照)を各々示して
いる。 【0035】図12より、L=10mmより長いL=3
0mmの方が遮蔽効果が良く、L=30mmと同じ位置
に間隔を開けてL=10mm×2を積層した場合が最も
良い遮蔽効果が得られた。この結果は、高透磁率材円筒
の長さを長くするより間隔をあけて分割した方が遮蔽効
果がよく成ることを示している。更に、前述の実施例3
の結果から長さを長くしても遮蔽効果は一定以上良くな
らなかったが、長さの短い高透磁率材円筒を間隔を開け
て断面方向に積層すると、各高透磁率材円筒が磁気的に
つながっていないために飽和せず、積層すればするほど
遮蔽効果は良くなることが判明した。 【0036】したがって、超電導体円筒内部に、複数の
高透磁率部材円筒を筒内壁と間隔を開けて、長手方向に
間隔を開けて積層すれば、効率良くかつ安価に目的とす
る磁場が得られる。 【0037】(実施例5:積層の効果2、径方向の重層
) 図13は2つの高透磁率材円筒を超電導体円筒の径方向
に重層配設した断面図である。即ち、両端開放のビスマ
ス系酸化物超電導体製円筒(BiSrCaCuO)(以
下、超電導体円筒という)の中心から80mmの位置に
それぞれ外径の異なる2つの高透磁率材円筒を重層した
ものを配設した。超電導体円筒のサイズは内径 100
mm、長さ 240mm、肉厚5mmである。高透磁率
材円筒は長さ10mm、肉厚 0.2mm、透磁率 1
0000で、外径は各々80mm、60mmである。 【0038】超電導体円筒に対して均一な横磁場1[G
]をかけて円筒軸上の磁界分布を測定した。図14は2
つの高透磁率材円筒を径方向に重層配設した際の超電導
体円筒軸上の内部磁界分布Hi(z)を示す線図である
。尚、比較のために実施例1の外径D=80mmを各々
示している。 【0039】図14おいて、SCは高透磁率材円筒を使
用しない超電導体円筒単体の場合の内部磁界分布Hsc
(z)、□はD=80mm、●はD=80mm+60m
m(図13参照)を各々示している。図14より、D=
80mmより径方向に2つの高透磁率材円筒を重層させ
たD=80mm+60mmの方が良い遮蔽効果が得られ
た。これは従来よく使用される高透磁率材円筒の磁気シ
ールドと同じで、均一磁場中或いは勾配磁場中でも径方
向に重層すれば遮蔽効果は良くなることを示している。 ただし、実施例1の結果より、高透磁率部材円筒は超電
導体円筒の内径1/5以上の最大外径を有していなけれ
ばならない。 【0040】以上の結果から、実施例4同様に径方向に
間隔をあけて高透磁率材円筒を重層しても、効率良くか
つ安価に目的とする磁場が得られる。 【0041】(実施例6:積層の効果3,長手方向及び
径方向の積層) 図15は複数の高透磁率材円筒を径方向及び長手方向に
多重及び多層に配設した断面図であり、A図は2つの長
い高透磁率材円筒を径方向に重層配設した断面図、B図
は2つ高透磁率材円筒を径方向に重層配設したものを3
組長手方向に積層配設した断面図、C図は径の小さい高
透磁率材円筒と径の大きな高透磁率材円筒とを交互に積
層配設した断面図である。即ち、両端開放のビスマス系
酸化物長電導体製円筒(BiSrCSCuo)(以下、
超電導体円筒という)の内部に図A〜Cに示すような形
状の高透磁率材円筒を積層配設した。尚、超電導体円筒
のサイズは内径 100mm、長さ 240mm、肉厚
5mである。 高透磁率材円筒の透磁率はいずれも 10000である
。 【0042】具体的には、超電導体円筒に対して均一な
横磁場1[G]をかけて円筒軸上の磁界分布を測定した
。A図は長さ50mmの高透磁率材円筒を径方向に積層
したものである。B図は長さ10mmの高透磁率材円筒
を径方向及び長手方向に間隔をあけて積層配設し、高透
磁率材円筒の占める空間をA図と同じにしたものである
。C図は外径の異なる高透磁率材円筒を交互に長手方向
に積層した。 【0043】図16は図15のA,B,C各々の高透磁
率材円筒を配設した際の超電導体円筒軸上の内部磁界分
布Hi(z)を示す線図である。図16において、SC
は高透磁率材円筒を使用しない超電導体円筒単体の場合
の内部磁界分布Hsc(z)、□はA図、●はB図、×
はC図に示したものを示している。図から明かなように
、各場合とも高透磁率材円筒により侵入磁界が磁気的に
短絡され、超電導体円筒担体の場合よりも到達磁界が小
さくなっていることがわかる。A図とB図を比較すると
、高透磁率材円筒の占める空間は同じにも関わらず、長
さの短い円筒を径方向と長手方向に重層・積層配設した
B図の方が非常によい遮蔽効果を示している。 【0044】A図は前述の実施例3の結果と同様に、超
電導体円筒内部の磁場勾配のある場合において、高透磁
率材が有限な透磁率をもつため磁気的に飽和してしまい
、結果として長さを長くしても遮蔽効果はそれ以上よく
ならないだろうと予測される。しかし、B図の場合は、
短い高透磁率材円筒を間隔を開けて積層しているために
各高透磁率材円筒間は磁気的に絶縁されており、更に長
手方向に積層すれば、よりよい遮蔽効果を得ることが可
能である。また、C図は外径の異なる円筒を交互に長手
方向に積層した例である。この場合も間隔を開けて積層
したことで、A図よりよい遮蔽効果を得ている。この例
では外径80mm×2個、60mm×3個の高透磁率材
円筒を使用しているが、実施例1の結果から外径80m
m×3個、60mm×2個の高透磁率材円筒を使用した
方が遮蔽効果がよくなることは容易に推測される。 【0045】前述の実施例1の結果と同様に、図15の
各モデルに対して、図15の両端開放超電導体円筒の半
分の長さを持つ片端開放の超電導体円筒を使用し、開放
端から同じ位置に高透磁率材円筒を配設しても、図15
の場合と全く同じ効果が得られる。 【0046】以上の結果から、超電導体円筒内部の磁場
勾配中において、超電導体円筒の内径の1/5以上の外
径を有する複数の高透磁率材円筒を長手方向と径方向に
間隔を開けて多重及び多層に配設することで、安価に効
率よく侵入磁界を減衰させ、その結果高い磁場遮蔽空間
が増し、外部磁場より極めて低い磁場を効率よく実現で
きる。 【0047】 【発明の効果】以上説明したように、本発明によれば、
臨界温度以下の冷却時に、常電導状態から超電導状態へ
転移してマイスナー効果を発現する超電導材料からなる
筒状のシールド体の磁気シールド構造において、前記筒
状のシールド体内部に該筒状のシールド体の長手方向に
沿った開口を有する筒状高透磁率部材を筒内壁と間隔を
開けて配設したため、マイスナー効果を発現する材料か
らなる筒状シールド体の長手軸上の中心方向に減衰分布
を示す侵入磁界に対して、筒状高透磁率部材に磁気誘導
が生じ、その結果、侵入磁界が磁気的に短絡し、筒状の
シールド体内部に侵入する磁界をさらに減少させるもの
である。具体的には、筒状高透磁率部材を、超電導筒中
心部から端部方向に亙って配設したもの、端部近傍に配
設したもの、複数の筒状高透磁率部材を端部近傍に長手
方向に積層したもの、複数の筒状高透磁率部材を径方向
に積層したもの等がある。特に、複数の筒状高透磁率部
材を径方向及び/又は長手方向に間隔を開けて多重及び
/又は多層に配設したものでは、筒状高透磁率部材を単
独で用いる場合よりも筒状のシールド体内部に侵入する
磁界をさらに減少させるものである。以上述べた形状・
配設を取ることにより、各種円筒単独では得られない遮
蔽効果が得られ、また使用可能な低磁場空間が増加し、
目的とする磁場遮蔽空間、或いは低磁場空間を得るため
に要する筒状シールド体の長さが短くて済むのでコスト
を軽減できる。
Description: [0001] The present invention relates to a magnetic shield structure using a superconductor. [0002] A magnetic shield structure using a superconductor is a magnetic shield structure that utilizes the Meissner effect. For example, a material having the Meissner effect is formed into a cylindrical shape as a shield body, and this is used to By cooling the shield body to a temperature below TC to transform it into a superconducting state and making the shield body diamagnetic, the magnetic flux is pushed out to the outside of the shield and the internal space of the shield is magnetically shielded. On the other hand, in a commonly used shield structure using a high magnetic permeability material that does not use a superconductor, for example, when a cylindrical shield body is constructed of a high magnetic permeability material, this shield body is exposed to a magnetic field. When held, magnetic induction occurs along the shield body, resulting in a change in the direction of the magnetic field, thereby magnetically shielding the internal space. [0004] In a magnetic shield structure using such a superconductor, for example, the magnetic shielding efficiency of a cylindrical shield body with respect to a magnetic field parallel to the central axis of the cylinder (vertical magnetic field) is Although the shielding efficiency is good, the shielding efficiency against a magnetic field perpendicular to the central axis (transverse magnetic field) is not good, so there is a problem that the length must be longer than the inner diameter of the cylinder. On the other hand, with a cylindrical shield body made of a high magnetic permeability material, for example, the shielding efficiency of a vertical magnetic field is not better than that of a horizontal magnetic field, and due to its finite magnetic permeability, the shielding efficiency is not high with one layer. In order to obtain shielding efficiency, the cylinders had to be stacked in several layers, with the outer layer being longer than the inner layer. As a result, even with high magnetic permeability materials, the outer cylinder has a longer length, and the larger the usable volume, the longer the cylinder in both the radial and axial directions, resulting in an increase in cost. [0006] The object of the present invention has been made in view of the above various points, and is to improve magnetic shielding performance by combining magnetic shielding materials with different properties, increase usable high magnetic field shielding space, and Therefore, it is an object of the present invention to provide a magnetic shield structure that can efficiently realize a magnetic field much lower than an external magnetic field. [0007] Means for Solving the Problems In the magnetic shielding structure according to the invention as set forth in claim 1, a superconductor that transitions from