JPH04218378A - Gene coding alcohol dehydrogenase - Google Patents

Gene coding alcohol dehydrogenase

Info

Publication number
JPH04218378A
JPH04218378A JP3027591A JP2759191A JPH04218378A JP H04218378 A JPH04218378 A JP H04218378A JP 3027591 A JP3027591 A JP 3027591A JP 2759191 A JP2759191 A JP 2759191A JP H04218378 A JPH04218378 A JP H04218378A
Authority
JP
Japan
Prior art keywords
adh
transformant
alcohol dehydrogenase
structural gene
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3027591A
Other languages
Japanese (ja)
Inventor
Tadayuki Imanaka
忠行 今中
Hisao Sakoda
久雄 佐古田
Masahiro Inui
昌弘 乾
Toshio Takeuchi
竹内 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKANSU KK
Original Assignee
MARUKANSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKANSU KK filed Critical MARUKANSU KK
Publication of JPH04218378A publication Critical patent/JPH04218378A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PURPOSE:To make it possible to efficiently obtain an alcohol by culturing transformant transformed with a manifestation vector containing a specific gene. CONSTITUTION:A bacterial cell obtained by culturing Bacillus stearothermophilusu NCA 1503 strain is extracted to afford chromosome DAN (A). Then the ingredient A is subjected to restriction enzyme treatment to produce a plasmid vector pTBAD35 (B) exhibiting restriction enzyme-cut map having 3.5Kb BamHI fragment and containing a gene coding alcohol dehydrogenase (ANH). Then the ingredient B is introduced into the above- mentioned NCA 1503 strain or B. subtilis strain to afford a transformant (C). Then the transformant C is cultured to produce ADH. On the one hand, a transformant obtained by introducing DNA for changing an amino acid constituting ADH is cultured to produce a modified ADH capable of shifting optimum pH to a basic side. As necessary the transformant C is cultured to produced an alcohol.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,アルコール脱水素酵素
をコードする構造遺伝子;該構造遺伝子,発現制御領域
およびターミネーターを有する発現可能な遺伝子;該構
造遺伝子,または該発現可能な遺伝子を有する発現ベク
ター;該発現ベクターを有する形質転換体;ならびに該
形質転換体を用いたアルコール脱水素酵素の製造方法お
よびアルコールの製造方法に関する。さらに本発明は,
塩基性側に至適pHを有する,上記アルコール脱水素酵
素の修飾酵素;上記修飾酵素をコードする発現ベクター
を有する形質転換体;ならびに該形質転換体を用いたア
ルコール脱水素酵素の製造方法およびアルコールの製造
方法に関する。
[Industrial Application Field] The present invention relates to a structural gene encoding alcohol dehydrogenase; an expressible gene having the structural gene, an expression control region and a terminator; The present invention relates to a vector; a transformant having the expression vector; and a method for producing alcohol dehydrogenase and a method for producing alcohol using the transformant. Furthermore, the present invention
A modification enzyme of the alcohol dehydrogenase having an optimum pH on the basic side; a transformant having an expression vector encoding the modification enzyme; and a method for producing alcohol dehydrogenase using the transformant, and alcohol Relating to a manufacturing method.

【0002】0002

【従来の技術】アルコール脱水素酵素(ADH)は,化
1に示すように,アルコールを酸化してアルデヒドを生
成する反応と,アルデヒドを還元してアルコールを生成
する反応とを可逆的に触媒する:
[Prior Art] Alcohol dehydrogenase (ADH) reversibly catalyzes the reaction of oxidizing alcohol to produce aldehyde and the reaction of reducing aldehyde to produce alcohol, as shown in Chemical Formula 1. :

【0003】0003

【化1】[Chemical formula 1]

【0004】ここで,Rはアルキル基である。[0004] Here, R is an alkyl group.

【0005】そのためADHは,アルコールまたはアル
デヒドの定性および定量,アルコールまたはアルデヒド
の生産などに使用され得,産業上有用な酵素である。こ
のADHは,補酵素の利用性の相違により4種に分類さ
れる。そのひとつにNADを補酵素とするADHがあり
,動物および微生物由来のADHが知られている。動物
由来のADHとしては,例えばヒトおよびウマ由来のA
DHが知られている。微生物由来のADHとしては,例
えば,バシラス  ステアロサーモフィラス(Baci
llus stearothermophilus) 
由来のADH,およびサッカロマイセス  セレビシエ
(Saccharomyces cerevisiae
)由来のADHが知られている。特に,バシラス  ス
テアロサーモフィラスNCA1503株〔Biotec
hnology and Bioengineerin
g,17,1375〜1377(1975)〕由来のA
DHは,耐熱性であるため,利用範囲が広い。
[0005] Therefore, ADH is an industrially useful enzyme that can be used for qualitative and quantitative determination of alcohol or aldehyde, production of alcohol or aldehyde, and the like. ADH is classified into four types depending on the availability of coenzymes. One of them is ADH that uses NAD as a coenzyme, and ADH derived from animals and microorganisms are known. Examples of animal-derived ADH include human and horse-derived ADH.
DH is known. Examples of ADH derived from microorganisms include Bacillus stearothermophilus (Bacillus stearothermophilus).
llus stearothermophilus)
ADH derived from Saccharomyces cerevisiae, and Saccharomyces cerevisiae
) derived ADH is known. In particular, Bacillus stearothermophilus strain NCA1503 [Biotec
hnology and bioengineering
g, 17, 1375-1377 (1975)]
DH has a wide range of uses because it is heat resistant.

【0006】この酵素は,例えば,FEBS lett
ers, 92, 365〜367(1987)に記載
されているように,上記B. stearotherm
ophilus NCA1503株の菌体を培養し,該
菌体の細胞質画分から単離・精製することにより得られ
ている。 しかし,この菌株の菌体中の酵素含有量は少なく,精製
操作が煩雑であるので,酵素を収率よく得ることはでき
ない。そのため,多量のADHを調製することは困難で
あった。
[0006] This enzyme is, for example, FEBS let
ers, 92, 365-367 (1987). starotherm
It is obtained by culturing the bacterial cells of S. ophillus NCA1503 strain, and isolating and purifying the cytoplasmic fraction of the bacterial cells. However, since the enzyme content in the bacterial cells of this strain is small and the purification procedure is complicated, the enzyme cannot be obtained in good yield. Therefore, it has been difficult to prepare a large amount of ADH.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記従来の課
題を解決するものであり,その目的とするところは,A
DH,特にBacillus stearotherm
ophilus NCA1503株由来のADHをコー
ドする遺伝子を提供することにある。本発明の他の目的
は,上記遺伝子を有する発現ベクター,および該発現ベ
クターを有する形質転換体を提供することにある。本発
明のさらに他の目的は,上記形質転換体を用いて効率よ
くADHを製造する方法,ならびに該形質転換体を用い
てアルコールを製造する方法を提供することにある。
[Problem to be solved by the invention] The present invention solves the above-mentioned conventional problems, and its purpose is to
DH, especially Bacillus stearotherm
An object of the present invention is to provide a gene encoding ADH derived from S. ophillus NCA1503 strain. Another object of the present invention is to provide an expression vector containing the above gene and a transformant containing the expression vector. Still another object of the present invention is to provide a method for efficiently producing ADH using the above transformant, and a method for producing alcohol using the transformant.

【0008】本発明のさらに他の目的は,上記Baci
llus stearothermophilus 由
来のADHの活性中心の検討を行い,その至適pHがよ
り塩基性側にシフトしたADHをコードする遺伝子を提
供することにある。本発明のさらに他の目的は,上記遺
伝子を有する発現ベクター,該発現ベクターを有する形
質転換体,および該形質転換体を用いてADHまたはア
ルコールを製造する方法を提供することにある。
[0008] Still another object of the present invention is to
The purpose of this invention is to investigate the active center of ADH derived from S. llus stearothermophilus and to provide a gene encoding ADH whose optimal pH has shifted to the more basic side. Still other objects of the present invention are to provide an expression vector having the above gene, a transformant having the expression vector, and a method for producing ADH or alcohol using the transformant.

【0009】[0009]

【課題を解決するための手段】本発明のADH構造遺伝
子は,配列表1のアミノ酸配列で示されるADH,また
は該アミノ酸配列の43番目のHisが他の塩基性アミ
ノ酸に置換された,もしくは該His残基の塩基性が高
くなるように該Hisが修飾されたアミノ酸配列で示さ
れる修飾ADHをコードする。
[Means for Solving the Problems] The ADH structural gene of the present invention is an ADH shown in the amino acid sequence of Sequence Listing 1, or in which His at position 43 of the amino acid sequence is replaced with another basic amino acid, or It encodes a modified ADH represented by an amino acid sequence in which the His residue is modified so that the basicity of the His residue is increased.

【0010】ADHまたは修飾ADHをコードする本発
明の発現可能な遺伝子は,上記構造遺伝子;該構造遺伝
子の5’上流域に存在し,配列表1の1位のGから28
9位のCで示される塩基配列でなる発現制御領域;およ
び該構造遺伝子の3’下流域に存在し1317位のAか
ら1342位のTで示される塩基配列でなるターミネー
ターを包含する。
[0010] The expressible gene of the present invention encoding ADH or modified ADH is the above-mentioned structural gene;
It includes an expression control region consisting of the nucleotide sequence shown by C at position 9; and a terminator which is present in the 3' downstream region of the structural gene and consists of the nucleotide sequence from A at position 1317 to T at position 1342.

【0011】本発明の発現ベクターは,上記構造遺伝子
;または,上記構造遺伝子,発現制御領域およびターミ
ネーターを含む発現可能な遺伝子を有する。
The expression vector of the present invention has the above-mentioned structural gene; or an expressible gene containing the above-mentioned structural gene, an expression control region, and a terminator.

【0012】本発明の形質転換体は,上記発現ベクター
を宿主細胞に導入して得られる。
The transformant of the present invention can be obtained by introducing the above expression vector into a host cell.

【0013】本発明のADHの製造方法は,上記形質転
換体を培養し,該培養物からアルコール脱水素酵素また
は修飾アルコール脱水素酵素を採取する工程を包含する
The method for producing ADH of the present invention includes the steps of culturing the above transformant and collecting alcohol dehydrogenase or modified alcohol dehydrogenase from the culture.

【0014】本発明のアルコールの製造方法は,上記形
質転換体を炭素源を含む培地中で培養する工程を包含す
る。
The method for producing alcohol of the present invention includes the step of culturing the above transformant in a medium containing a carbon source.

