JPH0421817B2 - - Google Patents

Info

Publication number
JPH0421817B2
JPH0421817B2 JP58037495A JP3749583A JPH0421817B2 JP H0421817 B2 JPH0421817 B2 JP H0421817B2 JP 58037495 A JP58037495 A JP 58037495A JP 3749583 A JP3749583 A JP 3749583A JP H0421817 B2 JPH0421817 B2 JP H0421817B2
Authority
JP
Japan
Prior art keywords
guide
measuring device
conical
conical guide
moving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037495A
Other languages
Japanese (ja)
Other versions
JPS59163562A (en
Inventor
Tokuo Hosoda
Shinji Okamoto
Hiroshi Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP58037495A priority Critical patent/JPS59163562A/en
Publication of JPS59163562A publication Critical patent/JPS59163562A/en
Publication of JPH0421817B2 publication Critical patent/JPH0421817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は超音波測定装置に係り、特に特別な
動力を必要とすることなく被検体内を進行するこ
とができ、しかも測定を正確に行える超音波測定
装置に関する。 ボイラ装置、特に高温高圧の発電所要大型ボイ
ラの定期検査において、過熱器、再熱器等の管は
その内部に高温、高圧の上記が流れ、かつその外
面は高温のガスが流れるので、これら管体の肉厚
の減少や損傷については入念に検査する必要があ
り、しかも検査中はボイラの運転を停止するので
検査期間は短かいことが望ましい。 しかしこれら過熱器管等は高所の燃焼ガス通路
に位置し、その外面にはダスト、クリンカが付着
しており、管体外面からの検査はこれらのダス
ト、クリンカを除去せねば検知精度はきわめて低
く、現実には作業員がダスト除去を行う空間は殆
んどなく、しかも検査すべき管体は多数にのぼ
る。このためこれらの管体にあつては管体の外部
から検査を行うのは実用的ではなく管体内部から
の検査が必要となる。 第1図は管体内部から検査を行う装置の従来例
を示す。図中符号5は探触子であり、この探触子
5に体しては挿入管4が接続している。2は挿入
管4に取り付けた受圧子であつて、被検体たる管
体1内を通過する超音波伝達用媒体(通常は水)
の抵抗によつて自己及び探触子55を前進させ
る。この形式の装置においては次の如き問題点が
指摘され、その改善が望まれている。 (1) 探触子を前進させるためには受圧子2が大き
な受圧効果を生じなければならず、このため受
圧子は軸方向の流さを長くせねばならない。し
かし受圧子2の長さをあまり長くすると曲管部
において装置が前進できなくなる。 (2) 受圧子の大型化により受圧部の重量も増加す
るので、受圧子2内にガス空間3を形成して受
圧子の比重を軽減しているが、ガス空間の形成
は装置の製作を必然的に困難にする。 (3) また受圧子の下流側において媒体の乱流が発
生して気泡が生じ易く、また気泡を除去する手
段も取り付けていないので、この気泡により探
傷精度が低下する等の問題もある。 この発明の目的は上述した問題点を除去し、被
検体内を自由に進行でき、かつ気泡の除去も効果
的に行うことにより探傷精度を大幅に向上させる
ことができる超音波探傷装置を提供することにあ
る。 要するにこの発明は、管内に挿入し管壁の異常
の有無を検出する超音波測定装置において、測定
装置本体の前後に可撓性を有する接続体を介して
前部調芯移動部材と後部調芯移動部材とを取り付
け、前部調芯部材の前方に前部円錐形案内子、後
部調芯部材の後方に後部円錐形案内子を設け、前
部円錐形案内子の前方後部円錐形案内子の後方に
それぞれ泡消し用案内子を設けたことを特徴とす
る超音波測定装置である。 以下この発明の実施例を図面を用いて説明す
る。 第2図において超音波4を発振しかつ受信する
超音波測定装置本体40は環状の振動子14を有
する探触子13と、この探触子13に対向位置し
かつ反射面が略円錐形または錐の外面が曲率付き
反射鏡である全方反射鏡15とから構成してあ
る。この測定装置本体40の前後には可撓性を有
する接続体により前部調芯移動部材41a及び後
部調芯移動部材41bが接続している。可撓性を
有する接続体としては種々のものが想定し得る
が、図示の場合は中心にワイヤ16を配置し、周
囲にコイルスプリング8を配置することにより可
撓性接続体としている。次に調芯移動部材の構造
を後部調芯移動部材41bを例に説明する。42
は調芯移動部材の本体を構成する台板であり、こ
の台板に対してはピン43を介してアーム44が
各々回動可能に取り付けてある。 45は各アーム44に取り付けたガイドローラ
である。各アーム44に対しては爪18が取り付
けてあり、各爪18は運動シヤフト47によつて
運動する2つのブラケツト48と係合している。
これらブラケツト48は調芯移動部材の後部に位
置する可撓性接続体のスプリング8によつて装置
進行方向側に押圧されている。この押圧力は爪1
8を介してアーム44に伝達され、アーム44は
ピン43を中心としてガイドローラ取り付け側端
部が管体5の外側に向うようにしようとし、ロー
ラ45が管体5の内面に押し付けられる。これに
よつて超音波測定装置本体40は管体5の中心線
上に位置し調芯される。前部調芯移動部材41a
も前述した後部調芯移動部材と同様な構成となつ
ている。 次に符号50a,50bは略円錐形に形成した
前部案内子であり、前部調芯移動部材41aの前
方に前述と同様の可撓性接続体を介して取り付け
てある。51a,51bも同様に構成した後部案
内子であり、やはり可撓性接続体を介して後部調
芯移動部材41bの後部に接続してある。さらに
符号52及び53は可撓性接続体を介して前部円
錐形案内子50bの前部、後部円錐形案内子51
aの後部に取り付けた泡消し用の案内子である。
第3図は泡消し用の案内子52及び53の詳細を
示し、中心軸54に対して複数枚の羽根55を放
射状に取り付けることにより全体を傘形に形成し
てある。 次に発明者等は案内子の形状、材料、大きさな
どを変化させて装置の作動状態についての試験を
行つた。この結果、案内子50a,50b,51
a,51bの最大径Dは被検体たる管対5の内径
70%以上とするのが好ましいことを確認した。ま
た案内子の頂角θは約15゜から60゜が好ましい。θ
をあまり大きくすると媒体12の乱流により気泡
を生じる虞れがある。第4図は案内子の最大径を
35mm、またはこの最大径が被検体の内径の70%と
なる状態において管体内での圧送力の比較を行つ
た結果を示す。線図Aは円錐形の案内子の圧送力
を、線図Bは第1図に示す紡錘形の案内子の圧送
力を示し、これらの線図からも明らかなとおり、