a normal conductive state to a superconducting state and exhibits the Meissner effect when cooled below a critical temperature. In the magnetic shield structure of a cylindrical shield body made of a material, a cylindrical high magnetic permeability member having an opening along the longitudinal direction of the cylindrical shield body is spaced from the inner wall of the cylinder inside the cylindrical shield body. It was arranged as follows. In the magnetic shield structure according to the second aspect of the present invention, in the magnetic shield structure according to the first aspect, the plurality of cylindrical high magnetic permeability members are spaced apart in the radial direction and/or the longitudinal direction. They are opened and arranged in multiple and/or multiple layers. [Operation] A cylindrical shield made of a material exhibiting the Meissner effect causes a shielding current to flow in accordance with Lenz's law against a magnetic field from the outside, thereby forming a demagnetizing field. This demagnetizing field attenuates the magnetic field that enters the cylinder from the outside. For example, the theoretical formula for the internal magnetic field Hi of a superconducting cylinder can be expressed as follows with respect to the external magnetic field Ho in each direction. Transverse magnetic field; Hi=Ho・exp(-1.84(Z/r
)) …(1) Vertical magnetic field; Hi=Ho・ex
p(-3.83(Z/r))...(2) (However, Z is the distance from the open end, and r is the radius of the cylinder.) As is clear from these equations, the magnetic shielding of the superconductor cylinder The efficiency is high for magnetic fields parallel to the central axis of the cylinder (longitudinal magnetic field), but low for magnetic fields perpendicular to the central axis (transverse magnetic field). Therefore, if the transverse magnetic field is effectively attenuated, a very good magnetic field shielding space can be obtained. FIG. 17 shows a schematic diagram of magnetic vectors penetrating inside the superconducting cylinder when a transverse magnetic field is applied to the superconducting cylinder. As shown in the figure, on the cylindrical axis, only the horizontal magnetic field,
It can be seen that in the radial direction, the vertical component increases closer to the end. The internal penetrating magnetic field distributed in this way is magnetically short-circuited by changing the vertical component to the horizontal component by utilizing the property of magnetic induction of the high magnetic permeability member, thereby reducing the amount of penetrating into the interior. However, since the high magnetic permeability member has a residual magnetic field, it is necessary to arrange it at a position where the residual magnetic field does not affect it. In the present invention, in a magnetic shield structure of a cylindrical shield body made of a superconducting material that transitions from a normal conductive state to a superconducting state and exhibits the Meissner effect when cooled below a critical temperature, the cylindrical shield body Since a cylindrical high permeability member having an opening along the longitudinal direction of the cylindrical shield body is arranged at a distance from the inner wall of the cylinder, the longitudinal axis of the cylindrical shield body made of a material that exhibits the Meissner effect is Magnetic induction occurs in the cylindrical high-permeability member in response to an intruding magnetic field that exhibits an attenuation distribution toward the center of the top, and as a result, the intruding magnetic field is magnetically short-circuited, causing the magnetic field to intrude into the inside of the cylindrical shield. This will further reduce the amount. Specifically, the cylindrical high magnetic permeability member is arranged from the center of the superconducting cylinder toward the end, the cylindrical high permeability member is arranged near the end, and the cylindrical high permeability member is arranged in the vicinity of the end. There are two types: one in which a plurality of cylindrical high permeability members are laminated in the longitudinal direction near the end, and one in which a plurality of cylindrical high permeability members are laminated in the radial direction. In particular, when a plurality of cylindrical high magnetic permeability members are arranged in multiple layers and/or in multiple layers with intervals in the radial and/or longitudinal direction, the cylindrical high permeability member This further reduces the magnetic field penetrating into the inside of the shield body. The shape of the cylindrical high magnetic permeability member is such that it can be inserted into a cylindrical shield made of superconducting material, magnetic induction is generated in the cylindrical high permeability member, and the intruding magnetic field is magnetically short-circuited. Any shape can be used as long as it has any shape. Specifically, it is a cylinder that is open at both ends or at one end and has a length larger than the wall thickness of the constituent members, and the cross-sectional shape of the cylinder may be a circle, an ellipse, a polygon, or the like. Also,
Tapered types with an inner diameter that decreases along the longitudinal direction, types with unevenness on the inside and outside and different cross-sectional shapes on the inside and outside, types with internal openings that are wider than the openings at the ends, and types with bellows-shaped cylinders. It also includes L-shaped, T-shaped, H-shaped, +-shaped, U-shaped, and combinations thereof. [0015] Furthermore, the ratio of the outer diameter of the cylindrical high magnetic permeability member to the inner diameter of the cylindrical shield made of superconducting material is, as shown in the examples described later, when used alone. If a cylindrical high magnetic permeability member having an outer diameter of 1/5 or more of the inner diameter of the cylindrical shield body is placed inside the superconducting cylinder, a better shielding effect than the superconducting cylinder alone can be obtained. Now, in general, the shielding effect (Hi/Hs