【0015】本発明の ADH構造遺伝子は,ADHを
生産する適当な微生物の染色体DNA,例えば,B. 
stearothermophilus NCA150
3株の染色体DNAから得られ得る。例えば,該菌株の
培養細胞から,Journal of Bacteri
ology,147,776〜786(1981)に記
載の方法に従って調製することが可能である。この染色
体DNAを適当な制限酵素で切断し,該制限酵素で切断
処理したベクターDNAに挿入,もしくは,適当な制限
酵素で切断処理したベクターDNAにリンカーを介して
挿入することにより,発現ベクターが構築される。例え
ば,上記染色体DNAを制限酵素Sau3AIにより切
断して得られる5〜7kbのDNA断片と,BamHI
で切断したベクター DNA pTB524〔Appl
iedand Environmental Micr
obiology, 55, 3208〜3213(1
989)〕とをT4 DNAリガーゼを用いて連結する
ことにより,発現ベクターが構築される。
The ADH structural gene of the present invention is derived from the chromosomal DNA of a suitable microorganism that produces ADH, such as B.
stearothermophilus NCA150
It can be obtained from the chromosomal DNA of three strains. For example, from cultured cells of the strain, Journal of Bacteri
It can be prepared according to the method described in Biochemistry, 147, 776-786 (1981). An expression vector is constructed by cutting this chromosomal DNA with an appropriate restriction enzyme and inserting it into the vector DNA cut with the restriction enzyme, or inserting it into the vector DNA cut with the appropriate restriction enzyme via a linker. be done. For example, a 5 to 7 kb DNA fragment obtained by cutting the above chromosomal DNA with the restriction enzyme Sau3AI and a BamHI
Vector DNA pTB524 [Appl
iedandEnvironmentalMicr
biology, 55, 3208-3213 (1
989)] using T4 DNA ligase, an expression vector is constructed.

【0016】このようにして構築された発現ベクターは
宿主細胞に導入される。ベクターとして上記pTB52
4を用いた場合には,形質転換体は,テトラサイクリン
(Tc)耐性を指標として選択され得る。宿主細胞とし
ては枯草菌が好ましく,B. subtilisMI1
13株が好適に使用される。この枯草菌は B. st
earothermophilus NCA1503株
よりも増殖率がよいため,これを宿主として用いること
により,ADHの菌体内濃度を高めるとともにADHを
高効率で生産することができる。なお,枯草菌の形質転
換は,Journal of Bacteriolog
y, 146, 1091〜1097(1981)に記
載の方法に従って行うことができる。
[0016] The expression vector thus constructed is introduced into host cells. The above pTB52 as a vector
4, transformants can be selected using tetracycline (Tc) resistance as an indicator. Bacillus subtilis is preferred as the host cell, and B. subtilis is preferred. subtilisMI1
13 strains are preferably used. This Bacillus subtilis is B. st
Since the growth rate is higher than that of the Aerothermophilus NCA1503 strain, by using this strain as a host, the intracellular concentration of ADH can be increased and ADH can be produced with high efficiency. The transformation of Bacillus subtilis is described in the Journal of Bacteriology
y, 146, 1091-1097 (1981).

【0017】得られた形質転換体の中から目的とするA
DH遺伝子を有するクローンを検出するには,基本的に
はJournal of Bacteriology,
 169, 2591〜2597(1987)に記載の
方法により行うことができる。つまり,完全培地中にエ
タノール(基質)およびパラロースアニリン(指示薬)
を含有させておき,上記形質転換体を培養する。この培
養により,目的とする遺伝子を有する形質転換体はAD
Hを生産するため,エタノールからアルデヒドが生成さ
れる。アルデヒドはパラロースアニリンとシッフ塩基を
形成して赤色を呈することから,赤く染色したコロニー
を単離することにより目的の遺伝子を有する陽性クロー
ンが得られる。
[0017] From among the obtained transformants, the desired A
To detect clones having the DH gene, basically the Journal of Bacteriology,
169, 2591-2597 (1987). That is, ethanol (substrate) and pararoseaniline (indicator) are present in the complete medium.
The above transformant is cultured. Through this culture, the transformant having the target gene is AD.
To produce H, aldehydes are generated from ethanol. Since aldehyde forms a Schiff base with pararose aniline and exhibits a red color, positive clones containing the gene of interest can be obtained by isolating red-stained colonies.

【0018】この陽性クローンを培養し,プラスミドD
NAを抽出して調べると,プラスミドベクター由来のD
NAの他に約7.0kbの DNA断片が挿入されてい
ることがわかる。この約7.0kbのDNA断片をBa
mHIで切断して得られる約3.5kbのBamHI断
片を,上記プラスミドベクターpTB524のBamH
I部位に挿入することにより,発現プラスミドpTBA
D35が構築される。このpTBAD35を用いてB.
 subtilis MI113株を形質転換すると,
上記パラロースアニリンを含有するアルデヒド指示プレ
ートにおいて陽性を示すため,pTBAD35には目的
遺伝子が含まれていることがわかる。このpTBAD3
5に含まれる3.5kbのBamHI断片の制限酵素切
断地図を図1に示す。
[0018] This positive clone was cultured and plasmid D
When NA was extracted and examined, D derived from the plasmid vector was detected.
It can be seen that a DNA fragment of about 7.0 kb was inserted in addition to NA. This approximately 7.0 kb DNA fragment was converted into Ba
The approximately 3.5 kb BamHI fragment obtained by cutting with mHI was added to the BamH fragment of the above plasmid vector pTB524.
By inserting into the I site, the expression plasmid pTBA
D35 is constructed. Using this pTBAD35, B.
When the S. subtilis MI113 strain was transformed,
Since it was positive on the aldehyde indicator plate containing the above-mentioned pararose aniline, it was found that pTBAD35 contains the target gene. This pTBAD3
A restriction enzyme cleavage map of the 3.5 kb BamHI fragment contained in No. 5 is shown in FIG.

【0019】この3.5kbのBamHI断片の塩基配
列は,例えば,M13ファージを用いたジデオキシ法〔
Methods in Enzymology, 10
, p20, Academic Press, Ne
w york(1983)〕により決定される。この塩
基配列を配列表1に示す。この塩基配列の290位のA
から1,300位のT(1,011bp)にはオープン
リーディングフレームが存在し,該オープンリーディン
グフレームからは配列表1の塩基配列の下段に示される
アミノ酸配列(337アミノ酸)が翻訳可能である。こ
の配列表1のアミノ酸配列から予想されるタンパクの分
子量は36,098であり,SDS−PAGEにより得
られるADHの分子量35,000とよく一致する。さ
らに,該アミノ酸配列のN末端付近の配列がエドマン分
解法で得られた結果〔FEBS letters, 3
3, 1〜3(1973)〕と一致する。このことから
,このアミノ酸配列はADHのものであり,配列表1の
290位のAから1,300位のTで示される塩基配列
はADHの構造遺伝子であると結論づけられる。
[0019] The base sequence of this 3.5 kb BamHI fragment can be determined, for example, by the dideoxy method using M13 phage [
Methods in Enzymology, 10
, p20, Academic Press, Ne
W york (1983)]. This base sequence is shown in Sequence Table 1. A at position 290 of this base sequence
An open reading frame exists at position 1,300 from T (1,011 bp), and the amino acid sequence (337 amino acids) shown at the bottom of the base sequence in Sequence Listing 1 can be translated from this open reading frame. The molecular weight of the protein predicted from the amino acid sequence in Sequence Listing 1 is 36,098, which agrees well with the molecular weight of ADH, 35,000, obtained by SDS-PAGE. Furthermore, the sequence near the N-terminus of the amino acid sequence was obtained by the Edman degradation method [FEBS letters, 3
3, 1-3 (1973)]. From this, it can be concluded that this amino acid sequence is that of ADH, and that the base sequence indicated by A at position 290 to T at position 1,300 in Sequence Listing 1 is the structural gene of ADH.

【0020】さらに,配列表1の塩基配列について調べ
ると,上記オープンリーディングフレームの翻訳開始コ
ドン(ATG)の上流にはAAGGAGG(274位か
ら280位)でなるSD配列が存在し,該SD配列の上
流には(CA AAA AG)−3bp−(C TTT
 TTG)でなる逆位繰り返し配列(252位から26
8位)が存在することがわかる。この逆位繰り返し配列
は,ADH発現のためのオペレーターとして作用してい
ると考えられる。さらに上流には,(−35,−10)
領域のコンセンサス配列と相同な配列が2組存在する。 この(−35,−10)領域についてはMolecul
ar & General Genetics, 18
6, 339〜346(1982)に記載があり,AD
H遺伝子のプロモーターとして機能していると考えられ
る。このように,配列表1の塩基配列の1位のGから2
89位のCで示される配列は,ADHの発現制御領域で
あると考えられる。さらに,終止コドン(TAA)の下
流の1317位から1342位には(AA GAA G
GC G)−8bp−(CGC CTT CTT)でな
る逆位繰り返し配列が存在し,ターミネーターとして機
能していると考えられる。
Furthermore, when examining the base sequence of Sequence Listing 1, an SD sequence consisting of AAGGAGG (positions 274 to 280) is present upstream of the translation start codon (ATG) of the above open reading frame, and the SD sequence consists of AAGGAGG (positions 274 to 280). Upstream is (CA AAA AG)-3bp-(CTTT
TTG) inverted repeat sequence (positions 252 to 26
8th place) exists. This inverted repeat sequence is thought to act as an operator for ADH expression. Further upstream, (-35,-10)
There are two sets of sequences homologous to the consensus sequence of the region. For this (-35,-10) region, Molecule
ar & General Genetics, 18
6, 339-346 (1982), AD
It is thought to function as a promoter of the H gene. In this way, from G at position 1 of the base sequence in Sequence Listing 1 to 2
The sequence indicated by C at position 89 is considered to be the expression control region of ADH. Furthermore, from position 1317 to position 1342 downstream of the stop codon (TAA) (AA GAA G
An inverted repeat sequence consisting of GC G)-8bp-(CGC CTT CTT) is present and is thought to function as a terminator.

【0021】発明者はさらに,上記ADHを修飾するこ
とにより至適pHが塩基性にシフトした修飾ADHを得
ることを検討した。そのために,ADHの酵素活性のメ
カニズムおよびその活性中心についての検討を行った。
[0021] The inventor further investigated the possibility of obtaining a modified ADH in which the optimum pH was shifted to basicity by modifying the above ADH. To this end, we investigated the mechanism of ADH enzymatic activity and its active center.

