JPH04218528A - In vivo degradable type high-molecular polymer - Google Patents

In vivo degradable type high-molecular polymer

Info

Publication number
JPH04218528A
JPH04218528A JP7932891A JP7932891A JPH04218528A JP H04218528 A JPH04218528 A JP H04218528A JP 7932891 A JP7932891 A JP 7932891A JP 7932891 A JP7932891 A JP 7932891A JP H04218528 A JPH04218528 A JP H04218528A
Authority
JP
Japan
Prior art keywords
molecular weight
release
medicine
aliphatic polyester
vivo degradable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7932891A
Other languages
Japanese (ja)
Other versions
JP3200706B2 (en
Inventor
Minoru Yamada
稔 山田
Toshiro Butani
部谷 敏郎
Tairyo Ogawa
泰亮 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takeda Pharmaceutical Co Ltd
Original Assignee
Takeda Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takeda Chemical Industries Ltd filed Critical Takeda Chemical Industries Ltd
Priority to JP07932891A priority Critical patent/JP3200706B2/en
Publication of JPH04218528A publication Critical patent/JPH04218528A/en
Application granted granted Critical
Publication of JP3200706B2 publication Critical patent/JP3200706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PURPOSE:To develop an in vivo degradable type high-molecular polymer capable of suppressing initial release of a medicine and approaching the release rate of the medicine to a prescribed value over the whole period. CONSTITUTION:An in vivo degradable aliphatic polyester is obtained by dissolving an in vivo degradable type aliphatic polyester containing a low-molecular substance in a readily water-soluble organic solvent, adding water to the resultant solution and removing the aforementioned low-molecular substance. The resultant in vivo degradable type aliphatic polyester has <3.0% content of the low-molecular substance having <=1000 molecular weight. Furthermore, a medicine-containing pharmaceutical is prepared by using the aforementioned polyester as a release controlling substance. A sustained release type pharmaceutical produced by using the in vivo degradable type aliphatic polyester of this invention has a high incorporation ratio of the medicine with suppressed initial release and is capable of stably releasing the medicine.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、製剤における基剤とし
て有用な生体内分解型高分子重合物、その製造法および
その用途に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable polymer useful as a base in pharmaceutical preparations, a method for producing the same, and uses thereof.

【0002】0002

【従来の技術】生体内分解型高分子重合物は、たとえば
マイクロカプセル等の製剤の基剤として用いることがで
きる。このような生体内分解型高分子重合物としては、
たとえば、特開昭61−28521号公報には、乳酸お
よび/またはグリコール酸を触媒の存在下または不存在
下で重縮合させることにより、これらの重合体もしくは
共重合体が得られることが記載されている。特公平1−
57098号公報には、このような生体内分解型高分子
重合物を用いた徐放型マイクロカプセルの製造法が開示
されている。また、特開昭62−54760号公報には
、生体内分解型高分子重合物溶液を水洗して水易溶性低
分子化合物を除去する事によりマイクロカプセルからの
薬物の初期放出を改善出来ることが記載されている。
BACKGROUND OF THE INVENTION Biodegradable polymers can be used as bases for preparations such as microcapsules. Such biodegradable polymers include:
For example, JP-A-61-28521 describes that polymers or copolymers of these can be obtained by polycondensing lactic acid and/or glycolic acid in the presence or absence of a catalyst. ing. Special fair 1-
Publication No. 57098 discloses a method for producing sustained release microcapsules using such a biodegradable polymer. Furthermore, JP-A No. 62-54760 discloses that the initial release of drugs from microcapsules can be improved by washing a biodegradable polymer solution with water to remove easily water-soluble low-molecular compounds. Are listed.

【0003】0003

【発明が解決しようとする課題】薬物を生体内分解型高
分子重合物に分散させたタイプの徐放性製剤においては
薬物の放出速度を任意にコントロール出来ることが望ま
しい。一般に、徐放性製剤において薬物の放出期間はそ
の基剤である生体内分解型高分子重合物の分子量によっ
て調節されている。ところが薬物の初期放出はその種類
や量によって程度の差はあっても大き過ぎる場合が多い
。上記特開昭62−54760号公報に開示された方法
により水易溶性低分子化合物を除去する事により初期放
出は改善されるが、その程度は薬物の放出速度を全期間
にわたって一定値に近づけることは出来ても、初期の放
出を抑えて後期の放出速度を大きくする様なコントロー
ルは不可能である。
Problems to be Solved by the Invention In sustained release preparations in which a drug is dispersed in a biodegradable polymer, it is desirable to be able to arbitrarily control the release rate of the drug. Generally, in sustained release preparations, the drug release period is controlled by the molecular weight of the biodegradable polymer that is the base thereof. However, the initial release of the drug is often too large, although the degree varies depending on the type and amount of drug. The initial release can be improved by removing easily water-soluble low-molecular compounds by the method disclosed in JP-A No. 62-54760, but the degree of improvement is limited to the extent that the drug release rate approaches a constant value over the entire period. Even if it is possible to control the rate of release in the later stages by suppressing the early stage release, it is not possible.

【0004】0004

【課題を解決するための手段】上記した問題点を解決す
るため鋭意研究の結果、生体内分解型高分子重合物の比
較的低分子量の部分が初期の放出に深く関与しているこ
とを見いだした。
[Means for solving the problem] As a result of intensive research to solve the above problems, it was discovered that the relatively low molecular weight portion of the biodegradable polymer is deeply involved in the initial release. Ta.

【0005】すなわち、重合反応により製造した高分子
重合物(特開昭61−28521号および特開昭62−
54760号公報参照)には原料モノマーに加え分子量
1,000以下のオリゴマーも多量含まれていることが
判明し、これら比較的低分子量の部分が高分子重合物を
壁物質とする製剤としたときに初期放出が過大となる原
因であることを明らかにした。
That is, high molecular polymers produced by polymerization reactions (JP-A-61-28521 and JP-A-62-
54760) was found to contain a large amount of oligomers with a molecular weight of 1,000 or less in addition to the raw material monomers, and when these relatively low molecular weight parts were used as a formulation with a high molecular weight polymer as a wall material. It was revealed that this is the cause of excessive initial release.

【0006】上記比較的低分子量の部分は、高分子重合
物に洗浄など通常の精製方法を適用することによって除
くことが出来なかったが、本発明者らは鋭意研究を行い
これを可能とする方法を見い出し本発明を完成した。
[0006] The above-mentioned relatively low molecular weight portion could not be removed by applying ordinary purification methods such as washing to the polymer, but the present inventors have conducted extensive research and have made it possible. They discovered a method and completed the present invention.