c) is expressed as Hi/Hsc=2r/μ·t (3). Here, μ is magnetic permeability, t is wall thickness, and r is cylinder radius. Although it can be inferred from equation (3) that other shapes are used, it can be seen that, in general, the larger the magnetic permeability, the greater the shielding effect. Furthermore, it can be inferred from equation (3) that generally the larger the wall thickness, the greater the shielding effect. [Example] (Example 1: Effect of outer diameter) Figure 1 is a cross-sectional view of a cylinder made of a high magnetic permeability material for changing the size of the outer diameter D. One high permeability material cylinder was placed at a position 80 mm from the center of each superconductor cylinder (BiSrCaCuO) (hereinafter referred to as superconductor cylinder). The former size has an inner diameter of 100
mm, length 240mm, and wall thickness 5mm. The latter has a length of 10 mm, a wall thickness of 0.2 mm, a magnetic permeability of 10000, and an outer diameter Dmm. A uniform transverse magnetic field 1 [G
] was applied to measure the magnetic field distribution on the cylinder axis. Figure 2 shows the internal magnetic field distribution Hi(z) on the superconductor cylinder axis when the outer diameter Dmm of the high permeability material cylinder is changed (hereinafter, in all examples, z is the distance from the open end of the superconductor cylinder). FIG. In Figure 2, SC is the internal magnetic field distribution Hsc(z) in the case of a single superconducting cylinder without using a high permeability material cylinder.
, □ means outer diameter = 20mm, ● means outer diameter = 30mm, × means outer diameter = 40mm, ○ means outer diameter = 60mm, + means outer diameter = 80mm
are shown respectively. From FIG. 2, the penetrating magnetic field at the center of the superconducting cylinder is smaller when the high permeability material cylinder is inserted than when the superconducting cylinder is used alone. This is because the high permeability material cylinder changes the vertical component of the penetrating magnetic field into a horizontal component by magnetic induction, causing a magnetic short circuit. FIG. 3 is a diagram showing the relationship between the outer diameter D of the cylinder made of high magnetic permeability material and the shielding effect. That is, the shielding effect is defined as the magnetic field distribution Hi(z) shown in Fig. 2 normalized by the magnetic field Hsc(120) at the superconducting cylinder center position z=120, and is expressed as a function of the outer diameter of the high permeability material cylinder. This is a line diagram. Note that standardization was performed as follows according to the above-mentioned equation (3). Shielding effect = Hi(120)/Hsc(120) 00
21] As shown in FIG. 3, it can be seen that the shielding effect becomes better as the outer diameter of the high permeability cylinder approaches the inner diameter of the superconductor. This is achieved by increasing the outer diameter of the high permeability material cylinder to change the longitudinal component of the intruding magnetic field, which increases in the system direction inside the superconductor cylinder, into a lateral component, magnetically shorting it. This is because I let him do it. On the other hand, if the outer diameter is 20
In the case of mm, the shielding effect is 1, indicating that the high permeability material cylinder has no effect at all. In the radial direction within this range, the longitudinal component of the penetrating magnetic field is small, so that almost no magnetic short circuit effect can be obtained. From the above results, 1 of the inner diameter of the superconducting cylinder
When a high permeability material cylinder having an outer diameter of /5 or more is placed inside the superconductor cylinder, a better shielding effect can be obtained than with the superconductor cylinder alone. It has also been found that the closer the outer diameter of the high permeability cylinder is to the inner diameter of the superconductor cylinder, the better the shielding effect can be obtained. FIG. 4 is a sectional view of a superconducting cylinder with one end open and a cylinder made of a high magnetic permeability material. That is, one cylinder of high magnetic permeability material was placed at a position 80 mm from the bottom of the superconducting cylinder with one end open. The former has an inner diameter of 100 mm, a length of 120 mm, and a wall thickness of 5 mm. The latter is 10m long
m, wall thickness 0.2 mm, magnetic permeability 10000, outer diameter D
Changing mm. A uniform transverse magnetic field of 1 [G] was applied to the superconducting cylinder, and the magnetic field was measured at a position 30 mm from the bottom surface on the cylinder axis. According to equation (3) above, z
When expressed in terms of the shielding effect at =90, results almost consistent with those in FIG. 3 were obtained. The high permeability material cylinder exerts exactly the same shielding effect in the case of a superconductor cylinder with one end open as in the case of a superconductor cylinder with both ends open. FIG. 5 is a cross-sectional view of a superconducting cylinder with both ends open and a tapered cylinder of high magnetic permeability material arranged therein. That is, one high magnetic permeability material cylinder was placed at a position 80 mm from the center of each superconducting cylinder with both ends open. The former has an inner diameter of 100 mm, a length of 240 mm, and a wall thickness of 5 mm. The latter has a maximum outer diameter of 80 mm, a minimum outer diameter of 60 mm, a height of 10 mm, a wall thickness of 0.2 mm, and a magnetic permeability of 10,000. A uniform transverse magnetic field of 1 [G] was applied to the superconducting cylinder, and the magnetic field at the center position on the cylinder axis was measured. Similarly, according to equation (3), the shielding effect at z=120 is:
0.45 was obtained. From the above, it has been found that a good shielding effect can be obtained not only with a cylinder made of high magnetic permeability material whose opening is unchanged at both ends, but also with a cylinder made of high magnetic permeability material with a tapered shape in which the diameter of the opening is reduced. (Example 2: Effect of length 1, near the center)
FIG. 6 is a sectional view in which a high permeability material cylinder whose length 2P is changed is arranged. That is, a high magnetic permeability material cylinder was placed in a bismuth-based oxide superconductor cylinder (BiSrCaCuO) with both ends open. The former size has an inner diameter of 100 mm and a length of 15 mm.
0 mm, and the wall thickness is 5 mm. The latter has an inner diameter of 75 mm, a wall thickness of 2 mm, a magnetic permeability of 10,000, and a length of 2 P mm. As shown in FIG. 6, an experiment was conducted by arranging high magnetic permeability material cylinders with both ends open inside the superconducting cylinder so that the axes of each cylinder coincided with each other, and varying the length 2P. A uniform transverse magnetic field of 1 [G] was applied perpendicularly to each combined cylinder. FIG. 7 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when the length 2P of the high magnetic permeability cylinder is changed. SC75 in Fig. 7 represents the internal magnetic field distribution of a single superconducting cylinder (P = 75 mm), and SC+FM25 represents the superconducting cylinder, high magnetic permeability material cylinder, and high magnetic permeability material cylinder (P = 25 mm).
This shows the internal magnetic field distribution when combined. It is clearly seen from this figure that the combination of the superconductor cylinder and the high permeability material cylinder shows a lower magnetic field distribution than the case of the superconductor cylinder alone. In particular, as the length of the cylinder made of high magnetic permeability material increases, the magnetic field at the center position becomes lower. At the same time, for example, when looking at the shielded space of 0.1 [G], the shielded space becomes wider as the length of the cylinder made of high magnetic permeability material becomes longer. Looking at the case of a combination of high magnetic permeability material cylinders (P = 65 mm), the shielded space of 0.1 [G] extends to about 50 mm from the center of the cylinder. In order to obtain this with a single superconducting cylinder, a length of 225 mm or more is required when the inner diameter is 100 mm. FIG. 8 is a diagram showing the internal magnetic field when the length of the cylinder made of high magnetic permeability material is varied. In the figure, the internal magnetic field is the magnetic field at the center of the cylinder, ■ indicates the result when the superconducting cylinder and the high permeability cylinder are combined, and □ indicates the result when the high permeability cylinder is used alone. show. From FIG. 8, it can be seen that in the case of a single cylinder made of high magnetic permeability material, when the length P is longer than 60 mm, the magnetic field at the center position becomes constant. [0029] The longer the length, the more the equation (1)
Unlike superconducting cylinders, which improve shielding efficiency according to
It is obvious that a shielding efficiency higher than that obtained by equation (3) assuming an infinitely long cylinder of high magnetic permeability cannot be obtained with a single cylinder of high magnetic permeability of finite length. Similarly, even when a superconductor cylinder and a cylinder made of high magnetic permeability material are combined, the magnetic field at the center position becomes constant when the length P of the cylinder made of high magnetic permeability material exceeds 60 mm. Therefore, the shielding efficiency in the combination depends on the shielding effect of the cylinder of high magnetic permeability material. From the above results, it was found that when a high magnetic permeability material cylinder is disposed inside a superconducting cylinder, the lower magnetic field space becomes wider as the length of the high magnetic permeability material cylinder becomes longer. (Embodiment 3: Length Effect 2, Near End) FIG. 9 is a cross-sectional view of a cylinder of high magnetic permeability material whose length L is changed. That is, one cylinder of high magnetic permeability material was placed at a position 80 mm from the center of each bismuth-based oxide superconductor cylinder (BiSrCaCuO) (hereinafter referred to as superconductor cylinder) with both ends open. The former size has an inner diameter of 100mm
, length 240mm, wall thickness 5mm. The latter has an outer diameter of 7
0mm, wall thickness 0.2mm, magnetic permeability 10000, and length Lmm is changed. A uniform transverse magnetic field 1 [G
] was applied to measure the magnetic field at the center of the superconductor cylinder. FIG. 10 is a diagram showing the relationship between the length L of the cylinder made of high magnetic permeability material and the shielding effect. That is, the shielding effect shown in equation (3) above is expressed at the position of z=120, and is made a function of the length L of the cylinder of high magnetic permeability material. From this figure, it can be seen that the longer the length L of the cylinder made of high magnetic permeability material, the better the shielding effect becomes. It was also found that when the length exceeds 30 mm, the shielding effect becomes almost constant, and even if the length is longer than that, a better shielding effect cannot be obtained. This is achieved by placing a cylinder of high magnetic permeability material in the magnetic field gradient inside the superconducting cylinder.
Since the high magnetic permeability material has a finite magnetic permeability, it is thought that if it is made longer than a certain length, it will become magnetically saturated, and as a result, magnetic induction will be less likely to occur, and the shielding effect will be constant. (Example 4: Lamination Effect 1, Lamination in Longitudinal Direction) FIG. 11 is a cross-sectional view in which two cylinders made of high magnetic permeability material are laminated in the longitudinal direction of a superconducting cylinder. That is, a cylinder made of bismuth-based oxide superconductor (BiSrCaCuO) with both ends open (