【0022】ADHについては,従来の技術の項に記し
たように,B. stearothermophilu
s由来の酵素以外に,S. cerevisiae,ヒ
トおよびウマ由来のADHが知られており,図2〜4に
示すように,これらのアミノ酸配列が明らかにされてい
る[それぞれ,J.Biol. Chem., 258
, 2674(1983);Proc. Natl. 
Acad. Sci., USA, 82, 2703
(1985);およびEur. J. Biochem
. 16, 25(1970)]。これらのうちウマ由
来のADHについては,その作用機構が明らかにされて
いる[The Enzyme, 11, 104−19
0, Academic Press, Inc(19
75)]。従来の技術の項に記載した化1で示される反
応の詳細のメカニズムを図5に示す。このADHはZn
および水1分子と結合し,NAD+を介して酵素反応を
行う。図5においては,ADH(Eで示す),Znおよ
びH2Oがまず結合して酵素−NAD+複合体を形成し
,この複合体からH+が遊離し,複合体の異性化が起こ
る。これにアルコール(R−CH2OH)が付加して,
ADH−NAD+−アルコール三元複合体が形成され,
転位反応により,ADH−NADH−アルデヒド複合体
が形成される。次いで,アルデヒドの解離およびH2O
のZnへの付加により,ADH−Zn−NADH複合体
が形成され,異性化によりNADHが解離し,もとのA
DH−Zn−H2Oの形にもどる。この最初の段階(N
AD+が付加してプロトンが遊離する)における酵素の
活性中心であると考えられる部分のプロトンの受け渡し
の機構を図6に示す。図6に示すように,Znに,ウマ
由来のADHの46位のCys,61位のHis,およ
び174位のCysがリガントとして配位し,Znには
水1分子が付加し,この水分子に水素結合を介してAD
Hの48位のSerおよび51位のHisが結合すると
考えられている。このように,Zn,および上記Cys
(46位),His(61位),Cys(174位),
Ser(48位)およびHis(51位)により,この
酵素の活性部位が形成されると考えられている。活性部
位を構成するこれらのアミノ酸は,図2〜4に示すよう
に,各種ADHにおいて,比較的よく保持されている。
Regarding ADH, as described in the section of the prior art, B. stearothermophilu
In addition to enzymes derived from S. ADHs derived from E. cerevisiae, humans and horses are known, and their amino acid sequences have been revealed, as shown in FIGS. 2-4 [respectively, J. Biol. Chem. , 258
, 2674 (1983); Proc. Natl.
Acad. Sci. , USA, 82, 2703
(1985); and Eur. J. Biochem
.. 16, 25 (1970)]. Among these, the mechanism of action of horse-derived ADH has been clarified [The Enzyme, 11, 104-19
0, Academic Press, Inc. (19
75)]. FIG. 5 shows the detailed mechanism of the reaction represented by the chemical formula 1 described in the prior art section. This ADH is Zn
It combines with one molecule of water and performs an enzymatic reaction via NAD+. In FIG. 5, ADH (indicated by E), Zn and H2O first combine to form an enzyme-NAD+ complex, H+ is released from this complex, and isomerization of the complex occurs. Alcohol (R-CH2OH) is added to this,
ADH-NAD+-alcohol ternary complex is formed,
The rearrangement reaction forms an ADH-NADH-aldehyde complex. Then the dissociation of the aldehyde and H2O
is added to Zn, an ADH-Zn-NADH complex is formed, and NADH is dissociated by isomerization, and the original A
Return to the form of DH-Zn-H2O. This first stage (N
Figure 6 shows the mechanism of proton transfer at a portion considered to be the active center of the enzyme (AD+ is added and protons are liberated). As shown in Figure 6, Cys at position 46, His at position 61, and Cys at position 174 of horse-derived ADH coordinate with Zn as ligands, and one molecule of water is added to Zn, and this water molecule AD through hydrogen bond to
It is thought that Ser at position 48 and His at position 51 of H bind together. In this way, Zn and the above Cys
(46th place), His (61st place), Cys (174th place),
It is believed that Ser (position 48) and His (position 51) form the active site of this enzyme. These amino acids constituting the active site are relatively well preserved in various ADHs, as shown in FIGS. 2-4.

【0023】発明者らは,上記本発明のS. stea
rothermophilus NCA1503株由来
のADHについての活性部位を上記ウマ由来のADHの
活性部位から予想し,この活性部位を形成するアミノ酸
を変化させることにより,至適pHおよび活性を異なら
せることが可能であると考えた。発明者らは次に示す手
順により,配列表1に示す,ADHの活性部位に関与す
るアミノ酸が,38位のCys(Znのリガントのひと
つ),40位のThr,および43位のHisを含むこ
とを確認し,これらのうちの少なくとも1個を変化させ
ることによりADHの至適pHおよび/または活性が変
化し得ることを見い出した。より詳細には,配列表1の
アミノ酸配列の43番目のHisを他の塩基性アミノ酸
で置換すること,もしくは,該His残基の塩基性が高
くなるように該Hisを修飾することにより,至適pH
が塩基性側へシフトしたADHを得ることに成功した。
[0023] The inventors have discovered that the above-mentioned S. steam
The active site of ADH derived from the ADH strain NCA1503 was predicted from the active site of the horse-derived ADH mentioned above, and by changing the amino acids that form this active site, it was possible to vary the optimal pH and activity. Thought. The inventors used the following procedure to discover that the amino acids involved in the active site of ADH, shown in Sequence Listing 1, include Cys at position 38 (one of the ligands for Zn), Thr at position 40, and His at position 43. We have confirmed this and found that by changing at least one of these, the optimal pH and/or activity of ADH can be changed. More specifically, by replacing His at position 43 in the amino acid sequence of Sequence Listing 1 with another basic amino acid, or by modifying the His residue so that the basicity of the His residue is increased, Appropriate pH
We succeeded in obtaining ADH in which ADH was shifted to the basic side.

【0024】発明者らはまず,配列表1に示されるアミ
ノ酸配列の38位のCys,40位のThrおよび43
位のHisを下記の表1のように変化させた。これは,
配列表1に示されるDNA配列の上記部位を部位特異的
変異により変化させ,pTBAD35を構築したのと同
様に発現ベクターを形成し,後述のように形質転換体を
作成して該形質転換体を培養を行うことにより酵素タン
パクを発現させることにより行った。
[0024] The inventors first identified Cys at position 38, Thr at position 40, and Thr at position 43 of the amino acid sequence shown in Sequence Listing 1.
The His position was changed as shown in Table 1 below. this is,
The above site of the DNA sequence shown in Sequence Listing 1 is changed by site-directed mutagenesis to form an expression vector in the same manner as pTBAD35 was constructed, and a transformant is created as described below. This was done by culturing to express the enzyme protein.

【0025】[0025]

【表1】[Table 1]

【0026】得られた各培養液のADH活性(後述の方
法で測定)の有無を調べたところ,T40Sにはもとの
ADHの6割程度の活性が認められたが,C38S,T
40AおよびH43Aには活性が認められなかった。こ
のように,40位のThr(ウマ由来のADHにおいて
は48位に相当する)が,同じくOH基を有するSer
に変換された場合にはある程度の活性を有し,かつ40
位のThrおよび43位のHisがAlaに変換された
場合には活性が全くなくなることから,B. stea
rothermophilus NCA 1503株由
来のADHも,ウマ由来のADHと同様の活性部位およ
び活性機構を有することがわかった。
[0026] When examining the presence or absence of ADH activity (measured by the method described below) in each of the obtained culture solutions, it was found that T40S had about 60% of the original ADH activity, but C38S and T
No activity was observed for 40A and H43A. In this way, Thr at position 40 (corresponding to position 48 in horse-derived ADH) is replaced by Ser, which also has an OH group.
has some activity when converted to 40
When Thr at position 43 and His at position 43 are converted to Ala, there is no activity at all, so B. steam
It was found that ADH derived from Rothermophilus NCA 1503 strain also has the same active site and activation mechanism as ADH derived from horses.

【0027】上記知見をもとに,発明者らは,ADHの
活性中心を形成するアミノ酸のひとつである43位のH
isを修飾することにより本発明の修飾ADHを作成し
た。この修飾ADHは,上記Hisが他の塩基性アミノ
酸に置換され,もしくは,該His残基の塩基性が高く
なるように該Hisが修飾されている。例えば,このH
isはArgまたはLysに置換される。例えば,Ar
gに置換されて得られるADHをコードするDNA配列
は,部位特異的変異によりHis部位に相当するコドン
CATをCGTに変化させることにより得られる。 Hisの側鎖のイミダゾール環のpK値は6.0であり
,Argの側鎖であるグアニジル基のpK値は12.5
である。そのため,もとのADHは図7に示すように,
中性付近(約pH8.0)に至適pHを有するのに対し
て,Argに変換されたADH(H43R)は塩基性側
(約pH9.0)に至適pHを有する。
Based on the above findings, the inventors discovered that H at position 43, which is one of the amino acids that forms the active center of ADH,
The modified ADH of the present invention was created by modifying is. In this modified ADH, the above-mentioned His is substituted with another basic amino acid, or the His residue is modified so that the basicity of the His residue is increased. For example, this H
is is replaced with Arg or Lys. For example, Ar
The DNA sequence encoding ADH obtained by substitution with g can be obtained by changing the codon CAT corresponding to the His site to CGT by site-specific mutation. The pK value of the imidazole ring in the side chain of His is 6.0, and the pK value of the guanidyl group in the side chain of Arg is 12.5.
It is. Therefore, the original ADH is as shown in Figure 7.
While it has an optimum pH near neutrality (about pH 8.0), ADH (H43R) converted to Arg has an optimum pH on the basic side (about pH 9.0).

【0028】本発明の,上記43位のHisに対応する
コドンが修飾された修飾ADHの構造遺伝子も,上記修
飾されていないADHの構造遺伝子と同様に,適当なベ
クターに組み込まれて,発現ベクターとされる。例えば
,修飾ADH構造遺伝子,発現制御領域およびターミネ
ーターでなる発現可能な遺伝子をベクターpTB524
に組み込んで,発現ベクターpTBAD35H43Rが
得られる。これを例えば,B. subtilis M
I113株に導入すると形質転換体B. subtil
is MI113(pTBAD35H43R)が得られ
る。
[0028] The structural gene of the modified ADH of the present invention in which the codon corresponding to His at position 43 has been modified is also integrated into an appropriate vector and used as an expression vector, in the same manner as the structural gene of the unmodified ADH. It is said that For example, an expressible gene consisting of a modified ADH structural gene, an expression control region, and a terminator is transferred to the vector pTB524.
The expression vector pTBAD35H43R is obtained. For example, B. subtilis M
When introduced into strain I113, a transformant B. subtil
is MI113 (pTBAD35H43R) is obtained.

【0029】本発明の形質転換体を培養することにより
ADHまたは修飾ADHが生産される。例えば,上記B
. subtilis MI113(pTBAD35)
を培養すると,親株であるB. stearother
mophilus NCA1503株を用いた場合に比
べて10倍以上効率よくADHを生産することができる
。この形質転換体により生産されたADHは,通常の酵
素精製法を用いて精製することができる。さらに,上記
組換えプラスミドpTBAD35またはpTBAD35
H43RをもとのB. stearothermoph
ilus NCA1503株に導入することにより,A
DH生産が増大された形質転換体が得られる。得られた
ADHは,各種試薬として,もしくは,アルコール生産
用の酵素として利用され得る。あるいは,形質転換体を
,炭素源を含有する培地中で培養することにより,直接
アルコールを生産することも推奨される。
ADH or modified ADH is produced by culturing the transformant of the present invention. For example, the above B
.. subtilis MI113 (pTBAD35)
When cultured, the parent strain B. star other
mophilus strain NCA1503, ADH can be produced more than 10 times more efficiently. ADH produced by this transformant can be purified using a conventional enzyme purification method. Furthermore, the above recombinant plasmid pTBAD35 or pTBAD35
H43R to the original B. stearothermoph
By introducing A. illus NCA1503 strain, A.
A transformant with increased DH production is obtained. The obtained ADH can be used as various reagents or as an enzyme for alcohol production. Alternatively, it is also recommended to directly produce alcohol by culturing the transformant in a medium containing a carbon source.