【0007】本発明は、低分子物質を含有する生体内分
解型脂肪族ポリエステルを水易溶性有機溶媒に溶解し、
これに水を加え高分子物質を析出させて、低分子物質を
除去することを特徴とする生体内分解型脂肪族ポリエス
テルの精製法、該方法で得られる分子量1,000以下
の低分子物質の含有量が3.0(%)未満である生体内
分解型脂肪族ポリエステル、および該生体内分解型ポリ
エステルを放出制御物質とする薬物含有製剤を提供する
ものである。
[0007] The present invention involves dissolving a biodegradable aliphatic polyester containing a low molecular weight substance in an easily water-soluble organic solvent,
A method for purifying a biodegradable aliphatic polyester characterized by adding water thereto to precipitate a polymer substance and removing a low-molecular substance; The present invention provides a biodegradable aliphatic polyester having a content of less than 3.0 (%), and a drug-containing preparation using the biodegradable polyester as a release-controlled substance.

【0008】本明細書における分子量とは、ポリスチレ
ンを基準物質としてゲルパーミエーションクロマトグラ
フィー(GPC)で測定したポリスチレン換算の分子量
を云う。
[0008] In this specification, the molecular weight refers to a polystyrene equivalent molecular weight measured by gel permeation chromatography (GPC) using polystyrene as a reference material.

【0009】本発明方法の生体内分解型脂肪族ポリエス
テルとしては、生体適合性の優れた物が好ましく、たと
えばポリグリコール酸、ポリ乳酸、ポリヒドロキシ酪酸
、ポリヒドロキシピバリン酸、ポリリンゴ酸などの重縮
合ポリエステル類、ポリグリコシッド、ポリラクチッド
、ポリ−β−プロピオラクトン、ポリ−γ−ブチロラク
トン、ポリ−ε−カプロラクトンなどの開環重合ポリエ
ステル類などである。とりわけヒドロキシ脂肪族カルボ
ン酸の重縮合ポリエステル類の精製に有利に適用できる
The biodegradable aliphatic polyester used in the method of the present invention is preferably one with excellent biocompatibility, such as polycondensation polyesters such as polyglycolic acid, polylactic acid, polyhydroxybutyric acid, polyhydroxypivalic acid, and polymalic acid. These include ring-opening polymerized polyesters such as polyesters, polyglycosides, polylactides, poly-β-propiolactone, poly-γ-butyrolactone, and poly-ε-caprolactone. In particular, it can be advantageously applied to the purification of polycondensed polyesters of hydroxy aliphatic carboxylic acids.

【0010】該ポリエステル類は、上記に例示したホモ
ポリマーに限定されるものではなく2種以上の成分から
なる共重合体も当然含まれる。共重合の形式は、ランダ
ム、ブロック、グラフトの何れでもよい。
[0010] The polyesters are not limited to the homopolymers exemplified above, but also include copolymers consisting of two or more components. The form of copolymerization may be random, block, or graft.

【0011】これらの高分子重合物(ポリエステル類)
においては、生体内での分解が比較的速やかなものが好
ましい。
[0011] These high molecular polymers (polyesters)
In this case, it is preferable to use one that decomposes relatively quickly in the living body.

【0012】本発明の生体内分解型脂肪族ポリエステル
類の好ましい例としては、ポリ乳酸、乳酸とグリコール
酸との共重合体が挙げられる。乳酸とグリコール酸との
共重合物としては、その組成比が、乳酸100〜50モ
ル%、残りがグリコール酸であるものが挙げられる。
Preferred examples of the biodegradable aliphatic polyesters of the present invention include polylactic acid and copolymers of lactic acid and glycolic acid. Examples of copolymers of lactic acid and glycolic acid include those having a composition ratio of 100 to 50 mol % of lactic acid and the remainder of glycolic acid.

【0013】さらに、乳酸とグリコール酸との共重合体
としてはGPCによる分子量のピーク値が3,000〜
50,000、とりわけ5,000〜30,000であ
るものが好ましい。
Furthermore, a copolymer of lactic acid and glycolic acid has a peak molecular weight value of 3,000 to 3,000 by GPC.
50,000, especially 5,000 to 30,000.

【0014】本発明で用いられる水易溶性有機溶媒とし
ては、例えば、アセトン、テトラヒドロフラン、ジオキ
サン、ジメチルホルムアミド、ジメチルスルホオキシド
などが挙げられ、とりわけアセトンが有利に用いられる
Examples of the easily water-soluble organic solvent used in the present invention include acetone, tetrahydrofuran, dioxane, dimethylformamide, and dimethyl sulfoxide, with acetone being particularly advantageous.

【0015】本発明で用いられる水の量と生体内分解型
高分子重合物溶液との量比は、特に制限はないが水の量
が多すぎると低分子重合物の除去が不十分になるし、少
なすぎると生体内分解型高分子重合物の回収率が悪くな
る。通常、水易溶性有機溶媒100に対して水を50〜
150(容量比)用いる生体内分解型高分子重合物溶液
を適当な方法で撹拌しながら水を除々に加えると目的と
する生体内分解型高分子重合物は、析出または、分離す
るので適当な方法で析出物または油層を分離し十分に水
洗してから乾燥する。
The ratio of the amount of water to the biodegradable polymer solution used in the present invention is not particularly limited, but if the amount of water is too large, the removal of low molecular weight polymers will be insufficient. However, if it is too small, the recovery rate of the biodegradable polymer will be poor. Usually, 50 to 100 parts of water is added to 100 parts of the easily water-soluble organic solvent.
150 (volume ratio) If water is gradually added to the biodegradable polymer solution to be used while stirring using an appropriate method, the desired biodegradable polymer will precipitate or separate, so add an appropriate amount of water to the biodegradable polymer solution. The precipitate or oil layer is separated using a method, thoroughly washed with water, and then dried.

【0016】一回の溶解、析出工程で低分子重合物の除
去が不十分な場合には溶解、析出工程を複数回繰り返せ
ばよい。
[0016] If the removal of low molecular weight polymers is insufficient in one dissolution and precipitation step, the dissolution and precipitation steps may be repeated several times.