The present invention relates to an ultrasonic measuring device, and more particularly, to an ultrasonic measuring device that can move inside a subject without requiring special power and can perform accurate measurements. During periodic inspections of boiler equipment, especially large boilers required for high-temperature, high-pressure power generation, the tubes of superheaters, reheaters, etc. have the above-mentioned high temperature and high pressure flowing inside them, and high-temperature gas flows on their outer surfaces, so these tubes are inspected. It is necessary to carefully inspect the body for any reduction in wall thickness or damage, and since the boiler operation will be stopped during the inspection, it is desirable that the inspection period be short. However, these superheater tubes are located in combustion gas passages at high places, and dust and clinker adhere to their outer surfaces, and detection accuracy is extremely low when inspecting from the outside of the tube unless these dust and clinker are removed. In reality, there is hardly any space for workers to remove dust, and there are a large number of pipes to be inspected. For this reason, it is not practical to inspect these tubes from the outside, and it is necessary to inspect them from inside the tube. FIG. 1 shows a conventional example of a device that performs inspection from inside a tube. Reference numeral 5 in the figure is a probe, and an insertion tube 4 is connected to the probe 5. 2 is a pressure receiver attached to the insertion tube 4, which is an ultrasonic wave transmission medium (usually water) that passes through the tube body 1, which is the object to be examined.
The resistance causes self and probe 55 to advance. The following problems have been pointed out in this type of device, and improvements are desired. (1) In order to move the probe forward, the pressure receiver 2 must produce a large pressure receiving effect, and for this reason, the pressure sensor must have a long flow in the axial direction. However, if the length of the pressure receiving element 2 is made too long, the device will not be able to move forward in the curved pipe section. (2) As the size of the pressure sensor increases, the weight of the pressure receiving section also increases, so a gas space 3 is formed within the pressure sensor 2 to reduce the specific gravity of the pressure sensor. necessarily make it difficult. (3) In addition, turbulent flow of the medium occurs on the downstream side of the pressure sensor, which tends to generate bubbles, and since there is no means for removing bubbles, there are also problems such as a decrease in flaw detection accuracy due to the bubbles. An object of the present invention is to provide an ultrasonic flaw detection device which can move freely inside a specimen and can greatly improve flaw detection accuracy by eliminating air bubbles and eliminating the above-mentioned problems. There is a particular thing. In short, the present invention provides an ultrasonic measuring device that is inserted into a pipe to detect the presence or absence of an abnormality in a pipe wall, in which a front alignment moving member and a rear alignment moving member are connected to each other via flexible connectors at the front and rear of the measuring device main body. A front conical guide is provided in front of the front alignment member, a rear conical guide is provided behind the rear alignment member, and the front and rear conical guides of the front conical guide are connected to the movable member. This is an ultrasonic measuring device characterized in that a bubble extinguishing guide is provided at the rear of each device. Embodiments of the present invention will be described below with reference to the drawings. In