80mm and 6mm from the center of the superconductor cylinder
It is a sectional view in which high magnetic permeability material cylinders are arranged at positions of 0 mm. The size of the superconductor cylinder is 100 mm in inner diameter.
It has a length of 240mm and a wall thickness of 5mm. The high magnetic permeability material cylinder is 70mm long, 0.2mm thick, and has a magnetic permeability of 10,000.
It is. A uniform transverse magnetic field 1 [G
] was applied to measure the magnetic field distribution on the cylinder axis. Figure 12 is 2
FIG. 3 is a diagram showing the internal magnetic field distribution Hi(z) on the superconductor cylinder axis when two high permeability material cylinders are stacked in the longitudinal direction. For comparison, L = 10 mm and 30 mm in Example 1.
The internal magnetic field distribution of is also shown. In Figure 12, SC is the internal magnetic field distribution Hsc (z) in the case of a single superconducting cylinder without using a high permeability material cylinder, □ is L = 10 mm, ● is L = 30 m
m and x each indicate L=10 mm×2 (see FIG. 11). From FIG. 12, L=3 which is longer than L=10 mm
The shielding effect was better when the thickness was 0 mm, and the best shielding effect was obtained when 2 layers of L=10 mm were stacked at the same positions as L=30 mm with an interval. This result shows that the shielding effect is better when the high magnetic permeability material cylinder is divided at intervals rather than by increasing its length. Furthermore, the above-mentioned Example 3
The results showed that the shielding effect did not improve beyond a certain level even if the length was increased, but when short high-permeability cylinders were stacked at intervals in the cross-sectional direction, each high-permeability cylinder became magnetically It was found that saturation did not occur because the layers were not connected to each other, and that the more layers were stacked, the better the shielding effect would be. [0036] Therefore, if a plurality of cylinders of high magnetic permeability members are laminated inside the superconducting cylinder at intervals in the longitudinal direction with a space between them and the inner wall of the cylinder, the desired magnetic field can be obtained efficiently and at low cost. . (Example 5: Lamination effect 2, radial overlapping) FIG. 13 is a cross-sectional view in which two cylinders made of high magnetic permeability material are arranged overlappingly in the radial direction of a superconducting cylinder. That is, a stack of two high-permeability material cylinders with different outer diameters was placed at a position 80 mm from the center of a bismuth-based oxide superconductor cylinder (BiSrCaCuO) (hereinafter referred to as the superconductor cylinder) with both ends open. did. The size of the superconductor cylinder is inner diameter 100
mm, length 240mm, and wall thickness 5mm. The high magnetic permeability material cylinder has a length of 10 mm, a wall thickness of 0.2 mm, and a magnetic permeability of 1.
0000, and the outer diameters are 80 mm and 60 mm, respectively. A uniform transverse magnetic field 1 [G
] was applied to measure the magnetic field distribution on the cylinder axis. Figure 14 is 2
FIG. 2 is a diagram showing the internal magnetic field distribution Hi(z) on the superconductor cylinder axis when two high permeability material cylinders are arranged in layers in the radial direction. For comparison, the outer diameter D of Example 1 is shown as 80 mm. In FIG. 14, SC is the internal magnetic field distribution Hsc in the case of a single superconducting cylinder without using a high permeability material cylinder.
(z), □ is D=80mm, ● is D=80mm+60m
m (see FIG. 13). From FIG. 14, D=
A better shielding effect was obtained with D = 80 mm + 60 mm, in which two cylinders made of high magnetic permeability material were layered in the radial direction, than with 80 mm. This is the same as the conventional magnetic shield made of a cylinder made of high magnetic permeability material, and shows that even in a uniform magnetic field or a gradient magnetic field, the shielding effect can be improved by stacking layers in the radial direction. However, from the results of Example 1, the high magnetic permeability member cylinder must have a maximum outer diameter that is 1/5 or more of the inner diameter of the superconductor cylinder. From the above results, the desired magnetic field can be obtained efficiently and inexpensively even if cylinders made of high magnetic permeability material are stacked at intervals in the radial direction as in Example 4. (Example 6: Lamination Effect 3, Lamination in Longitudinal and Radial Directions) FIG. 15 is a cross-sectional view of a plurality of high permeability material cylinders arranged in multiple layers in the radial and longitudinal directions. Figure A is a cross-sectional view of two long cylinders of high magnetic permeability material layered in the radial direction, and Figure B is a cross-sectional view of two long cylinders of high magnetic permeability material layered in the radial direction.
Figure C is a sectional view in which small-diameter high-magnetic-permeability cylinders and large-diameter high-permeability cylinders are alternately laminated. That is, a bismuth-based oxide long conductor cylinder (BiSrCSCuo) with both ends open (hereinafter referred to as