【0030】pTBAD35H43Rで形質転換されて
得られる形質転換体が生産するADHは,上記のように
,至適pHが塩基性側にシフトしており,その至適pH
は約9.0である。 さらに,後述の実施例に示すように,この修飾ADHの
エタノールに対する親和性は野生株由来のADHのより
も著しく低い。従ってこのADHはエタノールを酸化す
る能力が低下しており,それゆえ,エタノール生産用の
酵素として最適である。本発明の遺伝子を取り出した親
株のNCA1503株は耐熱性であるので,得られた形
質転換体も耐熱性であり,従って,これを用いることに
より,工業的に有利に,効率よくアルコールを製造する
ことができる。
[0030] As mentioned above, the optimum pH of ADH produced by the transformant obtained by transformation with pTBAD35H43R is shifted to the basic side;
is approximately 9.0. Furthermore, as shown in the Examples below, the affinity of this modified ADH for ethanol is significantly lower than that of the ADH derived from the wild-type strain. Therefore, this ADH has a reduced ability to oxidize ethanol and is therefore optimal as an enzyme for ethanol production. Since the parent strain NCA1503 strain from which the gene of the present invention has been extracted is heat resistant, the obtained transformant is also heat resistant. Therefore, by using this, alcohol can be produced efficiently and advantageously industrially. be able to.

【0031】[0031]

【実施例】本発明を以下の実施例につき説明する。EXAMPLES The present invention will be explained with reference to the following examples.

【0032】実施例1 ADHをコードする構造遺伝子,発現制御領域およびタ
ーミネーターを有するDNA断片の単離,および発現ベ
クターの構築 B. stearothermophilus NCA
1503株を,トリプトン2%,酵母エキス1%および
NaCl 0.5%を含有する培地(pH 7.3)中
で,55℃にて16時間振盪培養した。得られた培養物
を遠心分離して菌体を回収し,常法〔Journal 
of Bacteriology, 147, 776
〜786(1981),前出〕に従って染色体DNAを
調製した。この染色体DNAを制限酵素Sau3AIに
より部分分解し,5〜7kbのDNA断片を得た。
Example 1 Isolation of a DNA fragment having a structural gene encoding ADH, an expression control region and a terminator, and construction of an expression vector B. stearothermophilus NCA
Strain 1503 was cultured with shaking at 55° C. for 16 hours in a medium (pH 7.3) containing 2% tryptone, 1% yeast extract, and 0.5% NaCl. The obtained culture was centrifuged to collect the bacterial cells, and the cells were collected using a conventional method [Journal
of Bacteriology, 147, 776
786 (1981), supra], chromosomal DNA was prepared. This chromosomal DNA was partially digested with the restriction enzyme Sau3AI to obtain a 5-7 kb DNA fragment.

【0033】これとは別に,プラスミドベクターpTB
524を制限酵素BamHI(Sau3AIによる切断
末端と連結可能な切断末端を形成する)で切断し,この
DNA断片と上記5〜7kb DNA断片とを,T4 
DNAリガーゼ(BRL社)を用いて連結し,発現ベク
ターを構築した。
[0033] Apart from this, plasmid vector pTB
524 with the restriction enzyme BamHI (forms a cut end that can be ligated with the cut end cut by Sau3AI), and this DNA fragment and the above 5 to 7 kb DNA fragment were combined with T4
They were ligated using DNA ligase (BRL) to construct an expression vector.

【0034】この発現ベクターを用い,Journal
 of Bacteriology, 146, 10
91〜1097(1981)(前出)に従って枯草菌B
. subtilis MI113株を形質転換した。 形質転換体は,トリプトン1%,酵母エキス0.5%,
NaCl0.5%,寒天1.5%およびTc 12.5
μg/mlを含有するL培地にプレートし,Tc耐性に
ついて選択した。次いで,選択された形質転換体をつま
ようじを用いて釣菌し,アンチビオチックメデューム(
AM)3(Difco社製)1.75%,パラロースア
ニリン0.005%,亜硫酸水素ナトリウム0.025
%およびバクトアガー(Difco社製)1.5%を含
有するアルデヒド指示プレートに植菌した。アルデヒド
を生成して赤く呈色したクローン(目的遺伝子を有する
形質転換体)を単離した。この単離法は,Journa
l of Bcteriology, 169,259
1〜2597(1987)(前出)に記載の方法と基本
的には同じ方法を用いた。但し,LB培地(トリプトン
1.0%,酵母エキス0.5%およびNaCl 1.0
%)の代わりに,pH7.0に緩衝作用のあるアンチビ
オチックメデューム(AM)3を用いた。これは,パラ
ロースアニリンの呈色反応はpH 7.0〜8.0で安
定であるが,LB培地にはpH緩衝能がないため菌体の
生成物によって培地のpHが変化することがあり,その
場合には呈色の判定が困難となるためである。アンチビ
オチックメデューム(AM)3を使用することによりパ
ラロースアニリンの発色が安定し,陽性クローンの選択
が容易であった。このようにして,約3,000個の形
質転換体クローンを調べたところ,アルデヒド指示プレ
ートにおいて赤色を呈する陽性クローンが1個得られた
[0034] Using this expression vector, the Journal
of Bacteriology, 146, 10
Bacillus subtilis B according to 91-1097 (1981) (supra)
.. subtilis MI113 strain was transformed. The transformant contained 1% tryptone, 0.5% yeast extract,
NaCl 0.5%, agar 1.5% and Tc 12.5
Plated on L medium containing ug/ml and selected for Tc resistance. Next, the selected transformants were picked using toothpicks and treated with antibiotic medium (
AM) 3 (manufactured by Difco) 1.75%, parallose aniline 0.005%, sodium bisulfite 0.025
% and aldehyde indicator plates containing 1.5% Bacto Agar (Difco). A clone (transformant having the target gene) that produced aldehyde and turned red was isolated. This isolation method was
l of Bcteriology, 169,259
1-2597 (1987) (supra) was basically used. However, LB medium (tryptone 1.0%, yeast extract 0.5% and NaCl 1.0
%), antibiotic medium (AM) 3, which has a buffering effect at pH 7.0, was used. This is because the color reaction of pararose aniline is stable at pH 7.0 to 8.0, but since LB medium does not have pH buffering capacity, the pH of the medium may change depending on the products of the bacterial cells. This is because in that case, it becomes difficult to judge the coloration. By using antibiotic medium (AM) 3, the color development of pararose aniline was stabilized, making it easy to select positive clones. Approximately 3,000 transformant clones were examined in this manner, and one positive clone was obtained that appeared red on the aldehyde indicator plate.

【0035】この陽性クローンを,Tc(12.5μg
/ml)を含有するL培地(トリプトン1.0%,酵母
エキス0.5%およびNaCl 0.5%)で,37℃
にて一晩振盪培養した。その後,遠心分離により菌体を
集め,プラスミドDNAを常法〔Journal of
Bacteriology, 149, 824〜83
0 (1982),〕により抽出した。このようにして
得られたプラスミドDNAには,プラスミドベクター由
来のDNAの他に約7.0kbのDNA断片が挿入され
ていた。この約7.0kbのDNA断片をBamHIで
切断すると,約3.5kbのBamHI断片が得られた
。このBamHI断片を,上記プラスミドベクターpT
B524のBamHI部位に上述と同様の方法に従って
挿入した。得られた組換えプラスミドをpTBAD35
と命名し,これを用いてB. subtilis MI
113株を形質転換したところ,上記アルデヒド指示プ
レートにおいて陽性を示した。このことから,pTBA
D35には目的とするADH遺伝子が含まれているとい
うことが結論された。このpTBAD35に含まれる3
.5kbのBamHI断片の制限酵素切断地図を図1に
示す。
[0035] This positive clone was treated with Tc (12.5 μg
/ml) in L medium (tryptone 1.0%, yeast extract 0.5% and NaCl 0.5%) at 37°C.
The cells were cultured with shaking overnight. Thereafter, the bacterial cells were collected by centrifugation, and the plasmid DNA was extracted using the standard method [Journal of
Bacteriology, 149, 824-83
0 (1982),]. The plasmid DNA thus obtained contained a DNA fragment of about 7.0 kb inserted in addition to the DNA derived from the plasmid vector. When this approximately 7.0 kb DNA fragment was digested with BamHI, a approximately 3.5 kb BamHI fragment was obtained. This BamHI fragment was transferred to the above plasmid vector pT
It was inserted into the BamHI site of B524 according to the same method as described above. The obtained recombinant plasmid was transformed into pTBAD35.
Using this name, B. subtilis MI
When strain 113 was transformed, it showed positive on the above aldehyde indicator plate. From this, pTBA
It was concluded that D35 contains the ADH gene of interest. 3 contained in this pTBAD35
.. A restriction enzyme cleavage map of the 5 kb BamHI fragment is shown in FIG.

【0036】実施例2 ADHをコードする構造遺伝子,発現制御領域およびタ
ーミネーターの塩基配列ならびに推定アミノ酸配列の決
定実施例1で得られた組換えプラスミドpTBAD35
を有する形質転換体を,Tc(12.5μg/ml)を
含有するL培地で37℃にて16時間培養した。その後
,実施例1と同様にしてプラスミドDNAを抽出し,B
amHIで切断して3.5kbのBamHI断片を得た
。この3.5kbのBamHI断片の塩基配列を,M1
3ファージを用いたジデオキシ法〔Methods i
n Enzymology, 10,p20, Aca
demic Press, New york(198
3),前出〕により決定した。決定された塩基配列を配
列表1に示す。
Example 2 Determination of the base sequence and deduced amino acid sequence of the structural gene encoding ADH, expression control region and terminator Recombinant plasmid pTBAD35 obtained in Example 1
The transformant having the following was cultured in L medium containing Tc (12.5 μg/ml) at 37° C. for 16 hours. Thereafter, plasmid DNA was extracted in the same manner as in Example 1, and B
Digestion with amHI yielded a 3.5 kb BamHI fragment. The base sequence of this 3.5 kb BamHI fragment was
Dideoxy method using 3 phages [Methods i
n Enzymology, 10, p20, Aca
demic Press, New York (198
3), supra]. The determined base sequence is shown in Sequence Table 1.

【0037】この塩基配列の検討を行ったところ,29
0位のAから1,300位のTまでの1,011bpの
オープンリーディングフレームが見い出された。翻訳可
能な337個のアミノ酸配列を,配列表1の塩基配列の
下段に示す。配列表1に示されるアミノ酸配列から予想
されるタンパクの分子量は36,098であり,SDS
−PAGEにより得られたADHの分子量35,000
とよく一致した。さらに,このアミノ酸配列のN末端付
近の配列は,エドマン分解法で得られた結果〔FEBS
 letters, 33, 1〜3(1973),前
出〕と一致した。従って,配列表1で示されるアミノ酸
配列はADHのものであるということが確認された。
[0037] When this base sequence was examined, it was found that 29
A 1,011 bp open reading frame from A at position 0 to T at position 1,300 was found. The 337 translatable amino acid sequences are shown below the base sequences in Sequence Listing 1. The molecular weight of the protein predicted from the amino acid sequence shown in Sequence Listing 1 is 36,098, and the SDS
- Molecular weight of ADH obtained by PAGE: 35,000
It was a good match. Furthermore, the sequence near the N-terminus of this amino acid sequence was obtained using the Edman degradation method [FEBS
letters, 33, 1-3 (1973), supra]. Therefore, it was confirmed that the amino acid sequence shown in Sequence Listing 1 is that of ADH.