FIG. 2, an ultrasonic measuring device main body 40 that emits and receives ultrasonic waves 4 includes a probe 13 having an annular vibrator 14, and a reflecting surface that is located opposite to the probe 13 and has a substantially conical or substantially conical shape. It is composed of a total reflecting mirror 15 whose outer surface of a cone is a reflecting mirror with a curvature. A front alignment moving member 41a and a rear alignment moving member 41b are connected to the front and rear of the measuring device main body 40 by flexible connecting bodies. Various types of flexible connectors may be used, but in the case shown, the wire 16 is placed in the center and the coil spring 8 is placed around the periphery to provide a flexible connector. Next, the structure of the alignment moving member will be explained using the rear alignment moving member 41b as an example. 42
A base plate constitutes the main body of the alignment moving member, and arms 44 are each rotatably attached to this base plate via pins 43. 45 is a guide roller attached to each arm 44. Attached to each arm 44 is a pawl 18, each pawl 18 engaging two brackets 48 which are moved by a movement shaft 47.
These brackets 48 are pressed in the direction of movement of the apparatus by a spring 8 of a flexible connector located at the rear of the centering moving member. This pressing force is the claw 1
8 to the arm 44, and the arm 44 attempts to direct the guide roller attachment side end toward the outside of the tube body 5 with the pin 43 as the center, and the roller 45 is pressed against the inner surface of the tube body 5. As a result, the ultrasonic measuring device main body 40 is positioned on the center line of the tubular body 5 and aligned. Front alignment moving member 41a
It also has the same configuration as the rear centering moving member described above. Next, reference numerals 50a and 50b denote front guides formed in substantially conical shapes, which are attached to the front of the front centering moving member 41a via the same flexible connectors as described above. 51a and 51b are similarly configured rear guide elements, which are also connected to the rear part of the rear alignment moving member 41b via flexible connectors. Furthermore, reference numerals 52 and 53 connect the front conical guide 50b to the rear conical guide 51 through flexible connections.
This is a bubble extinguisher guide attached to the rear of a.
FIG. 3 shows details of the bubble extinguishing guides 52 and 53, which are formed into an umbrella shape as a whole by attaching a plurality of blades 55 radially to a central shaft 54. Next, the inventors conducted tests on the operating state of the device by changing the shape, material, size, etc. of the guide. As a result, guide elements 50a, 50b, 51
The maximum diameter D of a and 51b is the inner diameter of the tube pair 5 which is the object to be examined.
It was confirmed that it is preferable to set it to 70% or more. The apex angle θ of the guide is preferably about 15° to 60°. θ
If it is made too large, bubbles may be generated due to the turbulent flow of the medium 12. Figure 4 shows the maximum diameter of the guide.
The results of a comparison of the pumping force inside the tube in a state where the maximum diameter is 35 mm or 70% of the inner diameter of the subject are shown. Diagram A shows the pumping force of the conical guide, and diagram B shows the pumping force of the spindle-shaped guide shown in FIG. 1. As is clear from these diagrams,