【0017】本発明方法で得られた生体内分解型高分子
重合物は、たとえば、マイクロカプセルの基剤として用
いることが出来る。たとえば、黄体形成ホルモン放出ホ
ルモン、そのアナログ、甲状腺ホルモン放出ホルモンそ
の塩、それらの誘導体等の水溶性ポリペプチドの水溶液
を内水層とし、必要により内水層にゼラチン、アルブミ
ン、ペクチン、寒天等の薬物保持物質を添加し、本発明
で得られた生体内分解型高分子重合物を含む溶液を油層
としてW/O型乳化物をつくり、該乳化物を水層に分散
させてW/O型乳化物をつくり水中乾燥を行なうことに
より、水溶性薬物の徐放性マイクロカプセルを製造する
ことが出来る。
The biodegradable polymer obtained by the method of the present invention can be used, for example, as a base material for microcapsules. For example, an aqueous solution of water-soluble polypeptides such as luteinizing hormone-releasing hormone, its analogs, thyroid hormone-releasing hormone, its salts, and derivatives thereof may be used as the inner water layer, and if necessary, gelatin, albumin, pectin, agar, etc. may be added to the inner water layer. A W/O type emulsion is prepared by adding a drug-retaining substance and using the solution containing the biodegradable polymer obtained in the present invention as an oil layer, and the emulsion is dispersed in the water layer to form a W/O type emulsion. By making an emulsion and drying it in water, sustained release microcapsules of water-soluble drugs can be produced.

【0018】このようにして得られたマイクロカプセル
は、徐放性の注射剤として投与することができる。その
投与量は、主薬である水溶性薬物の種類と含量,剤形,
薬物放出の持続期間,投与対象動物(例、マウス,ラッ
ト,ウマ,ウシ,人等の温血哺乳動物),投与目的によ
り種々異なるが、該主薬の有効量であればよい。たとえ
ば、1回あたりの投与量として、マイクロカプセルの重
量が約0.02ないし200mg/kg、好ましくは約
0.2ないし40mg/kgの範囲から、適宜選択する
ことができる。 なお、上記注射剤として投与する場合の懸濁溶液として
用いる場合の容量は、約0.1ないし5ml、好ましく
は約0.5ないし3mlの範囲から適宜選ぶことができ
る。
The microcapsules thus obtained can be administered as sustained-release injections. The dosage depends on the type and content of the main water-soluble drug, the dosage form,
Although it varies depending on the duration of drug release, the animal to be administered (eg, warm-blooded mammals such as mice, rats, horses, cows, and humans), and the purpose of administration, it may be an effective amount of the main drug. For example, the amount per dose can be appropriately selected from a range in which the weight of microcapsules is about 0.02 to 200 mg/kg, preferably about 0.2 to 40 mg/kg. The volume of the suspension when administered as the above-mentioned injection can be appropriately selected from the range of about 0.1 to 5 ml, preferably about 0.5 to 3 ml.

【0019】マイクロカプセル以外にも適当な方法で薬
物を分散させた本発明の生体内分解型高分子重合物を溶
融し球状、棒状、針状等に賦形して徐放性製剤を製造す
ることも出来る。
In addition to microcapsules, the biodegradable polymer of the present invention in which the drug is dispersed is melted and shaped into spheres, rods, needles, etc. to produce sustained-release preparations. You can also do that.

【0020】[0020]

【作用および実施例】以下に比較例および実施例を挙げ
て、本発明をさらに具体的に説明する。比較例および実
施例中では、黄体形成ホルモン放出ホルモン誘導体とし
て酢酸リュープロレリン(TAP−144)を使用した
。 比較例1 窒素導入管および冷却管を備えた1000mlの4頸フ
ラスコに90%乳酸水溶液375.3gとグリコール酸
95.1gを仕込み、窒素気流下90℃、400mmH
gから150℃、30mmHgまで5時間かけて減圧加
熱を行なって留出水を除去した。さらに5〜7mmHg
、150〜175℃で24時間減圧加熱を行なった後冷
却し、琥珀色の乳酸・グリコール酸共重合体を得た。得
られた共重合体を1000mlのジクロルメタンに溶解
し、60℃の温水中に撹拌下注入した。分離してくる餅
状の高分子重合物を集め、30℃で真空乾燥した。得ら
れた乳酸・グリコール酸共重合体は、GPCによる分子
量のピーク値10000、分子量1000以下の低分子
重合物の含量は6.8%であった。
[Function and Examples] The present invention will be explained in more detail below with reference to Comparative Examples and Examples. In the comparative examples and examples, leuprorelin acetate (TAP-144) was used as a luteinizing hormone-releasing hormone derivative. Comparative Example 1 375.3 g of 90% lactic acid aqueous solution and 95.1 g of glycolic acid were charged into a 1000 ml four-necked flask equipped with a nitrogen introduction tube and a cooling tube, and heated at 90° C. and 400 mmH under nitrogen flow.
Distilled water was removed by heating under reduced pressure from g to 150° C. and 30 mmHg over 5 hours. Further 5-7mmHg
After heating under reduced pressure at 150 to 175° C. for 24 hours, the mixture was cooled to obtain an amber-colored lactic acid/glycolic acid copolymer. The obtained copolymer was dissolved in 1000 ml of dichloromethane and poured into warm water at 60°C under stirring. The separated rice cake-like polymer was collected and vacuum-dried at 30°C. The obtained lactic acid/glycolic acid copolymer had a peak molecular weight of 10,000 by GPC, and the content of low molecular weight polymers having a molecular weight of 1,000 or less was 6.8%.