【0038】実施例3 枯草菌の形質転換体を用いたADHの生産実施例1で得
られた組換えプラスミドpTBAD35を有する形質転
換体を,Tc(12.5μg/ml)を含有するL培地
で37℃にて一晩培養し,培養物を遠心分離することに
より菌体を集めた。これにリゾチーム(1mg/ml)
を含有する50mMリン酸緩衝液(pH7.8)を上記
培養物の1/25量加え,よく懸濁させた後,37℃に
て30分間インキュベートした。その後,この懸濁液を
顕微鏡を用いて観察すると,リゾチームによる溶菌が起
こっていることが確認された。この溶菌液を30,00
0rpm,30分間超遠心分離して得られた上清液を粗
酵素液とし,ADH活性を測定した。 対照として,B. stearothermophil
us NCA1503株を2L培地で55℃にて一晩培
養し,上述と同様の操作で調製した粗酵素液のADH活
性を測定した。
Example 3 Production of ADH using Bacillus subtilis transformant The transformant containing the recombinant plasmid pTBAD35 obtained in Example 1 was grown in L medium containing Tc (12.5 μg/ml). The cells were cultured overnight at 37° C. and the cells were collected by centrifuging the culture. Add to this lysozyme (1mg/ml)
1/25 of the above culture was added to 50 mM phosphate buffer (pH 7.8) containing 50 mM phosphate buffer (pH 7.8), thoroughly suspended, and then incubated at 37° C. for 30 minutes. Thereafter, when this suspension was observed using a microscope, it was confirmed that bacteriolysis by lysozyme had occurred. 30,000 ml of this lysate
The supernatant obtained by ultracentrifugation at 0 rpm for 30 minutes was used as a crude enzyme solution, and ADH activity was measured. As a control, B. stearothermophil
The us NCA1503 strain was cultured overnight at 55°C in a 2L medium, and the ADH activity of the crude enzyme solution prepared in the same manner as described above was measured.

【0039】ADH活性の測定は,Methods i
n Enzymology,I, 500〜503, 
Academic Press,New York(1
955)に記載の方法により行った。つまり,エタノー
ル(基質)およびNAD+(補欠分子族)を含有する反
応系を用い,ADHによるエタノールの酸化に伴うNA
D+のNADHへの還元を,NADHに特異的な340
nmにおける吸光度の変化として分光光度計により測定
した。その結果を表2に示す。
[0039] ADH activity can be measured using Methods i.
n Enzymology, I, 500-503,
Academic Press, New York (1
955). In other words, using a reaction system containing ethanol (substrate) and NAD+ (prosthetic group), the NA associated with the oxidation of ethanol by ADH is
The reduction of D+ to NADH is carried out by the NADH-specific 340
It was measured by a spectrophotometer as a change in absorbance in nm. The results are shown in Table 2.

【0040】[0040]

【表2】[Table 2]

【0041】表2から,形質転換体は,B.  ste
arothermophilus  NCA1503株
に比べてADHを10倍以上の割合で生産することがわ
かる。
From Table 2, the transformants are B. ste
It can be seen that this strain produces ADH at a rate 10 times or more compared to the Allothermophilus NCA1503 strain.

【0042】参考例1 実施例1で得られた組換えプラスミドから,本発明のA
DHをコードする遺伝子を切り出し,部位特異的変異に
より(Amersham社の変異導入キットを使用),
配列表1の402位のGをCに変換したDNA断片,4
07位のAをGに変換したDNA断片,407位のAを
Tに変換したDNA断片,および416位のCをGに変
換し,かつ417位のAをCに変換したDNA断片,を
それぞれ得た。これら4種のDNA断片を,実施例1と
同様の手法により,それぞれプラスミドベクターpTB
524に組み込み,プラスミドベクターpTBAD35
C38S,pTBAD35T40A,pTBAD35T
40SおよびpTBAD35H43Aを得た。これらの
プラスミドベクターを,それぞれB. subtili
s MI113株に導入し,形質転換体B. subt
ilis MI113(pTBAD35C38S),B
. subtilis MI113(pTBAD35T
40A),B. subtilis MI113(pT
BAD35T40S)およびB. subtilis 
MI113(pTBAD35H43A)を得た。
Reference Example 1 From the recombinant plasmid obtained in Example 1, A of the present invention was
The gene encoding DH was excised and subjected to site-specific mutagenesis (using Amersham's mutation introduction kit).
DNA fragment in which G at position 402 of Sequence Listing 1 was converted to C, 4
A DNA fragment in which A at position 07 was converted to G, a DNA fragment in which A at position 407 was converted to T, and a DNA fragment in which C at position 416 was converted to G and A at position 417 was converted to C. Obtained. These four types of DNA fragments were added to the plasmid vector pTB using the same method as in Example 1.
524 into plasmid vector pTBAD35
C38S, pTBAD35T40A, pTBAD35T
40S and pTBAD35H43A were obtained. These plasmid vectors were used as B. subtili
s MI113 strain, and transformant B. subt
ilis MI113 (pTBAD35C38S), B
.. subtilis MI113 (pTBAD35T
40A), B. subtilis MI113 (pT
BAD35T40S) and B. subtilis
MI113 (pTBAD35H43A) was obtained.

【0043】500ml容の三角フラスコに,テトラサ
イクリン含有L培地(L−Tc培地;テトラサイクリン
含有率25μg/ml)50mlを入れて減菌し(4個
作成),これらに,上記形質転換体をそれぞれ1白金耳
ずつ植菌し,37℃で一夜振盪培養を行った。これを1
0,000rpmで5分間遠心分離して集菌し,50m
Mリン酸緩衝液(pH7.8)で洗浄した後,再び遠心
分離して集菌した。次に,1mg/mlのリゾチームを
含むリン酸緩衝液10mlに上記菌体を懸濁させ,37
℃で30分間インキュベートした後,15,000rp
mで20分間遠心分離した。得られた上清を粗酵素液と
して,ADHの酵素活性をpH7.8,55℃にて測定
した。ADH活性の測定はエタノールの酸化に伴って生
成されるNADHの量を,340nmの吸収の増加を測
定することにより行った。この方法はMethodsi
n Enzymology, I, 500−503,
 Academic Press. New York
(1955)に記載されている。ADH活性を表3に示
す。表3の変異ADHの項において,C38Sは38位
のCysがSerに,T40Aは40位のThrがAl
aに,T40Sは40位のThrがSerに,そして,
H43Aは,43位のHisがAlaにそれぞれ変換さ
れていることを示す。
[0043] 50 ml of tetracycline-containing L medium (L-Tc medium; tetracycline content 25 μg/ml) was placed in a 500 ml Erlenmeyer flask and sterilized (4 pieces were prepared), and 1 piece of the above transformant was added to each of these. Each platinum loop was inoculated and cultured with shaking at 37°C overnight. This is 1
Collect bacteria by centrifugation at 0,000 rpm for 5 minutes, and
After washing with M phosphate buffer (pH 7.8), the cells were centrifuged again to collect bacteria. Next, the above bacterial cells were suspended in 10 ml of phosphate buffer containing 1 mg/ml of lysozyme.
After incubation for 30 minutes at ℃, 15,000 rpm
Centrifuged for 20 minutes at m. The resulting supernatant was used as a crude enzyme solution, and the enzyme activity of ADH was measured at pH 7.8 and 55°C. ADH activity was measured by measuring the amount of NADH produced upon oxidation of ethanol by measuring the increase in absorption at 340 nm. This method is
n Enzymology, I, 500-503,
Academic Press. New York
(1955). ADH activity is shown in Table 3. In the section of mutant ADH in Table 3, in C38S, Cys at position 38 is changed to Ser, and in T40A, Thr at position 40 is changed to Al.
In a, T40S has 40th Thr in Ser, and
H43A indicates that His at position 43 has been converted to Ala.

【0044】[0044]

【表3】[Table 3]

【0045】表3において,C38S,T40Aおよび
H43Aが活性を持たないことから,ADHの38位の
Cys,40位のThrおよび43位のHisは酵素の
活性中心を形成するのに関与することがわかる。40位
のThrが,Thrと同じくOH基を有するSerに変
換されたT40Sが約60%の活性を有することからも
この推定は支持される。
[0045] In Table 3, since C38S, T40A, and H43A have no activity, Cys at position 38, Thr at position 40, and His at position 43 of ADH are likely to be involved in forming the active center of the enzyme. Recognize. This assumption is also supported by the fact that T40S, in which Thr at position 40 is converted to Ser having an OH group like Thr, has an activity of about 60%.

【0046】実施例4 上記参考例の知見から,本実施例では43位のHisの
修飾,特にHisより塩基性の度合の高いArgに変換
した修飾ADHの作成を行った。
Example 4 Based on the findings of the above reference example, in this example, a modified ADH was created in which His at position 43 was modified, particularly by converting it to Arg, which has a higher degree of basicity than His.

【0047】実施例1で得られた組換えプラスミドから
,本発明のADHをコードする遺伝子を切り出し,部位
特異的変異により(Amersham社の変異導入キッ
トを使用),配列表1の417位のAをGに変換したD
NA断片を得た。このDNA断片を,実施例1と同様の
手法により,プラスミドベクターpTB524に組み込
み,プラスミドベクターpTBAD35H43Rを得た
。このプラスミドベクターをB. subtilis 
MI113株に導入し,形質転換体B. subtil
is MI113(pTBAD35H43R)を得た。
The gene encoding the ADH of the present invention was excised from the recombinant plasmid obtained in Example 1, and the ADH at position 417 of Sequence Listing 1 was mutated by site-specific mutagenesis (using Amersham's mutation introduction kit). D converted to G
An NA fragment was obtained. This DNA fragment was integrated into plasmid vector pTB524 by the same method as in Example 1 to obtain plasmid vector pTBAD35H43R. This plasmid vector was transferred to B. subtilis
It was introduced into MI113 strain and transformant B. subtil
is MI113 (pTBAD35H43R) was obtained.

【0048】テトラサイクリン(25μg/ml)を含
むL培地50mlに上記形質転換体を1白金耳植菌し,
37℃で17時間振盪培養を行った。これを8000r
pmで10分間遠心分離して集菌し,20mMリン酸カ
リウム緩衝液(pH7.8)で洗浄後,再び8000r
pmで10分遠心分離を行った。これに,リゾチーム1
mg/mlを含む20mMリン酸緩衝液(pH7.8)
を5ml(培養液の1/10量)加え,37℃で30分
間インキュベートして菌体を破砕した。10分間氷冷後
,30,000rpmで30分間遠心分離し,得られた
上清を粗酵素液とした。
One platinum loop of the above transformant was inoculated into 50 ml of L medium containing tetracycline (25 μg/ml).
Shaking culture was performed at 37°C for 17 hours. This is 8000r
Collect bacteria by centrifuging at pm for 10 minutes, wash with 20mM potassium phosphate buffer (pH 7.8), and centrifuge again at 8000 r.
Centrifugation was performed for 10 minutes at pm. In addition, lysozyme 1
20mM phosphate buffer (pH 7.8) containing mg/ml
5 ml (1/10 volume of the culture solution) was added and incubated at 37°C for 30 minutes to disrupt the bacterial cells. After cooling on ice for 10 minutes, the mixture was centrifuged at 30,000 rpm for 30 minutes, and the resulting supernatant was used as a crude enzyme solution.