【表】 また案内子の形状による評価は下記の如くまと
めることができる。 なお、傘形案内子の羽根55はゴム等の可撓性
材料で構成しておけば管内面に付着した気泡の除
去にも効果的である。
[Table] Evaluations based on the shape of the guide can be summarized as follows. Note that if the blades 55 of the umbrella-shaped guide are made of a flexible material such as rubber, it is effective for removing air bubbles attached to the inner surface of the tube.

【表】 第6図は別の実施例を示し、連結索57に対し
て円錐形の案内子56を、その軸心を偏心させて
取り付けたものである。この部材は前述の探傷装
置とは別個に形成する外、最先端の傘形案内子5
2の先端部に接続してもよい。偏心位置に取り付
けた案内子は管内を流れる媒体12により管体5
内部において管体の半径方向(図中矢印で示す)
に振動し、管体内面に付着した気泡を除去する。
但し案内子の振動による悪影響を避けるため、先
端の傘形案内子52を偏心位置の円錐形案内子5
6との間の連結索は長めにしておくのが好まし
い。 この発明を実施することにより装置本体を超音
波伝達媒体の流れによつて移動させるに際し、前
部円錐形案内子の移動用流体から受ける力は後部
円錐形案内子の受ける力より大である。前者が円
錐底面で流体から前進用の力を受けるに対し、後
者が円錐の頂部側から流体の力が与えられること
によるもので、これにより両者間の位置は変化少
なく、測定装置の検査位置設定を容易にするもの
である。また泡消し案内子をもうけるので流体中
の気泡が良好に除去できるので、検査の精度を高
めることができる。
[Table] FIG. 6 shows another embodiment in which a conical guide 56 is attached to a connecting rope 57 with its axis eccentric. This member is formed separately from the above-mentioned flaw detection device, and the most advanced umbrella-shaped guide 5
It may be connected to the tip of 2. The guide mounted at an eccentric position causes the medium 12 flowing inside the tube to cause the tube body 5 to
Inside, in the radial direction of the tube (indicated by the arrow in the figure)
It vibrates to remove air bubbles attached to the inner surface of the tube.
However, in order to avoid the adverse effects of vibration of the guide, the umbrella-shaped guide 52 at the tip is replaced with the conical guide 5 at an eccentric position.
It is preferable that the connecting cable between the terminal and the terminal 6 is made longer. When the main body of the apparatus is moved by the flow of the ultrasonic transmission medium by implementing the present invention, the force exerted by the moving fluid on the front conical guide is greater than the force exerted by the rear conical guide. The former receives forward force from the fluid at the bottom of the cone, while the latter receives the force of the fluid from the top of the cone.As a result, the position between the two does not change much, making it easier to set the inspection position of the measuring device. It facilitates Furthermore, since a bubble extinguishing guide is provided, air bubbles in the fluid can be effectively removed, so that the accuracy of inspection can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超音波測定装置の側面図、第2
図はこの発明に係る超音波測定装置の平面図、第
3図は傘形案内子の斜視図、第4図及び第5図は
媒体流量と案内子の圧送力との関係を示す線図、
第6図は別の実施例を示す円錐形案内子の断面図
である。 5……管体、41a,41b……調芯移動部
材、50a,50b,51a,51b……円錐形
案内子、52,53……泡消し用の案内子、56
……偏心取り付け案内子、57……連結索。
Figure 1 is a side view of a conventional ultrasonic measurement device, Figure 2
FIG. 3 is a perspective view of an umbrella-shaped guide; FIGS. 4 and 5 are diagrams showing the relationship between the medium flow rate and the pumping force of the guide;
FIG. 6 is a sectional view of a conical guide showing another embodiment. 5... Pipe body, 41a, 41b... Centering moving member, 50a, 50b, 51a, 51b... Conical guide, 52, 53... Guide for defoaming, 56
... Eccentric mounting guide, 57 ... Connecting cable.

Claims (1)

【特許請求の範囲】 1 管内に挿入し管壁の異常の有無を検出する超
音波測定装置において、測定装置本体の前後に可
撓性を有する接続体を介して前部調芯移動部材と
後部調芯移動部材とを取り付け、前部調芯部材の
前方に前部円錐形案内子、後部調芯部材の後方に
後部円錐形案内子を設け、前部円錐形案内子の前
方と後部円錐形案内子の後方にそれぞれ泡消し用
案内子を設けたことを特徴とする超音波測定装
置。 2 前記前部円錐形案内子と後部円錐形案内子の
頂角を約15°から約60°の間としたことを特徴とす
る特許請求の範囲第1項記載の超音波測定装置。
[Claims] 1. In an ultrasonic measuring device inserted into a pipe to detect the presence or absence of an abnormality in the pipe wall, the front alignment moving member and the rear part are connected via flexible connecting bodies at the front and rear of the main body of the measuring device. A front conical guide is provided in front of the front aligning member, a rear conical guide is provided behind the rear aligning member, and the front and rear conical guides are connected to the front conical guide. An ultrasonic measuring device characterized in that bubble-eliminating guides are provided at the rear of each guide. 2. The ultrasonic measuring device according to claim 1, wherein the apex angle of the front conical guide and the rear conical guide is between about 15° and about 60°.
JP58037495A 1983-03-09 1983-03-09 Ultrasonic measuring device Granted JPS59163562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037495A JPS59163562A (en) 1983-03-09 1983-03-09 Ultrasonic measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037495A JPS59163562A (en) 1983-03-09 1983-03-09 Ultrasonic measuring device