【0021】比較例2 TRH(甲状腺ホルモン放出ホルモン)350mgを蒸
留水0.625mlに溶解し、比較例1で得られた乳酸
・グリコール酸共重合体(PLGA)5gをジクロロメ
タン6.25mlに溶解した液に加え、小型ホモジナイ
ザーで60秒間混合し、W/ O型エマルジョンを得た
。このエマルジョンを18℃に冷却した後、あらかじめ
18℃に調整しておいた0.25%ポリビニールアルコ
ール(PVA)水溶液12 50mlに注入しタービン
型ホモミキサーを使用してW/O/W型エマルジョンと
した。この後、W/O/W型エマルジョンを室温で撹拌
しつつジクロロメタンを揮散させて内部のW/O型エマ
ルジョンを固化させ遠心分離機を用いて捕集した。これ
を再び蒸留水に分散しさらに遠心分離を行なって遊離薬
物等を洗浄した。捕集されたマイクロカプセルは凍結乾
燥によって粉末として得られた。得られたマイクロカプ
セルの薬物トラップ率および37℃、pH7.0のリン
酸緩衝液中で行なった in vitro 溶出試験の
結果を〔表1〕に示す。
Comparative Example 2 350 mg of TRH (thyroid hormone releasing hormone) was dissolved in 0.625 ml of distilled water, and 5 g of the lactic acid/glycolic acid copolymer (PLGA) obtained in Comparative Example 1 was dissolved in 6.25 ml of dichloromethane. The mixture was added to the liquid and mixed for 60 seconds using a small homogenizer to obtain a W/O emulsion. After cooling this emulsion to 18°C, it was poured into 12 50ml of a 0.25% polyvinyl alcohol (PVA) aqueous solution previously adjusted to 18°C, and a W/O/W emulsion was created using a turbine homomixer. And so. Thereafter, while stirring the W/O/W emulsion at room temperature, dichloromethane was volatilized to solidify the W/O emulsion inside and collected using a centrifuge. This was dispersed again in distilled water and further centrifuged to wash free drugs and the like. The collected microcapsules were obtained as a powder by freeze-drying. Table 1 shows the drug trapping rate of the microcapsules obtained and the results of an in vitro dissolution test conducted at 37° C. and in a phosphate buffer of pH 7.0.

【0022】比較例3 窒素導入管および冷却管を備えた1000mlの4頸フ
ラスコに90%乳酸水溶液375.3gとグリコール酸
95.1gを仕込み、窒素気流下90℃、400mmH
gから150℃、30mmHgまで5時間かけて減圧加
熱を行なって留出水を除去した。さらに5〜7mmHg
、150〜175℃で36時間減圧加熱を行なった後冷
却し、琥珀色の乳酸・グリコール酸共重合体を得た。得
られた共重合体を1000mlのジクロルメタンに溶解
し、60℃の温水中に撹拌下注入した。分離してくる餅
状の高分子重合物を集め、30℃で真空乾燥した。得ら
れた乳酸・グリコール酸共重合体は、GPCによる分子
量のピーク値13000、分子量1000以下の低分子
重合体の含量は5.5%であった。
Comparative Example 3 375.3 g of a 90% lactic acid aqueous solution and 95.1 g of glycolic acid were charged into a 1000 ml four-necked flask equipped with a nitrogen introduction tube and a cooling tube, and heated at 90° C. and 400 mmH under nitrogen flow.
Distilled water was removed by heating under reduced pressure from g to 150° C. and 30 mmHg over 5 hours. Further 5-7mmHg
After heating under reduced pressure at 150 to 175° C. for 36 hours, the mixture was cooled to obtain an amber-colored lactic acid/glycolic acid copolymer. The obtained copolymer was dissolved in 1000 ml of dichloromethane and poured into warm water at 60°C under stirring. The separated rice cake-like polymer was collected and vacuum-dried at 30°C. The obtained lactic acid/glycolic acid copolymer had a peak molecular weight of 13,000 by GPC, and the content of low molecular weight polymers having a molecular weight of 1,000 or less was 5.5%.

【0023】比較例4 TAP−144(450mg)とゼラチン40mgを蒸
留水0.8mlに溶解し、比較例 3で得られた乳酸・
グリコール酸共重合体(PLGA)3.5gをジクロロ
メタン 5mlに溶解した液に加え、小型ホモジナイザ
ーで60秒間混合し、W/O型エマルジョンを得た。こ
のエマルジョンを18℃に冷却した後、あらかじめ18
℃に調整しておいた0.5%ポリビニールアルコール(
PVA)水溶液200mlに注入 しタービン型ホモミ
キサーを使用してW/O/W型エマルジョンとした。こ
の後、W/O/W型エマルジョンを室温で撹拌しつつジ
クロロメタンを揮散させて内部のW/O型エマルジョン
を固化させ遠心分離機を用いて捕集した。これを再び蒸
留水に分散しさらに遠心分離を行なって遊離薬物等を洗
浄した。捕集されたマイクロカプセルは凍結乾燥によっ
て粉末として得られた。得られたマイクロカプセルの薬
物トラップ率および37℃、pH7.0のリン酸緩衝液
中で行なった in vitro 溶出試験の結果を〔
表2〕に示す。
Comparative Example 4 TAP-144 (450 mg) and 40 mg of gelatin were dissolved in 0.8 ml of distilled water, and the lactic acid obtained in Comparative Example 3 was dissolved.
A solution of 3.5 g of glycolic acid copolymer (PLGA) dissolved in 5 ml of dichloromethane was added and mixed for 60 seconds using a small homogenizer to obtain a W/O emulsion. After cooling this emulsion to 18°C,
0.5% polyvinyl alcohol (
PVA) was injected into 200 ml of aqueous solution, and a W/O/W emulsion was prepared using a turbine homomixer. Thereafter, while stirring the W/O/W emulsion at room temperature, dichloromethane was volatilized to solidify the W/O emulsion inside and collected using a centrifuge. This was dispersed again in distilled water and further centrifuged to wash free drugs and the like. The collected microcapsules were obtained as a powder by freeze-drying. [
Table 2].

【0024】比較例5 窒素導入管および冷却管を備えた1000mlの4頸フ
ラスコにグリコール酸190.2gとD,L−2−ヒド
ロキシ酪酸260.2gを仕込み、窒素気流下90℃、
400mmHgから150℃、30mmHgまで5時間
かけて減圧加熱を行って留出水を除去した。さらに5〜
7mmHg、150〜185℃で72時間減圧加熱を行
った後冷却し、琥珀色のグリコール酸・2−ヒドロキシ
酪酸共重合体を得た。得られた重合物を1000mlの
ジクロルメタンに溶解し、60℃の温水中に撹拌下注入
した。分離してくる餠状の高分子重合物を集め、30℃
で真空乾燥した。   得られたグリコール酸・2−ヒドロキシ酪酸共重合
体は、GPCによる分子量のピーク値12000、分子
量1000以下の低分子重合体の含有量は5.2%であ
った。
Comparative Example 5 190.2 g of glycolic acid and 260.2 g of D,L-2-hydroxybutyric acid were charged into a 1000 ml four-necked flask equipped with a nitrogen introduction tube and a cooling tube, and heated at 90° C. under a nitrogen stream.
Distilled water was removed by heating under reduced pressure from 400 mmHg to 150° C. and 30 mmHg over 5 hours. 5 more
After heating under reduced pressure at 7 mmHg and 150 to 185° C. for 72 hours, the mixture was cooled to obtain an amber-colored glycolic acid/2-hydroxybutyric acid copolymer. The obtained polymer was dissolved in 1000 ml of dichloromethane and poured into 60°C warm water with stirring. Collect the flaky polymer that separates and heat it at 30°C.
It was vacuum dried. The resulting glycolic acid/2-hydroxybutyric acid copolymer had a peak molecular weight of 12,000 by GPC, and a content of low molecular weight polymers with a molecular weight of 1,000 or less at 5.2%.