【0049】上記粗酵素液を60℃で10分間加熱し,
変性したタンパクを15,000rpmで10分間遠心
分離することによって取り除いた。目的とする酵素は好
熱菌由来の酵素であるので耐熱性が高く,加熱処理して
も安定であったが,宿主由来のタンパクは変性し,除去
された。得られたタンパクを,次のように,イオン交換
カラムにより処理した。イオン交換体としてはDEAE
セルロース(Whatman社製 DE52)を用い,
緩衝液としては20mMリン酸カリウム緩衝液(pH7
.8)を用いた。溶出塩としてKCl(塩化カリウム)
を用い,0M〜0.37Mのリニアグラジエントで緩や
かに溶出を行った。ADH活性の高いフラクションを,
20mMリン酸カリウム緩衝液(pH7.8)に対して
4℃において20時間透析し,精製酵素を得た。
[0049] The above crude enzyme solution was heated at 60°C for 10 minutes,
Denatured proteins were removed by centrifugation at 15,000 rpm for 10 minutes. Since the target enzyme was derived from a thermophilic bacterium, it had high heat resistance and was stable even after heat treatment, but host-derived proteins were denatured and removed. The obtained protein was treated with an ion exchange column as follows. DEAE as an ion exchanger
Using cellulose (DE52 manufactured by Whatman),
The buffer solution is 20mM potassium phosphate buffer (pH 7).
.. 8) was used. KCl (potassium chloride) as elution salt
Elution was performed using a linear gradient of 0M to 0.37M. The fraction with high ADH activity,
The purified enzyme was obtained by dialysis against 20mM potassium phosphate buffer (pH 7.8) at 4°C for 20 hours.

【0050】精製された酵素および実施例1で得られた
形質転換体が産生する酵素(精製品)を用いて,各種p
H条件で活性を測定し,至適pHを求めた。活性測定時
において,pH6.0〜8.5においては,50mMリ
ン酸緩衝液(図7において白ヌキの印で示す)を,pH
8.5〜10.5においては50mMグリシン−KOH
緩衝液(図7において黒くぬりつぶした印で示す)を用
いた。測定の結果を図7に示す。 図7から,pTBAD35を有する形質転換体が産生す
るADH(野生型)の至適pHは7.0〜8.5の中性
領域であるのに比べてpTBAD35H43Rを有する
形質転換体が産生するADH(H43R)の至適pHは
約9.0の塩基性領域にあることがわかる。精製酵素の
代わりに粗酵素を用いた場合にも同様の結果が得られた
[0050] Using the purified enzyme and the enzyme (purified product) produced by the transformant obtained in Example 1, various p.
The activity was measured under H conditions and the optimum pH was determined. When measuring activity, at pH 6.0 to 8.5, 50mM phosphate buffer (indicated by a white blank in Figure 7) was
50mM glycine-KOH for 8.5-10.5
A buffer solution (indicated by the black mark in FIG. 7) was used. The measurement results are shown in FIG. From Figure 7, the optimal pH of ADH (wild type) produced by the transformant having pTBAD35 is in the neutral range of 7.0 to 8.5, whereas the optimal pH of ADH produced by the transformant having pTBAD35H43R is It can be seen that the optimum pH of (H43R) is in the basic region of about 9.0. Similar results were obtained when crude enzyme was used instead of purified enzyme.

【0051】実施例5 実施例1で得られたpTBAD35を有する形質転換体
が産生する酵素(野生型),参考例で得られたpTBA
D35T40Sを有する形質転換体が産生する酵素(T
40S),および実施例4で得られたpTBAD35H
43Rを有する形質転換体が産生する酵素(H43R)
を用い(それぞれ精製品を用いた),種々のエタノール
濃度(0.1mM〜1.0M)における反応初速度を測
定し(pH7.8および9.0において実施),Lin
eweaver−Burkプロットによって速度定数を
求めた。Km(mM)の逆数は酵素の基質(エタノール
)に対する親和力を示し,kcat(s−1)は酵素1
モルあたりの最大反応速度を示す。その結果を表4に示
す。
Example 5 Enzyme produced by the transformant having pTBAD35 obtained in Example 1 (wild type), pTBAD obtained in Reference Example
The enzyme produced by the transformant having D35T40S (T
40S), and pTBAD35H obtained in Example 4
Enzyme produced by a transformant having 43R (H43R)
(purified products were used for each), the initial reaction rate was measured at various ethanol concentrations (0.1mM to 1.0M) (carried out at pH 7.8 and 9.0), and Lin
Rate constants were determined by eweaver-Burk plot. The reciprocal of Km (mM) indicates the affinity of the enzyme for the substrate (ethanol), and kcat (s-1) indicates the affinity of the enzyme for the substrate (ethanol).
Maximum reaction rate per mole is shown. The results are shown in Table 4.

【0052】[0052]

【表4】[Table 4]

【0053】kcat(pH9.0)/kcat(pH
7.8)の値は,野生型酵素およびT40S変異酵素に
おいてはpH7.8での値の方がpH9.0での値より
大きく,最適pHは中性領域にあることが示された。こ
れに対して,H43R変異酵素はkcat(pH9.0
)/kcat(pH7.8)の値が1.91と大きく,
pH9.0において,より酵素活性が高いことが示され
た。
[0053] kcat (pH 9.0)/kcat (pH
7.8) was larger at pH 7.8 than at pH 9.0 for the wild-type enzyme and the T40S mutant enzyme, indicating that the optimum pH was in the neutral region. In contrast, the H43R mutant enzyme was kcat (pH 9.0
)/kcat (pH 7.8) value is as large as 1.91,
It was shown that the enzyme activity was higher at pH 9.0.

【0054】H43RのKm値は野生型酵素のKm値よ
りも50倍以上大きく,このことはエタノールに対する
親和力が著しく低いことを示している。つまり,エタノ
ールの酸化力がかなり低い。ADHはエタノール生産用
の最終段階の酵素であり,アルデヒドよりエタノールを
生成する反応を触媒する。その逆反応としてエタノール
をアルデヒドに酸化する能力も有している。上記のよう
に,H43Rはエタノールを酸化する能力が低く,従っ
て,エタノール生産用の酵素として最適であることがわ
かる。
The Km value of H43R is more than 50 times greater than that of the wild-type enzyme, indicating a significantly lower affinity for ethanol. In other words, the oxidizing power of ethanol is quite low. ADH is the final step enzyme for ethanol production and catalyzes the reaction that produces ethanol from aldehydes. It also has the ability to oxidize ethanol to aldehydes as a reverse reaction. As mentioned above, H43R has a low ability to oxidize ethanol, and therefore is found to be optimal as an enzyme for ethanol production.

【0055】[0055]

【発明の効果】本発明によれば,このように,B. s
tearothermophilus NCA1503
株由来のADHまたは該ADHの活性部位を形成するア
ミノ酸が変化した修飾ADHをコードする構造遺伝子;
該構造遺伝子,発現制御領域およびターミネーターを有
する,発現可能な遺伝子;該構造遺伝子または該発現可
能な遺伝子を有する組換えプラスミド;該組換えプラス
ミドが導入された形質転換体;該形質転換体を用いたA
DHの製造方法;ならびに該形質転換体を用いたアルコ
ールの製造方法が提供される。本発明の形質転換体は,
B. stearothermophilus NCA
1503株よりもADHの生産量が10倍以上も多いた
め,該形質転換体を用いることにより従来よりも大量・
安価にADHを得ることができる。さらに,この形質転
換体またはADHを用いて,工業的に効率よくアルコー
ルを製造することも可能である。上記ADHの活性部位
を形成するアミノ酸が変化した修飾ADH,特に43位
のHisがより塩基性の度合の高いアミノ酸に変換され
た修飾ADHは,その至適pHが,もとのADHに比べ
て塩基性側へシフトしている。さらに,アルコールに対
する親和性がより低いため,アルコールを生産するのに
好適である。
[Effects of the Invention] According to the present invention, as described above, B. s
tearothermophilus NCA1503
A structural gene encoding a strain-derived ADH or a modified ADH in which the amino acids forming the active site of the ADH have been changed;
An expressible gene having the structural gene, an expression control region, and a terminator; a recombinant plasmid having the structural gene or the expressible gene; a transformant into which the recombinant plasmid has been introduced; A was there
A method for producing DH; and a method for producing alcohol using the transformant are provided. The transformant of the present invention is
B. stearothermophilus NCA
Since the ADH production amount is more than 10 times higher than that of the 1503 strain, by using this transformant, a larger amount of ADH can be produced than before.
ADH can be obtained at low cost. Furthermore, it is also possible to industrially and efficiently produce alcohol using this transformant or ADH. Modified ADH in which the amino acids that form the active site of ADH have been changed, especially modified ADH in which His at position 43 has been converted to a more basic amino acid, have an optimal pH that is higher than that of the original ADH. Shifted to the basic side. Additionally, it has a lower affinity for alcohol, making it suitable for producing alcohol.

【0056】[0056]

【配列表】配列番号:1 配列の長さ:1506 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:Genomic  DNA起源   生物名:ハ゛チルス  ステアロサーモフィラス(
Bacillus stearothermophil
us)   株名:NCA1503 配列の特徴 特徴を表す記号:−35signal 存在位置:83..88および188..193特徴を
決定した方法:S 特徴を表す記号:−10signal 存在位置:106..111;および211,216特
徴を決定した方法:S 特徴を表す記号:CDS 存在位置:290..1303 特徴を決定した方法:S 特徴を表す記号:terminator存在位置:13
17..1342 特徴を決定した方法:S GGCTCCATGT CAAGCGTCAT CGC
TCCCCAC TCTTAAAGGG GCAGGA
ACTT AGTAAAAAAT     60TAA
CTTTTTT GTGTCCAAAA ATTTGA
CGTA AATCCATTTA CACTATATG
A CTAGAACAGA    120AACTTT
ATAT GATGTCAACT CCCGAACCA
A ATTTTTAACT TTTTATCCAA A
AATATTTTT    180CATTTTTTT
G AACATTTTAT TTGTGATATT T
TTCACAAGT TAAATGTATG CTAC
ACTACA    240TATGTACAGA T
CAAAAAGTC CCTTTTTGCC TAGA
AGGAGG ATTATAATC ATG AAA 
GCT    298               
                         