Publications (2)

Publication Number Publication Date
JPS59163562A JPS59163562A (en) 1984-09-14
JPH0421817B2 true JPH0421817B2 (en) 1992-04-14

Family

ID=12499103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037495A Granted JPS59163562A (en) 1983-03-09 1983-03-09 Ultrasonic measuring device

Country Status (1)

Country Link
JP (1) JPS59163562A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726688B2 (en) * 2006-04-20 2011-07-20 新日本製鐵株式会社 Ultrasonic flaw detection method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5026805B2 (en) * 2007-01-24 2012-09-19 オリンパス株式会社 Endoscope device
JP5331318B2 (en) * 2007-08-09 2013-10-30 オリンパス株式会社 Endoscope device
JP7216366B2 (en) * 2018-11-01 2023-02-01 荏原環境プラント株式会社 Ultrasonic probe and test pipe thickness measurement method using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148186A (en) * 1976-06-03 1977-12-09 Babcock Hitachi Kk Ultrasonic flaw detector
JPS54145181A (en) * 1978-04-30 1979-11-13 Ishikawajima Harima Heavy Ind Feeder for sensor for testing bent pipe
JPS56142456A (en) * 1980-04-09 1981-11-06 Hitachi Ltd Pipe inside inspecting device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177165U (en) * 1981-05-06 1982-11-09

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148186A (en) * 1976-06-03 1977-12-09 Babcock Hitachi Kk Ultrasonic flaw detector
JPS54145181A (en) * 1978-04-30 1979-11-13 Ishikawajima Harima Heavy Ind Feeder for sensor for testing bent pipe
JPS56142456A (en) * 1980-04-09 1981-11-06 Hitachi Ltd Pipe inside inspecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726688B2 (en) * 2006-04-20 2011-07-20 新日本製鐵株式会社 Ultrasonic flaw detection method

Also Published As

Publication number Publication date
JPS59163562A (en) 1984-09-14

Similar Documents

Publication Publication Date Title
US7474092B1 (en) Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
US7386416B2 (en) Method and apparatus for measuring wall thickness, ovality of tubular materials
US4843896A (en) Probe for internal bore inspection
WO1980001842A1 (en) Improvements in or relating to ultrasonic pipe inspection apparatus
JPH05256984A (en) Flexible cable
BRPI0920129B1 (en) INTERNAL ALIGNMENT FIXER TO ALIGN TWO TUBES TO BE WELDED EACH OTHER AT SEA, USE OF INTERNAL ALIGNMENT FIXER AND METHOD FOR WELDING TWO TUBES
CN102072938B (en) Ultrasonic internal rotating inspection probe capable of self-eliminating air bubbles
JPH03194421A (en) Venturi apparatus
JPH0421817B2 (en)
CN206321219U (en) The circumferential axial Thicknesser probe of combined type
US4189944A (en) Hydrodynamic ultrasonic probe
US5134876A (en) Acoustic emission leak simulator
JP5829674B2 (en) Ultrasonic inspection apparatus for tube and ultrasonic inspection method for tube
JP3040641B2 (en) In-tube ultrasonic probe
EP0078072B1 (en) A centering apparatus for a measuring probe
CN212722729U (en) Flexible coupling device for curved surface member ultrasonic detection
KR100395205B1 (en) Internal metal pipe inspection apparatus having centralizer
JP5894059B2 (en) Eddy current flaw detector
JPS59155709A (en) Ultrasonic wave measuring equipment
KR101908598B1 (en) Auxiliary apparatus for non-destructive internal rotary inspection system provided with magnetic attachable structure
CN218583953U (en) Pipe wall thickness measuring device for pipeline elbow particle erosion model test
CN112997047B (en) Ultrasonic probe and method for measuring thickness of pipe to be inspected using same
CN110360967A (en) A kind of pipeline section ovality detection device and detection method
SU1125538A1 (en) Acoustic probe for two-phase media diagnostics
CN110360987B (en) Detection apparatus for two probe pipeline section inclinations