【0025】比較例6 TRH(甲状腺ホルモン放出ホルモン)350mgを蒸
留水0.3mlに溶解し、比較例5で得られたグリコー
ル酸・2−ヒドロキシ酪酸共重合体4.65gをジクロ
ロメタン5mlに溶解した液に加え、小型ホモジナイザ
ーで60秒間混合し、W/O型エマルジョンを得た。こ
のエマルジョンを18℃に冷却した後、あらかじめ18
℃に調整しておいた0.1%ポリビニールアルコール(
PVA)水溶液1000mlに注入しタービン型ホモミ
キサーを使用してW/O/W型エマルジョンとした。こ
の後、W/O/W型エマルジョンを室温で撹拌しつつジ
クロロメタンを揮散させて内部のW/O型エマルジョン
を固化させ遠心分離機を用いて捕集した。これを再び蒸
留水に分散しさらに遠心分離をおこなって遊離薬物等を
洗浄した。  捕集されたマイクロカプセルは凍結乾燥
によって粉末として得られた。得られたマイクロカプセ
ルの薬物トラップ率および37℃、pH7.0のリン酸
緩衝液中でおこなった in vitro 溶出試験の
結果を〔表3〕に示す。
Comparative Example 6 350 mg of TRH (thyroid hormone releasing hormone) was dissolved in 0.3 ml of distilled water, and 4.65 g of the glycolic acid/2-hydroxybutyric acid copolymer obtained in Comparative Example 5 was dissolved in 5 ml of dichloromethane. The mixture was added to the liquid and mixed for 60 seconds using a small homogenizer to obtain a W/O emulsion. After cooling this emulsion to 18°C,
0.1% polyvinyl alcohol (
PVA) was injected into 1000 ml of aqueous solution, and a W/O/W emulsion was prepared using a turbine homomixer. Thereafter, while stirring the W/O/W emulsion at room temperature, dichloromethane was volatilized to solidify the W/O emulsion inside and collected using a centrifuge. This was dispersed again in distilled water and further centrifuged to wash free drugs and the like. The collected microcapsules were obtained as a powder by freeze-drying. Table 3 shows the drug trapping rate of the obtained microcapsules and the results of an in vitro dissolution test conducted at 37°C and in a phosphate buffer solution of pH 7.0.

【0026】比較例7 窒素導入管および冷却管を備えた1000mlの4頸フ
ラスコにD,L−乳酸450gを仕込み、窒素気流下9
0℃、400mmHgから150℃、30mmHgまで
5時間かけて減圧加熱を行って留出水を除去した。さら
に5〜7mmHg、150〜185℃で23時間減圧加
熱を行った後冷却し、微黄色のポリ乳酸を得た。得られ
たポリ乳酸を1000mlのジクロルメタンに溶解し、
60℃の温水中に撹拌下注入した。分離してくる餠状の
高分子重合物を集め、30℃で真空乾燥した。得られた
ポリ乳酸は、GPCによる分子量のピーク値8000分
子量1000以下の低分子重合体の含有量は5.6%で
あった。
Comparative Example 7 450 g of D,L-lactic acid was charged into a 1000 ml four-necked flask equipped with a nitrogen introduction tube and a cooling tube, and the mixture was heated for 9 hours under a nitrogen stream.
Distilled water was removed by heating under reduced pressure from 0° C. and 400 mmHg to 150° C. and 30 mmHg over 5 hours. Further, the mixture was heated under reduced pressure at 5 to 7 mmHg and 150 to 185°C for 23 hours, and then cooled to obtain slightly yellow polylactic acid. The obtained polylactic acid was dissolved in 1000 ml of dichloromethane,
The mixture was poured into warm water at 60°C under stirring. The separated flaky polymer was collected and vacuum-dried at 30°C. The obtained polylactic acid had a peak molecular weight of 8,000 by GPC, and the content of low molecular weight polymers with a molecular weight of 1,000 or less was 5.6%.

【0027】比較例8 TAP−144(400mg)を蒸留水0.4mlに溶
解し、比較例7で得られたポリ 乳酸4.0gをジクロ
ロメタン5mlに溶解した液に加え、小型ホモジナイザ
ーで 60秒間混合し、W/O型エマルジョンを得た。 このエマルジョンを18℃に冷却した後、あらかじめ1
8℃に調整しておいた0.1%ポリビニールアルコール
(PVA)水溶液1000mlに注入しタービン型ホモ
ミキサーを使用してW/O/ W型エマルジョンとした
。この後、W/O/W型エマルジョンを室温で撹拌しつ
つジクロロメタンを揮散させて内部のW/O型エマルジ
ョンを固化させ遠心分離機を用いて捕集した。これを再
び蒸留水に分散しさらに遠心分離をおこなって遊離薬物
等を洗浄した。捕集されたマイクロカプセルは凍結乾燥
によって粉末として得られた。得られたマイクロカプセ
ルの薬物トラップ率および37℃、pH7.0のリン酸
緩衝液中でおこなった in vitro 溶出試験の
結果を〔表4〕に示す。
Comparative Example 8 TAP-144 (400 mg) was dissolved in 0.4 ml of distilled water, added to a solution in which 4.0 g of polylactic acid obtained in Comparative Example 7 was dissolved in 5 ml of dichloromethane, and mixed for 60 seconds using a small homogenizer. A W/O emulsion was obtained. After cooling this emulsion to 18°C,
The mixture was poured into 1000 ml of a 0.1% polyvinyl alcohol (PVA) aqueous solution adjusted to 8°C, and a W/O/W emulsion was prepared using a turbine homomixer. Thereafter, while stirring the W/O/W emulsion at room temperature, dichloromethane was volatilized to solidify the W/O emulsion inside and collected using a centrifuge. This was dispersed again in distilled water and further centrifuged to wash free drugs and the like. The collected microcapsules were obtained as a powder by freeze-drying. Table 4 shows the drug trapping rate of the microcapsules obtained and the results of an in vitro dissolution test conducted at 37°C and in a phosphate buffer solution of pH 7.0.