              Met Lys Ala
                         
                         
     1GCA GTT GTG GAA CAA
 TTT AAA AAG CCG TTA CAA 
GTG AAA GAA GTG GAA      
346Ala Val Val Glu Gln Ph
e Lys Lys Pro Leu Gln Val
 Lys Glu Val Glu     5   
                10       
           15AAA CCT AAG 
ATC TCA TAC GGG GAA GTA T
TA GTG CGC ATC AAA GCG TG
T      394Lys Pro Lys Ile
 Ser Tyr Gly Glu Val Leu 
Val Arg Ile Lys Ala Cys 2
0                  25    
              30         
         35GGG GTA TGC CA
T ACA GAC TTG CAT GCC GCA
 CAT GGC GAC TGG CCT GTA 
     442Gly Val Cys His T
hr Asp Leu His Ala Ala Hi
s Gly Asp Trp Pro Val    
             40          
        45               
   50AAG CCT AAA CTG CCT 
CTC ATT CCT GGC CAT GAA G
GC GTC GGT GTA ATT      4
90Lys Pro Lys Leu Pro Leu
 Ile Pro Gly His Glu Gly 
Val Gly Val Ile          
   55                  60
                  65GAA G
AA GTA GGT CCT GGG GTA AC
A CAT TTA AAA GTT GGA GAT
 CGC GTA      538Glu Glu 
Val Gly Pro Gly Val Thr H
is Leu Lys Val Gly Asp Ar
g Val         70         
         75              
    80GGT ATC CCT TGG CTT
 TAT TCG GCG TGC GGT CAT 
TGT GAC TAT TGC TTA      
586Gly Ile Pro Trp Leu Ty
r Ser Ala Cys Gly His Cys
 Asp Tyr Cys Leu     85  
                90       
           95AGC GGA CAA 
GAA ACA TTA TGC GAA CGT C
AA CAA AAC GCT GGC TAT TC
C      634Ser Gly Gln Glu
 Thr Leu Cys Glu Arg Gln 
Gln Asn Ala Gly Tyr Ser10
0                 105    
             110         
        115GTC GAT GGT GG
T TAT GCT GAA TAT TGC CGT
 GCT GCA GCC GAT TAT GTC 
     682Val Asp Gly Gly T
yr Ala Glu Tyr Cys Arg Al
a Ala Ala Asp Tyr Val    
            120          
       125               
  130GTA AAA ATT CCT GAT 
AAC TTA TCG TTT GAA GAA G
CC GCT CCA ATC TTT      7
30Val Lys Ile Pro Asp Asn
 Leu Ser Phe Glu Glu Ala 
Ala Pro Ile Phe          
  135                 140
                 145TGC G
CT GGT GTA ACA ACA TAT AA
A GCG CTC AAA GTA ACA GGC
 GCA AAA      778Cys Ala 
Gly Val Thr Thr Tyr Lys A
la Leu Lys Val Thr Gly Al
a Lys        150         
        155              
   160CCA GGT GAA TGG GTA
 GCC ATT TAC GGT ATC GGC 
GGG CTT GGA CAT GTC      
826Pro Gly Glu Trp Val Al
a Ile Tyr Gly Ile Gly Gly
 Leu Gly His Val    165  
               170       
          175GCA GTC CAA 
TAC GCA AAG GCG ATG GGG T
TA AAC GTC GTT GCT GTC GA
T      874Ala Val Gln Tyr
 Ala Lys Ala Met Gly Leu 
Asn Val Val Ala Val Asp18
0                 185    
             190         
        195TTA GGT GAT GA
A AAA CTT GAG CTT GCT AAA
 CAA CTT GGT GCA GAT CTT 
     922Leu Gly Asp Glu L
ys Leu Glu Leu Ala Lys Gl
n Leu Gly Ala Asp Leu    
            200          
       205               
  210GTC GTC AAT CCG AAA 
CAT GAT GAT GCA GCA CAA T
GG ATA AAA GAA AAA      9
70Val Val Asn Pro Lys His
 Asp Asp Ala Ala Gln Trp 
Ile Lys Glu Lys          
  215                 220
                 225GTG G
GC GGT GTG CAT GCG ACT GT
C GTC ACA GCT GTT TCA AAA
 GCC GCG     1018Val Gly 
Gly Val His Ala Thr Val V
al Thr Ala Val Ser Lys Al
a Ala        230         
        235              
   240TTC GAA TCA GCC TAC
 AAA TCC ATT CGT CGC GGT 
GGT GCT TGC GTA CTC     1
066Phe Glu Ser Ala Tyr Ly
s Ser Ile Arg Arg Gly Gly
 Ala Cys Val Leu    245  
               250       
          255GTC GGA TTA 
CCG CCG GAA GAA ATA CCT A
TT CCA ATT TTC GAT ACA GT
A     1114Val Gly Leu Pro
 Pro Glu Glu Ile Pro Ile 
Pro Ile Phe Asp Thr Val26
0                 265    
             270         
        275TTA AAT GGA GT
A AAA ATT ATT GGT TCT ATC
 GTT GGT ACG CGC AAA GAC 
    1162Leu Asn Gly Val L
ys Ile Ile Gly Ser Ile Va
l Gly Thr Arg Lys Asp    
            280          
       285               
  290TTA CAA GAG GCA CTT 
CAA TTT GCA GCA GAA GGA A
AA GTA AAA ACA ATT     12
10Leu Gln Glu Ala Leu Gln
 Phe Ala Ala Glu Gly Lys 
Val Lys Thr Ile          
  295                 300
                 305GTC G
AA GTG CAA CCG CTT GAA AA
C ATT AAC GAC GTA TTC GAT
 CGT ATG     1258Val Glu 
Val Gln Pro Leu Glu Asn I
le Asn Asp Val Phe Asp Ar
g Met        310         
        315              
   320TTA AAA GGG CAA ATT
 AAC GGC CGC GTC GTG TTA 
AAA GTA GAT             1
300Leu Lys Gly Gln Ile As
n Gly Arg Val Val Leu Lys
 Val Asp    325          
       330               
  335     337TAAAAAGTAG A
TTAAAAAGA AGGCGTCTGA GGGC
GCCTTC TTATTTTACT TCAACGG
AAA   1360ATACTTGATG ATCA
TGAAGC TCTTCCTTAT TTACGTC
CCA CAAAACGTCC GATACGGTCG
   1420ATCAGACGGC TCAGGAG
GTA TAGCATATTA CCCGTGGTGC
 TAGATAAACT CAAACAAGCA   
1480TAAAAATAGC CCTTGCATGA
 GGATCC                  
                      150
[Sequence list] Sequence number: 1 Sequence length: 1506 Sequence type: Number of nucleic acid strands: Double stranded Topology: Linear Sequence type: Genomic DNA origin Organism name: Hycilus stearothermophilus (
Bacillus stearothermophil
us) Strain name: NCA1503 Sequence characteristics Symbol representing characteristics: -35signal Location: 83. .. 88 and 188. .. 193 How the feature was determined: S Symbol representing the feature: -10signal Location: 106. .. 111; and 211,216 How the feature was determined: S Symbol representing the feature: CDS Location: 290. .. 1303 Method for determining features: S Symbol representing features: terminator Location: 13
17. .. 1342 How the characteristics were determined: S GGCTCCATGT CAAGCGTCAT CGC
TCCCCAC TCTTAAAGGG GCAGGA
ACTT AGTAAAAAT 60TAA
CTTTTTTT GTGTCCAAAA ATTTGA
CGTA AATCCATTTA CACTATATG
A CTAGAACAGA 120AACTTT
ATAT GATGTCAACT CCCGAACCA
A ATTTTTAACT TTTTATCCAA A
AATATTTTTT 180CATTTTTTT
G AACATTTTAT TTGTGATATT T
TTCACAAGT TAAATGTATG CTAC
ACTACA 240TATGTACAGA T
CAAAAAGTC CCTTTTTGCC TAGA
AGGAGG ATTATAATC ATG AAA
GCT 298

Met Lys Ala


1GCA GTT GTG GAA CAA
TTT AAA AAG CCG TTA CAA
GTG AAA GAA GTG GAA
346Ala Val Val Glu Gln Ph
e Lys Lys Pro Leu Gln Val
Lys Glu Val Glu 5
10
15AAA CCT AAG
ATC TCA TAC GGG GAA GTA T
TA GTG CGC ATC AAA GCG TG
T 394Lys Pro Lys Ile
Ser Tyr Gly Glu Val Leu
Val Arg Ile Lys Ala Cys 2
0 25
30
35GGG GTA TGC CA
T ACA GAC TTG CAT GCC GCA
CAT GGC GAC TGG CCT GTA
442Gly Val Cys His T
hr Asp Leu His Ala Ala Hi
s Gly Asp Trp Pro Val
40
45
50AAG CCT AAA CTG CCT
CTC ATT CCT GGC CAT GAA G
GC GTC GGT GTA ATT 4
90Lys Pro Lys Leu Pro Leu
Ile Pro Gly His Glu Gly
Val Gly Val Ile
55 60
65GAA G
AA GTA GGT CCT GGG GTA AC
A CAT TTA AAA GTT GGA GAT
CGC GTA 538Glu Glu
Val Gly Pro Gly Val Thr H
is Leu Lys Val Gly Asp Ar
g Val 70
75
80GGT ATC CCT TGG CTT
TAT TCG GCG TGC GGT CAT
TGT GAC TAT TGC TTA
586Gly Ile Pro Trp Leu Ty
r Ser Ala Cys Gly His Cys
Asp Tyr Cys Leu 85
90
95AGC GGA CAA
GAA ACA TTA TGC GAA CGT C
AA CAA AAC GCT GGC TAT TC
C 634Ser Gly Gln Glu
Thr Leu Cys Glu Arg Gln
Gln Asn Ala Gly Tyr Ser10
0 105
110
115GTC GAT GGT GG
T TAT GCT GAA TAT TGC CGT
GCT GCA GCC GAT TAT GTC
682Val Asp Gly Gly T
yr Ala Glu Tyr Cys Arg Al
a Ala Ala Asp Tyr Val
120
125
130GTA AAA ATT CCT GAT
AAC TTA TCG TTT GAA GAA G
CC GCT CCA ATC TTT 7
30Val Lys Ile Pro Asp Asn
Leu Ser Phe Glu Glu Ala
Ala Pro Ile Phe
135 140
145TGC G
CT GGT GTA ACA ACA TAT AA
A GCG CTC AAA GTA ACA GGC
GCA AAA 778Cys Ala
Gly Val Thr Thr Tyr Lys A
la Leu Lys Val Thr Gly Al
a Lys 150
155
160CCA GGT GAA TGG GTA
GCC ATT TAC GGT ATC GGC
GGG CTT GGA CAT GTC
826Pro Gly Glu Trp Val Al
a Ile Tyr Gly Ile Gly Gly
Leu Gly His Val 165
170
175GCA GTC CAA
TAC GCA AAG GCG ATG GGG T
TA AAC GTC GTT GCT GTC GA
T 874Ala Val Gln Tyr
Ala Lys Ala Met Gly Leu
Asn Val Val Ala Val Asp18
0 185
190
195TTA GGT GAT GA
A AAA CTT GAG CTT GCT AAA
CAA CTT GGT GCA GAT CTT
922Leu Gly Asp Glu L
ys Leu Glu Leu Ala Lys Gl
n Leu Gly Ala Asp Leu
200
205
210GTC GTC AAT CCG AAA
CAT GAT GAT GCA GCA CAA T
GG ATA AAA GAA AAA 9
70Val Val Asn Pro Lys His
Asp Asp Ala Ala Gln Trp
Ile Lys Glu Lys
215 220
225GTG G
GC GGT GTG CAT GCG ACT GT
C GTC ACA GCT GTT TCA AAA
GCC GCG 1018Val Gly
Gly Val His Ala Thr Val V
al Thr Ala Val Ser Lys Al
a Ala 230
235
240TTC GAA TCA GCC TAC
AAA TCC ATT CGT CGC GGT
GGT GCT TGC GTA CTC 1
066Phe Glu Ser Ala Tyr Ly
s Ser Ile Arg Arg Gly Gly
Ala Cys Val Leu 245
250
255GTC GGA TTA
CCG CCG GAA GAA ATA CCT A
TT CCA ATT TTC GAT ACA GT
A 1114Val Gly Leu Pro
Pro Glu Glu Ile Pro Ile
Pro Ile Phe Asp Thr Val26
0 265
270
275TTA AAT GGA GT
A AAA ATT ATT GGT TCT ATC
GTT GGT ACG CGC AAA GAC
1162Leu Asn Gly Val L
ys Ile Ile Gly Ser Ile Va
l Gly Thr Arg Lys Asp
280
285
290TTA CAA GAG GCA CTT
CAA TTT GCA GCA GAA GGA A
AA GTA AAA ACA ATT 12
10Leu Gln Glu Ala Leu Gln
Phe Ala Ala Glu Gly Lys
Val Lys Thr Ile
295 300
305GTC G
AA GTG CAA CCG CTT GAA AA
C ATT AAC GAC GTA TTC GAT
CGT ATG 1258Val Glu
Val Gln Pro Leu Glu Asn I
le Asn Asp Val Phe Asp Ar
g Met 310
315
320TTA AAA GGG CAA ATT
AAC GGC CGC GTC GTG TTA
AAA GTA GAT 1
300Leu Lys Gly Gln Ile As
n Gly Arg Val Val Leu Lys
Val Asp 325
330
335 337TAAAAAAGTAG A
TTAAAAAAGA AGGCGTCTGA GGGC
GCCTTC TTATTTTACT TCAACGG
AAA 1360ATACTTGATCA
TGAAGC TCTTCCTTAT TTACGTC
CCA CAAAACGTCC GATACGGTCG
1420ATCAGACGGCTCAGGAG
GTA TAGCATATTA CCCGTGGTGC
TAGATAAAAACT CAAACAAGCA
1480TAAAAATAGCCCTTGCATGA
GGATCC
150
6