High magnetic permeability material cylinders having shapes as shown in Figures A to C were laminated inside the superconductor cylinder (referred to as a superconductor cylinder). The superconductor cylinder has an inner diameter of 100 mm, a length of 240 mm, and a wall thickness of 5 m. The magnetic permeability of the cylinders made of high magnetic permeability material is 10,000. Specifically, a uniform transverse magnetic field of 1 [G] was applied to the superconducting cylinder and the magnetic field distribution on the cylinder axis was measured. Figure A shows a structure in which cylinders of high magnetic permeability material having a length of 50 mm are laminated in the radial direction. In Figure B, high magnetic permeability cylinders each having a length of 10 mm are stacked at intervals in the radial and longitudinal directions, and the space occupied by the high magnetic permeability cylinders is the same as in Figure A. In Figure C, cylinders made of high magnetic permeability materials with different outer diameters are alternately stacked in the longitudinal direction. FIG. 16 is a diagram showing the internal magnetic field distribution Hi(z) on the superconductor cylinder axis when each of the high permeability material cylinders A, B, and C in FIG. 15 is arranged. In FIG. 16, SC
is the internal magnetic field distribution Hsc(z) in the case of a single superconducting cylinder without using a high permeability material cylinder, □ is diagram A, ● is diagram B, ×
shows what is shown in Figure C. As is clear from the figure, in each case, the intruding magnetic field is magnetically short-circuited by the high permeability material cylinder, and the reaching magnetic field is smaller than in the case of the superconducting cylindrical carrier. Comparing Diagram A and Diagram B, even though the space occupied by the high permeability cylinder is the same, Diagram B is much better in that it has shorter cylinders layered and laminated in the radial and longitudinal directions. This shows the shielding effect. Similar to the results of Example 3, Figure A shows that when there is a magnetic field gradient inside the superconducting cylinder, the high magnetic permeability material has a finite magnetic permeability and becomes magnetically saturated. It is predicted that even if the length is increased, the shielding effect will not improve any further. However, in the case of diagram B,
Because short high-permeability cylinders are stacked at intervals, each high-permeability cylinder is magnetically insulated, and if further stacked in the longitudinal direction, a better shielding effect can be obtained. It is. Further, Figure C is an example in which cylinders having different outer diameters are alternately stacked in the longitudinal direction. In this case as well, by stacking the layers at intervals, a better shielding effect than in Figure A is obtained. In this example, high permeability material cylinders with an outer diameter of 80 mm x 2 and 60 mm x 3 are used, but from the results of Example 1, the outer diameter is 80 mm.
It is easily inferred that the shielding effect will be better if 3 x 60 mm cylinders and 2 x 60 mm cylinders made of high magnetic permeability material are used. Similar to the results of Example 1 described above, for each model in FIG. 15, a superconducting cylinder with one end open having half the length of the superconducting cylinder with both ends open in FIG. Even if a cylinder of high magnetic permeability material is placed at the same position as shown in Fig. 15,
Exactly the same effect can be obtained as in the case of . From the above results, in the magnetic field gradient inside the superconducting cylinder, a plurality of high permeability material cylinders having an outer diameter of 1/5 or more of the inner diameter of the superconducting cylinder are spaced apart in the longitudinal and radial directions. By arranging them in multiple layers and in multiple layers, the intruding magnetic field can be attenuated inexpensively and efficiently. As a result, the space for shielding a high magnetic field increases, and a magnetic field that is extremely lower than the external magnetic field can be efficiently realized. [0047] As explained above, according to the present invention,
In a magnetic shield structure of a cylindrical shield body made of a superconducting material that transitions from a normal conductive state to a superconducting state and exhibits the Meissner effect when cooled below a critical temperature, the cylindrical shield is disposed inside the cylindrical shield body. Since the cylindrical high permeability member with an opening along the longitudinal direction of the body is spaced apart from the inner wall of the cylinder, the attenuation distribution is distributed toward the center on the longitudinal axis of the cylindrical shield made of a material that exhibits the Meissner effect. Magnetic induction occurs in the cylindrical high permeability member in response to an intruding magnetic field exhibiting . As a result, the intruding magnetic field is magnetically short-circuited, further reducing the magnetic field penetrating into the inside of the cylindrical shield. Specifically, cylindrical high magnetic permeability members are arranged from the center of the superconducting cylinder toward the ends, cylindrical high permeability members are arranged near the ends, and multiple cylindrical high permeability members are arranged at the ends. There are those in which a plurality of cylindrical high permeability members are laminated in the longitudinal direction, and those in which a plurality of cylindrical high permeability members are laminated in the radial direction. In particular, when a plurality of cylindrical high magnetic permeability members are arranged in multiple layers and/or in multiple layers with intervals in the radial direction and/or longitudinal direction, the cylindrical high permeability member This further reduces the magnetic field penetrating into the inside of the shield body. The shape mentioned above
By adopting this arrangement, a shielding effect that cannot be obtained with various cylinders alone can be obtained, and the usable low-magnetic field space is increased.
Since the length of the cylindrical shield required to obtain the desired magnetic field shielded space or low magnetic field space is short, costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】外径Dの大きさを変更する高透磁率材円筒を配
設した断面図である。
FIG. 1 is a sectional view in which a cylinder made of high magnetic permeability material is arranged to change the size of the outer diameter D.