【0028】実施例1 比較例1で得られた乳酸・グリコール酸共重合体20g
を100mlのアセトンに溶解した。この溶液を撹拌し
ながら蒸留水60mlを滴下した。分離してくる油層を
集め500mlの蒸留水で2回洗浄すると油層は餅状に
なった。これを30℃で真空乾燥した。収量は17.4
gであった。得られた乳酸・グリコール酸共重合体のG
PCによる分子量のピーク値10000、分子量100
0以下の低分子量重合体の含有率は2.0%であった。
Example 1 20 g of lactic acid/glycolic acid copolymer obtained in Comparative Example 1
was dissolved in 100 ml of acetone. 60 ml of distilled water was added dropwise to this solution while stirring. The separated oil layer was collected and washed twice with 500 ml of distilled water, and the oil layer became cake-like. This was vacuum dried at 30°C. Yield is 17.4
It was g. G of the obtained lactic acid/glycolic acid copolymer
Peak value of molecular weight by PC 10000, molecular weight 100
The content of low molecular weight polymers of 0 or less was 2.0%.

【0029】実施例2 実施例1で得られた乳酸・グリコール酸共重合体を用い
、比較例2と同様にしてマイクロカプセルを調製した。 得られたマイクロカプセルの薬物トラップ率および37
℃、pH7.0のリン酸緩衝液中で行なった in v
itro 溶出試験の結果を〔表1〕に示す。
Example 2 Using the lactic acid/glycolic acid copolymer obtained in Example 1, microcapsules were prepared in the same manner as in Comparative Example 2. Drug trapping rate of the obtained microcapsules and 37
Inv carried out in phosphate buffer at pH 7.0 at °C.
The results of the itro dissolution test are shown in [Table 1].

【表1】   ───────────────────────
───            トラップ      
    放出率(%)b)             
         ────────────────
            率(%)a)    1日 
   1週間    2週間  ──────────
────────────────  比較例2   
 93.0       8.8     47.8 
     95.2  実施例2    93.6  
     5.7     27.8      77
.6  ─────────────────────
─────a)  TRHの仕込量に対し実際に取り込
まれた量b)  pH7.0,1/30Mリン酸緩衝液
,37℃
[Table 1] ────────────────────────
─── Trap
Release rate (%) b)
──────────────────
Rate (%) a) 1 day
1 week 2 weeks ──────────
──────────────── Comparative example 2
93.0 8.8 47.8
95.2 Example 2 93.6
5.7 27.8 77
.. 6 ──────────────────────
─────a) Actual amount of TRH taken in relative to the amount of TRH charged b) pH 7.0, 1/30M phosphate buffer, 37°C

【0030】実施例3 比較例3で得られた乳酸・グリコール酸共重合体20g
を100mlのアセトンに溶解した。この溶液を撹拌し
ながら蒸留水60mlを滴下した。分離してくる油層を
集め500mlの蒸留水で2回洗浄すると油層は餅状に
なった。これを30℃で真空乾燥した。収量は17.4
gであった。得られた乳酸・グリコール酸共重合体のG
PCによる分子量のピーク値13000、分子量100
0以下の低分子量重合体の含有率は2.2%であった。
Example 3 20 g of lactic acid/glycolic acid copolymer obtained in Comparative Example 3
was dissolved in 100 ml of acetone. 60 ml of distilled water was added dropwise to this solution while stirring. The separated oil layer was collected and washed twice with 500 ml of distilled water, and the oil layer became cake-like. This was vacuum dried at 30°C. Yield is 17.4
It was g. G of the obtained lactic acid/glycolic acid copolymer
Peak value of molecular weight by PC 13000, molecular weight 100
The content of low molecular weight polymers of 0 or less was 2.2%.

【0031】実施例4 実施例3で得られた乳酸・グリコール酸共重合体を用い
、比較例4と同様にしてマイクロカプセルを調製した。 得られたマイクロカプセルの薬物トラップ率および37
℃、pH7.0のリン酸緩衝液中で行なった in v
itro 溶出試験の結果を〔表2〕に示す。
Example 4 Using the lactic acid/glycolic acid copolymer obtained in Example 3, microcapsules were prepared in the same manner as in Comparative Example 4. Drug trapping rate of the obtained microcapsules and 37
Inv carried out in phosphate buffer at pH 7.0 at °C.
The results of the itro dissolution test are shown in [Table 2].

【表2】   ───────────────────────
─────            トラップ    
        放出率(%)b)         
           ──────────────
─────            率(%)a)  
1日   1週   2週   3週   4週  ─
─────────────────────────
──  比較例4    95.0    10.4 
  30.7   41.3   59.5   65
.2  実施例4    97.2     4.8 
   9.7   24.5   41.2   55
.7  ─────────────────────
───────a)  TAP−144の仕込量に対し
実際に取り込まれた量 b)  pH7.0,1/30Mリン酸緩衝液,37℃
[Table 2] ────────────────────────
───── Trap
Release rate (%) b)
──────────────
────── Rate (%)a)
1 day 1 week 2 weeks 3 weeks 4 weeks ─
──────────────────────────
── Comparative example 4 95.0 10.4
30.7 41.3 59.5 65
.. 2 Example 4 97.2 4.8
9.7 24.5 41.2 55
.. 7 ──────────────────────
────────a) Actual amount taken in with respect to the amount of TAP-144 charged b) pH 7.0, 1/30M phosphate buffer, 37°C

【0032】実施例5 比較例5で得られたグリコール酸・2−ヒドロキシ酪酸
共重合体20gを100mlのアセトンに溶解した。こ
の溶液を撹拌しながら蒸留水80mlを滴下した。分離
してくる油層を集め500mlの蒸留水で2回洗浄する
と油層は餠状となった。これを30℃で真空乾燥した。 収率は18.1gであった。得られたグリコール酸・2
−ヒドロキシ酪酸共重合体のGPCによる分子量のピー
ク値は13000、分子量1000以下の低分子重合体
の含有量は2.5%であった。
Example 5 20 g of the glycolic acid/2-hydroxybutyric acid copolymer obtained in Comparative Example 5 was dissolved in 100 ml of acetone. 80 ml of distilled water was added dropwise to this solution while stirring. The separated oil layer was collected and washed twice with 500 ml of distilled water, resulting in a lumpy oil layer. This was vacuum dried at 30°C. The yield was 18.1g. Obtained glycolic acid 2
The peak value of the molecular weight of the -hydroxybutyric acid copolymer by GPC was 13,000, and the content of low molecular weight polymers with a molecular weight of 1,000 or less was 2.5%.