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のADHの構造遺伝子,発現制御領域お
よびターミネーターを有する遺伝子を含み,pTBAD
35由来の3.5kbのBamHI断片の制限酵素切断
地図である。
[Figure 1] Contains the structural gene of ADH of the present invention, a gene having an expression control region and a terminator, and pTBAD
Fig. 3 is a restriction enzyme cleavage map of a 3.5 kb BamHI fragment derived from No. 35.

【図2】B. stearothermophilus
 NCA1503株由来のADH,S. cerevi
siae由来のADH,ヒト由来のADH,およびウマ
由来のADHのアミノ酸配列を示す比較図である。
[Figure 2]B. stearothermophilus
ADH derived from NCA1503 strain, S. cerevi
FIG. 2 is a comparison diagram showing the amino acid sequences of ADH derived from S. siae, ADH derived from human, and ADH derived from horse.

【図3】図2の配列の続きであり,B. stearo
thermophilus NCA1503株由来のA
DH,S. cerevisiae由来のADH,ヒト
由来のADH,およびウマ由来のADHのアミノ酸配列
を示す比較図である。
FIG. 3 is a continuation of the arrangement of FIG. 2; staro
A derived from thermophilus NCA1503 strain
D.H., S. FIG. 2 is a comparison diagram showing the amino acid sequences of ADH derived from S. cerevisiae, ADH derived from human, and ADH derived from horse.

【図4】図2および図3の配列の続きであり,B. s
tearothermophilus NCA1503
株由来のADH,S. cerevisiae由来のA
DH,ヒト由来のADH,およびウマ由来のADHのア
ミノ酸配列を示す比較図である。
FIG. 4 is a continuation of the arrangement of FIGS. 2 and 3; s
tearothermophilus NCA1503
ADH derived from the strain S. A from A. cerevisiae
FIG. 2 is a comparison diagram showing the amino acid sequences of DH, human-derived ADH, and horse-derived ADH.

【図5】ADHを触媒として,アルコールからアルデヒ
ド,またはアルデヒドからアルコールの可逆反応の機構
を示すフローチャートである。
FIG. 5 is a flowchart showing the mechanism of the reversible reaction of alcohol to aldehyde or aldehyde to alcohol using ADH as a catalyst.

【図6】ADHの活性中心部分の構造を示し,NAD+
からのプロトンの授受を示す機構図である。
[Figure 6] Shows the structure of the active center of ADH, showing the structure of the active center of ADH.
FIG. 2 is a mechanism diagram showing the exchange of protons from

【図7】B. stearothermophilus
 NCA1503株由来のADH,およびH43Rの至
適pHを示すグラフである。
[Figure 7]B. stearothermophilus
It is a graph showing the optimal pH of ADH derived from NCA1503 strain and H43R.

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】配列表1のアミノ酸配列で示されるアルコ
ール脱水素酵素をコードする構造遺伝子。
1. A structural gene encoding alcohol dehydrogenase shown by the amino acid sequence shown in Sequence Listing 1.
【請求項2】配列表1の290位のAから1,300位
のTで示される塩基配列でなる,請求項1に記載の構造
遺伝子。
2. The structural gene according to claim 1, which has a base sequence represented by A at position 290 to T at position 1,300 in Sequence Listing 1.
【請求項3】Bacillus stearother
mophilus NCA1503株由来である,請求
項1に記載の構造遺伝子。
[Claim 3] Bacillus starother
The structural gene according to claim 1, which is derived from Mophilus NCA1503 strain.
【請求項4】配列表1のアミノ酸配列を有するアルコー
ル脱水素酵素であって,該アミノ酸配列の43番目のH
isが他の塩基性アミノ酸に置換された,もしくは,該
His残基の塩基性が高くなるように該Hisが修飾さ
れた,アルコール脱水素酵素。
Claim 4: An alcohol dehydrogenase having the amino acid sequence shown in Sequence Listing 1, wherein the 43rd H of the amino acid sequence is
An alcohol dehydrogenase in which is has been substituted with another basic amino acid, or the His residue has been modified so that the basicity of the His residue is increased.
【請求項5】前記HisがArgに置換された請求項4
に記載の修飾アルコール脱水素酵素。
5. Claim 4, wherein the His is replaced with Arg.
The modified alcohol dehydrogenase described in .
【請求項6】請求項4のアルコール脱水素酵素をコード
する構造遺伝子。
6. A structural gene encoding the alcohol dehydrogenase of claim 4.
【請求項7】配列表1の290位のAから1300位の
Tで示される塩基配列でなり,417位のAがGに置換
された,請求項6に記載の構造遺伝子。
7. The structural gene according to claim 6, which has a base sequence represented by A at position 290 to T at position 1300 in Sequence Listing 1, with A at position 417 being replaced with G.
【請求項8】請求項1または4に記載の構造遺伝子;該
構造遺伝子の5’上流域に存在し,配列表1の1位のG
から289位のCで示される塩基配列でなる発現制御領
域;および該構造遺伝子の3’下流域に存在し,131
7位のAから1342位のTで示される塩基配列でなる
ターミネーターを包含し;アルコール脱水素酵素または
修飾アルコール脱水素酵素をコードする,発現可能な遺
伝子。
8. The structural gene according to claim 1 or 4, which is present in the 5' upstream region of the structural gene and is located at position 1 in Sequence Listing 1.
An expression control region consisting of the base sequence shown by C at position 289 from
An expressible gene that includes a terminator consisting of the base sequence shown by A at position 7 to T at position 1342; and encodes alcohol dehydrogenase or modified alcohol dehydrogenase.
【請求項9】請求項1または4に記載の構造遺伝子を有
する発現ベクター。
9. An expression vector comprising the structural gene according to claim 1 or 4.
【請求項10】請求項8に記載の遺伝子を有する発現ベ
クター。
10. An expression vector comprising the gene according to claim 8.
【請求項11】pTBAD35である,請求項10に記
載の発現ベクター。
11. The expression vector according to claim 10, which is pTBAD35.
【請求項12】pTBAD35H43Rである,請求項
10に記載の発現ベクター。
12. The expression vector according to claim 10, which is pTBAD35H43R.
【請求項13】請求項9または10に記載の発現ベクタ
ーを宿主細胞に導入して得られる形質転換体。
13. A transformant obtained by introducing the expression vector according to claim 9 or 10 into a host cell.
【請求項14】前記宿主細胞が Bacillus s
ubtilis である,請求項13に記載の形質転換
体。
14. The host cell is Bacillus s.
The transformant according to claim 13, which is P. ubtilis.
【請求項15】前記宿主細胞がBacillus st
earothermophilus である,請求項1
3に記載の形質転換体。
15. The host cell is Bacillus st.
Claim 1, which is Aerothermophilus.
3. The transformant according to 3.
【請求項16】請求項13に記載の形質転換体を培養し
,該培養物からアルコール脱水素酵素を採取する工程を
包含する,アルコール脱水素酵素の製造方法。
16. A method for producing alcohol dehydrogenase, which comprises the steps of culturing the transformant according to claim 13 and collecting alcohol dehydrogenase from the culture.
【請求項17】請求項15に記載の形質転換体を炭素源
を含む培地中で培養する工程を包含するアルコールの製
造方法。
17. A method for producing alcohol, which comprises the step of culturing the transformant according to claim 15 in a medium containing a carbon source.
JP3027591A 1990-09-28 1991-02-21 Gene coding alcohol dehydrogenase Withdrawn JPH04218378A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26148690 1990-09-28
JP2-261486 1990-09-28

Publications (1)

Publication Number Publication Date
JPH04218378A true JPH04218378A (en) 1992-08-07

Family

ID=17362580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3027591A Withdrawn JPH04218378A (en) 1990-09-28 1991-02-21 Gene coding alcohol dehydrogenase

Country Status (1)

Country Link
JP (1) JPH04218378A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135680A (en) * 2000-10-06 2013-07-11 Elsworth Biotechnology Ltd Ethanol production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013135680A (en) * 2000-10-06 2013-07-11 Elsworth Biotechnology Ltd Ethanol production

Similar Documents

Publication Publication Date Title
US5795761A (en) Mutants of 2,5-diketo-D-gluconic acid (2,5-DKG) reductase A
JPH11243949A (en) Glucose dehydrogenase having pqq as prosthetic group and its production
CA2253021C (en) New mutants of formate dehydrogenase from candida boidinii, new gene sequences encoding these and use of the new formate dehydrogenases
AU636500B2 (en) Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus
JPH10309192A (en) Thermostable diaphorase gene
JPH04218378A (en) Gene coding alcohol dehydrogenase
JPH08196281A (en) Dna coding water-formation type nadh oxidase
JP4352286B2 (en) Mutant glucose-6-phosphate dehydrogenase and method for producing the same
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JP2000032988A (en) New gene and transformed cell holding its gene
JP6398295B2 (en) Mutant glucose-6-phosphate dehydrogenase
US5514587A (en) DNA fragment encoding a hydrogen peroxide-generating NADH oxidase
JPH04325093A (en) Thermostable hydantoinase and gene encoding the same hydantoinase
US5416014A (en) Cloned N-carbamoyl sarcosine amidohydrolase
JPH10248574A (en) New lactic acid-oxidizing enzyme
JPH06303981A (en) Dna having genetic information on protein having formaldehyde dehydrogenase activity and production of formaldehyde dehydrogenase
JPH05344890A (en) Gene capable of coding nadh oxidase and its utilization
JP2706223B2 (en) Use of DNA having genetic information of pyruvate oxidase
JPH06113839A (en) Aldehyde dehydrogenase
JPH0779775A (en) Nad(h) bonding type oxidation and reduction disproportionation enzyme and its gene
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene
JP6476542B2 (en) Mutant glucose-6-phosphate dehydrogenase
JPH089979A (en) Heat resistant methionine aminopeptitase and its gene
JPH06113840A (en) Protein having sarcosine oxidase activity, dna having its genetic information and production of sarcosine oxidase
JP3510284B2 (en) Method for producing oxidase

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514