【図2】高透磁率材円筒の外径Dを変えた時の超電導体
円筒軸上の内部磁界分布を示す線図である。
FIG. 2 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when the outer diameter D of the high permeability cylinder is changed.

【図3】高透磁率材円筒の外径Dと遮蔽効果との関係を
表した線図である。
FIG. 3 is a diagram showing the relationship between the outer diameter D of a cylinder made of high magnetic permeability material and the shielding effect.

【図4】片端開放の超電導体円筒に高透磁率材円筒を配
設した断面図である。
FIG. 4 is a cross-sectional view of a superconducting cylinder with one end open and a cylinder of high magnetic permeability material arranged therein.

【図5】両端開放の超電導体円筒にテーパ形状の高透磁
率材円筒を配設した断面図である。
FIG. 5 is a cross-sectional view of a superconducting cylinder with both ends open and a tapered cylinder of high magnetic permeability material arranged therein.

【図6】長さ2Pを変更する高透磁率材円筒を配設した
断面図である。
FIG. 6 is a sectional view in which a high permeability material cylinder whose length 2P is changed is arranged.

【図7】高透磁率材円筒の長さ2Pを変えた時の超電導
体円筒軸上の内部磁界分布を示す線図である。
FIG. 7 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when the length 2P of the high permeability cylinder is changed.

【図8】高透磁率材円筒の長さ2Pと内部磁界との関係
を示す線図である。
FIG. 8 is a diagram showing the relationship between the length 2P of a cylinder made of high magnetic permeability material and the internal magnetic field.

【図9】長さLを変更する高透磁率材円筒を配設した断
面図である。
FIG. 9 is a cross-sectional view of a high permeability material cylinder whose length L is changed.

【図10】高透磁率材円筒の長さLと遮蔽効果との関係
を表した線図である。
FIG. 10 is a diagram showing the relationship between the length L of a cylinder made of high magnetic permeability material and the shielding effect.

【図11】2つの高透磁率材円筒を超電導体円筒の長手
方向に積層配設した断面図である。
FIG. 11 is a cross-sectional view of two high permeability material cylinders stacked in the longitudinal direction of a superconducting cylinder.

【図12】2つの高透磁率材円筒を長手方向に積層配設
した際の超電導体円筒軸上の内部磁界分布を示す線図で
ある。
FIG. 12 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when two cylinders made of high magnetic permeability material are stacked in the longitudinal direction.

【図13】2つの高透磁率材円筒を超電導体円筒の径方
向に重層配設した断面図である。
FIG. 13 is a cross-sectional view in which two cylinders made of high magnetic permeability material are layered in the radial direction of a superconducting cylinder.

【図14】2つの高透磁率材円筒を径方向に重層配設し
た際の超電導体円筒軸上の内部磁界分布を示す線図であ
る。
FIG. 14 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when two high permeability material cylinders are arranged in layers in the radial direction.

【図15】複数の高透磁率材円筒を径方向及び長手方向
に多重及び多層に配設した断面図であり、A図は2つの
長い高透磁率材円筒を径方向に重層配設した断面図、B
図は2つ高透磁率材円筒を径方向に重層配設したものを
3組長手方向に積層配設した断面図、C図は径の小さい
高透磁率材円筒と径の大きな高透磁率材円筒とを交互に
積層配設した断面図である。
FIG. 15 is a sectional view of a plurality of high magnetic permeability material cylinders arranged in multiple layers in the radial and longitudinal directions, and Figure A is a cross section of two long high magnetic permeability material cylinders arranged in layers in the radial direction Figure, B
The figure is a cross-sectional view of three sets of two high magnetic permeability material cylinders stacked in the radial direction, and three sets of high magnetic permeability material cylinders with a small diameter and a high magnetic permeability material with a large diameter. FIG. 3 is a cross-sectional view of the cylinders arranged in a stacked manner alternately.