【0033】実施例6 実施例5で得られたグリコール酸・2−ヒドロキシ酪酸
共重合体を用い、比較例6と同様にしてマイクロカプセ
ルを調整した。得られたマイクロカプセルの薬物トラッ
プ率および37℃、pH7.0のリン酸緩衝液中で行っ
た in vitro 溶出試験の結果を〔表3〕に示
す。
Example 6 Using the glycolic acid/2-hydroxybutyric acid copolymer obtained in Example 5, microcapsules were prepared in the same manner as in Comparative Example 6. Table 3 shows the drug trapping rate of the microcapsules obtained and the results of an in vitro dissolution test conducted at 37° C. and in a phosphate buffer of pH 7.0.

【表3】 ─────────────────────────
─────            トラップ    
        放出率(%)b)         
             ────────────
───────            率(%)a)
    1日     1週      2週    
  3週─────────────────────
─────────  比較例6    85.6  
    17.3     50.1      89
.7      99.8  実施例6    95.
6       9.0     40.5     
 85.1      99.9──────────
────────────────────a)  T
RHの仕込量に対し実際に取り込まれた量b)  pH
7.0,1/30Mリン酸緩衝液,37℃
[Table 3] ──────────────────────────
───── Trap
Release rate (%) b)
────────────
──────── Rate (%) a)
1 day 1 week 2 weeks
3 weeks──────────────────────
────────── Comparative example 6 85.6
17.3 50.1 89
.. 7 99.8 Example 6 95.
6 9.0 40.5
85.1 99.9──────────
──────────────────────a) T
Amount actually taken in relative to the amount of RH charged b) pH
7.0, 1/30M phosphate buffer, 37°C

【0034】
実施例7 比較例7で得られたポリ乳酸20gを100mlのアセ
トンに溶解した。この溶液を撹拌しながら蒸留水80m
lを滴下した。分離してくる油層を集め500mlの蒸
留水で2回洗浄すると油層は餠状となった。これを30
℃で真空乾燥した。収量は18.5gであった。得られ
たポリ乳酸GPCによる分子量のピーク値は8000分
子量1000以下の低分子重合体の含有量は2.3%で
あった。
[0034]
Example 7 20 g of polylactic acid obtained in Comparative Example 7 was dissolved in 100 ml of acetone. While stirring this solution, add 80ml of distilled water.
1 was added dropwise. The separated oil layer was collected and washed twice with 500 ml of distilled water, resulting in a lumpy oil layer. 30 of this
Vacuum dried at ℃. Yield was 18.5g. The peak value of the molecular weight of the obtained polylactic acid by GPC was 8,000, and the content of low molecular weight polymers with a molecular weight of 1,000 or less was 2.3%.

【0035】実施例8 実施例7で得られたポリ乳酸を用い、比較例8と同様に
してマイクロカプセルを調整した。得られたマイクロカ
プセルの薬物トラップ率および37℃、pH7.0のリ
ン酸緩衝液中で行った in vitro 溶出試験の
結果を〔表4〕に示す。
Example 8 Using the polylactic acid obtained in Example 7, microcapsules were prepared in the same manner as in Comparative Example 8. Table 4 shows the drug trapping rate of the obtained microcapsules and the results of an in vitro elution test conducted at 37° C. in a phosphate buffer solution of pH 7.0.

【表4】 ─────────────────────────
─────            トラップ    
        放出率(%)b)         
             ────────────
───────            率(%)a)
    1日     1週      2週    
  3週─────────────────────
─────────  比較例8    92.5  
    22.4     36.8      44
.1      56.8  実施例8    98.
6       8.4     18.2     
 28.5      48.2──────────
────────────────────a)  T
AP−144の仕込量に対し実際に取り込まれた量 b)  pH7.0,1/30Mリン酸緩衝液,37℃
[Table 4] ──────────────────────────
───── Trap
Release rate (%) b)
────────────
──────── Rate (%)a)
1 day 1 week 2 weeks
3 weeks──────────────────────
────────── Comparative example 8 92.5
22.4 36.8 44
.. 1 56.8 Example 8 98.
6 8.4 18.2
28.5 48.2──────────
──────────────────────a) T
Actual amount taken in relative to the amount of AP-144 charged b) pH 7.0, 1/30M phosphate buffer, 37°C

【0036】[0036]

【発明の効果】本発明の生体内分解型高分子重合物を用
いて製造された徐放性製剤は、薬剤の取り込み率が高く
、初期過剰放出が少なく、安定に薬剤を放出する。
Effects of the Invention The sustained-release preparation produced using the biodegradable polymer of the present invention has a high drug uptake rate, little initial excessive release, and stably releases the drug.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】低分子物質を含有する生体内分解型脂肪族
ポリエステルを水易溶性有機溶媒に溶解し、これに水を
加え高分子物質を析出させて、低分子物質を除去するこ
とを特徴とする生体内分解型脂肪族ポリエステルの精製
法。
Claim 1: A biodegradable aliphatic polyester containing a low-molecular substance is dissolved in a readily water-soluble organic solvent, water is added thereto to precipitate the high-molecular substance, and the low-molecular substance is removed. A method for purifying biodegradable aliphatic polyester.
【請求項2】請求項(1)記載の方法で得られる分子量
1,000以下の低分子物質の含有量が3.0(%)未
満である生体内分解型脂肪族ポリエステル。
2. A biodegradable aliphatic polyester obtained by the method according to claim (1), in which the content of low-molecular substances with a molecular weight of 1,000 or less is less than 3.0 (%).
【請求項3】請求項(2)記載の生体内分解型ポリエス
テルを放出制御物質とする薬物含有製剤。
3. A drug-containing preparation comprising the biodegradable polyester according to claim 2 as a release-controlled substance.
JP07932891A 1990-04-13 1991-04-11 Biodegradable polymer Expired - Lifetime JP3200706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07932891A JP3200706B2 (en) 1990-04-13 1991-04-11 Biodegradable polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2-98510 1990-04-13
JP9851090 1990-04-13
JP07932891A JP3200706B2 (en) 1990-04-13 1991-04-11 Biodegradable polymer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000362683A Division JP3254449B2 (en) 1990-04-13 2000-11-24 Biodegradable polymer

Publications (2)