【図16】図15のA,B,C各々の高透磁率材円筒を
配設した際の超電導体円筒軸上の内部磁界分布を示す線
図である。
16 is a diagram showing the internal magnetic field distribution on the superconductor cylinder axis when each of the high magnetic permeability material cylinders A, B, and C in FIG. 15 is arranged; FIG.

【図17】超電導体円筒に横磁場を印加したときの超電
導体円筒内部の侵入磁気ベクトルの模式図を示す。
FIG. 17 shows a schematic diagram of magnetic vectors penetrating inside the superconducting cylinder when a transverse magnetic field is applied to the superconducting cylinder.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  臨界温度以下の冷却時に、常電導状態
から超電導状態へ転移してマイスナー効果を発現する超
電導材料からなる筒状のシールド体の磁気シールド構造
において、前記筒状のシールド体内部に該筒状のシール
ド体の長手方向に沿った開口を有する筒状高透磁率部材
を筒内壁と間隔を開けて配設したことを特徴とする磁気
シールド構造。
Claim 1. In a magnetic shielding structure of a cylindrical shield body made of a superconducting material that transitions from a normal conductive state to a superconducting state and exhibits the Meissner effect when cooled below a critical temperature, a magnetic shield is provided inside the cylindrical shield body. A magnetic shielding structure characterized in that a cylindrical high magnetic permeability member having an opening along the longitudinal direction of the cylindrical shield body is disposed at a distance from an inner wall of the cylinder.
【請求項2】  前記請求項1に記載の磁気シールド構
造において、複数の前記筒状高透磁率部材を径方向及び
/又は長手方向に間隔を開けて多重及び/又は多層に配
設したことを特徴とする磁気シールド構造。
2. The magnetic shield structure according to claim 1, wherein the plurality of cylindrical high magnetic permeability members are arranged in multiple layers and/or in multiple layers with intervals in the radial direction and/or longitudinal direction. Features a magnetic shield structure.
JP3080464A 1990-09-28 1991-03-20 Magnetic shield structure Expired - Lifetime JP2825363B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP3080464A JP2825363B2 (en) 1990-09-28 1991-03-20 Magnetic shield structure
DE69124221T DE69124221D1 (en) 1990-09-28 1991-09-26 MAGNETIC SHIELDING STRUCTURE
PCT/JP1991/001279 WO1992006576A1 (en) 1990-09-28 1991-09-26 Magnetically shielding structure
EP91916939A EP0503085B1 (en) 1990-09-28 1991-09-26 Magnetically shielding structure
CA002069637A CA2069637A1 (en) 1990-09-28 1991-09-26 Magnetically shielding structure
US08/308,474 US6486393B1 (en) 1990-09-28 1994-09-19 Magnetically shielding structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25718990 1990-09-28
JP2-257189 1990-09-28
JP3080464A JP2825363B2 (en) 1990-09-28 1991-03-20 Magnetic shield structure

Publications (2)

Publication Number Publication Date
JPH04218998A true JPH04218998A (en) 1992-08-10
JP2825363B2 JP2825363B2 (en) 1998-11-18

Family

ID=26421471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080464A Expired - Lifetime JP2825363B2 (en) 1990-09-28 1991-03-20 Magnetic shield structure

Country Status (1)

Country Link
JP (1) JP2825363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077698A (en) * 2011-09-30 2013-04-25 Seiko Epson Corp Magnetic shield

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239875A (en) * 1987-03-27 1988-10-05 Hitachi Ltd Superconducting shield

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239875A (en) * 1987-03-27 1988-10-05 Hitachi Ltd Superconducting shield

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077698A (en) * 2011-09-30 2013-04-25 Seiko Epson Corp Magnetic shield

Also Published As

Publication number Publication date
JP2825363B2 (en) 1998-11-18

Similar Documents

Publication Publication Date Title
US6131396A (en) Heat radiation shield, and dewar employing same
US3416111A (en) Superconductive spool with refrigerant-holding spool carrier
CN101281240A (en) Magnetic resonance imaging apparatus, shield coil, manufacturing method of shield coil, and driving method of magnetic resonance imaging apparatus
KR101916440B1 (en) Electrical coil system for inductive-resistive current limiting
CN101341418A (en) Magnetic resonance scanner with a longitudinal magnetic field gradient system
KR20100058410A (en) Arrangement having a superconductive cable
JPH04218998A (en) Magnetic shilding structure
US5355275A (en) Current limiting device for electromagnetic coil employing gap containing superconductive shield
CN109065257A (en) A kind of double-deck electromagnetic shielding high-temperature superconductive cable
CN111863373B (en) Superconducting magnet with electromagnetic protection component
US4901047A (en) Magnetic field transfer device and method
US4884235A (en) Micromagnetic memory package
Carr Longitudinal and transverse field losses in multifilament superconductors
US3493904A (en) Device for producing an intense and uniform magnetic field within a volume of revolution such as a sphere or ellipsoid
JP2583234B2 (en) Magnetic shield device
Kapolka et al. Maximum reduction of energy losses in multicore MgB2 wires by metastructured soft-ferromagnetic coatings
JP2768815B2 (en) Magnetic shield structure
Carr Jr Sheath and substrate losses in high-Tc superconductors
JPS62169311A (en) Superconductive magnet device for nmar imaging
EP3059746A1 (en) Transformer with ferromagnetic foil windings
JPH04142496A (en) Magnetic shield structure
JPS63239875A (en) Superconducting shield
JPH0510335Y2 (en)
JPH04130605A (en) Current lead of superconducting electromagnet device
JPH03208309A (en) Superconducting magnet