Publication Number Publication Date
JPH04218528A true JPH04218528A (en) 1992-08-10
JP3200706B2 JP3200706B2 (en) 2001-08-20

Family

ID=26420346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07932891A Expired - Lifetime JP3200706B2 (en) 1990-04-13 1991-04-11 Biodegradable polymer

Country Status (1)

Country Link
JP (1) JP3200706B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316272A (en) * 1994-05-23 1995-12-05 Toyobo Co Ltd Polylactic acid and/or its copolymer
WO2003002091A2 (en) 2001-06-29 2003-01-09 Takeda Chemical Industries, Ltd. Sustained-release composition comprising lactic acid-glycolic acid copolymer and process for producing the same
JP2004256546A (en) * 2001-06-29 2004-09-16 Takeda Chem Ind Ltd Sustained-release composition and manufacturing method therefor
JP2009525372A (en) * 2006-01-31 2009-07-09 ピュラック バイオケム ビー.ブイ. Method for purifying absorbent polymers from residual monomers
JP2010526200A (en) * 2007-05-04 2010-07-29 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method and apparatus for purifying absorbent polyester
JP2012508293A (en) * 2008-11-07 2012-04-05 サムヤン コーポレイション High-purity polylactic acid, salt or derivative thereof, and purification method thereof
JP2012107256A (en) * 2000-08-07 2012-06-07 Wako Pure Chem Ind Ltd Lactic acid polymer and process for producing the same
WO2014168134A1 (en) * 2013-04-11 2014-10-16 三井化学株式会社 Method for manufacturing lactic acid-glycolic acid copolymer and method for manufacturing salt thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316272A (en) * 1994-05-23 1995-12-05 Toyobo Co Ltd Polylactic acid and/or its copolymer
JP2012107256A (en) * 2000-08-07 2012-06-07 Wako Pure Chem Ind Ltd Lactic acid polymer and process for producing the same
EP2108363A1 (en) 2001-06-29 2009-10-14 Takeda Pharmaceutical Company Limited Sustained-release composition comprising lactic acid-glycolic acid copolymer and process for producing the same
JP2012136530A (en) * 2001-06-29 2012-07-19 Takeda Chem Ind Ltd Sustained-release composition and method for producing the same
JP2004256546A (en) * 2001-06-29 2004-09-16 Takeda Chem Ind Ltd Sustained-release composition and manufacturing method therefor
JP2015007120A (en) * 2001-06-29 2015-01-15 武田薬品工業株式会社 Sustained-release composition, and production method thereof
JP2010280703A (en) * 2001-06-29 2010-12-16 Takeda Chem Ind Ltd Sustained-release composition and production method therefor
US8258252B2 (en) 2001-06-29 2012-09-04 Takeda Pharmaceutical Company Limited Sustained-release composition and process for producing the same
WO2003002091A2 (en) 2001-06-29 2003-01-09 Takeda Chemical Industries, Ltd. Sustained-release composition comprising lactic acid-glycolic acid copolymer and process for producing the same
JP2009525372A (en) * 2006-01-31 2009-07-09 ピュラック バイオケム ビー.ブイ. Method for purifying absorbent polymers from residual monomers
JP2010526200A (en) * 2007-05-04 2010-07-29 ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method and apparatus for purifying absorbent polyester
US9156942B2 (en) 2007-05-04 2015-10-13 Evonik Roehm Gmbh Method and device for cleaning an absorptive polyester
JP2012508293A (en) * 2008-11-07 2012-04-05 サムヤン コーポレイション High-purity polylactic acid, salt or derivative thereof, and purification method thereof
US9518149B2 (en) 2008-11-07 2016-12-13 Samyang Biopharmaceuticals Corporation Highly purified polylactic acid or a derivative thereof, a salt of the same, and purification method thereof
WO2014168134A1 (en) * 2013-04-11 2014-10-16 三井化学株式会社 Method for manufacturing lactic acid-glycolic acid copolymer and method for manufacturing salt thereof
JP5959728B2 (en) * 2013-04-11 2016-08-02 三井化学株式会社 Method for producing lactic acid-glycolic acid copolymer or salt thereof
US10011681B2 (en) 2013-04-11 2018-07-03 Mitsui Chemicals, Inc. Process for producing a lactic acid-glycolic acid copolymer or a salt thereof

Also Published As

Publication number Publication date
JP3200706B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
US5585460A (en) Biodegradable high-molecular polymers, production and use thereof
Ogawa et al. A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly (lactic/glycolic) acid
CA1100041A (en) Absorbable pharmaceutical compositions based on isomorphic copolyoxalates
Toshiro et al. Factors influencing the profiles of TRH release from copoly (d, l-lactic/glycolic acid) microspheres
DE69333817T2 (en) Leuprorelin preparation with delayed release of active ingredient
DK174804B1 (en) Process for the preparation of self-dispersible block copolymers, copolymer drug powders, processes for their preparation, and processes for preparing frozen, stable, aqueous dispersions of copolymer and drug
US5922682A (en) Polyol esters, their preparation and use in depot forms of pharmacologically active agents
IE68436B1 (en) Prolonged release microcapsules
EP1693054B1 (en) Lactic acid polymer and process for producing the same
JPS6254760A (en) High polymer, its production and use
JPH0517245B2 (en)
JPH08198771A (en) Slow release pharmaceutical preparation of water-soluble peptide
JP7278413B2 (en) Dispersed Phase Composition for Making Apixaban-Containing Microspheres and Biocompatible Polymer-Based Apixaban-Containing Microspheres Made Therefrom
PL212531B1 (en) Sustained-release composition and process for producing the same
JPH05500961A (en) protein microsphere composition
US4186189A (en) Absorbable pharmaceutical compositions based on poly(alkylene oxalates)
KR20210100986A (en) Method for preparing microspheres with high density and sustained release
US5187150A (en) Polyester-based composition for the controlled release of polypeptide medicinal substances
JPH04218528A (en) In vivo degradable type high-molecular polymer
JP2867404B2 (en) Porous microspheres for drug delivery and method for producing the same
JPH01500034A (en) Vaccines and implants
JPH0436233A (en) Sustained release preparation containing physiologically active substance and decomposable and absorbable in living body
CA1098443A (en) Absorbable p-dioxanone polymer-drug compositions
JP3254449B2 (en) Biodegradable polymer
JP2716747B2 (en) Polyester-based drug composition for controlling drug release

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080622

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090622

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100622

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110622

Year of fee payment: 10

EXPY Cancellation because of completion of term