JPH0421769A - Sublimable metallic material for vapor deposition - Google Patents

Sublimable metallic material for vapor deposition

Info

Publication number
JPH0421769A
JPH0421769A JP12490590A JP12490590A JPH0421769A JP H0421769 A JPH0421769 A JP H0421769A JP 12490590 A JP12490590 A JP 12490590A JP 12490590 A JP12490590 A JP 12490590A JP H0421769 A JPH0421769 A JP H0421769A
Authority
JP
Japan
Prior art keywords
electron beam
metal material
sublimable
vaporization
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12490590A
Other languages
Japanese (ja)
Inventor
Masao Toyama
雅雄 外山
Jiyunji Kawafuku
川福 純司
Atsushi Kato
淳 加藤
Tsugumoto Ikeda
池田 貢基
Shoji Miyake
昭二 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12490590A priority Critical patent/JPH0421769A/en
Publication of JPH0421769A publication Critical patent/JPH0421769A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stabilize the vaporization rate and to carry out stable vapor deposition by using the powdery or lumpy material having a specified grain diameter to be heated by an electron beam. CONSTITUTION:Cr as the sublimable metallic material 8 is placed in a raw material vessel 7 of a vapor-deposition chamber 1, heated by an electron beam 5 from an electron gun 4 and vaporized, and Cr vapor is continuously deposited on a continuous steel strip 2 traveling continuously above the vessel. The vaporization behavior is changed by the size of the material 8, and the vaporization amt. is not stabilized when the relatively large material 8 is used. Accordingly, the granular or lumpy material 8 having 3-50mm average grain diameter is used. Consequently, the effective electron beam energy irradiating the surface of the material 8 is determined, and the vaporization amt. is stabilized. The material is blown up at <3mm average grain diameter, and the vaporization amt. is not stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、Cr、Mn、Co、Mgの如ぎ昇華性金属材
料に関し、殊にイオンブレーティングや真空蒸着等の様
に電子ビーム加熱方式による蒸着めっきを実施する際に
用い、安定した操業が行なえる昇華性金属材料に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to sublimable metal materials such as Cr, Mn, Co, and Mg. The present invention relates to a sublimable metal material that can be used in vapor deposition plating and allows for stable operation.

[従来の技術] 真空蒸着めっきを実施するに際しては、蒸着すべき金属
材料を、適当な加熱手段を用いて加熱・蒸発させ、生成
した金属蒸気を基板上に凝着させることによって蒸着皮
膜を形成している。そして上記加熱手段としては、電子
ビーム加熱、レーザビーム加熱、抵抗加熱、高周波お導
加熱等様々なものが用いられているが、高い蒸発速度が
得られることや高融点の金属の蒸発が可能である利点を
有することから、高出力、高エネルギー密度を有する電
子ビームによる加熱が多用されている。
[Prior Art] When performing vacuum evaporation plating, the metal material to be evaporated is heated and evaporated using an appropriate heating means, and the generated metal vapor is deposited on the substrate to form a evaporation film. are doing. Various heating methods are used as the heating means, such as electron beam heating, laser beam heating, resistance heating, and high-frequency induction heating. Heating by an electron beam with high power and high energy density is often used because it has certain advantages.

ところで真空中で上記の加熱手段によって、金属材料を
加熱・蒸発させる場合、通常の金属材料の融点は、蒸気
圧が十分に高められる温度よりもかなり低いので、通常
の実施手順としては、るつぼ等の原料槽内でまず金属材
料を溶融し、更に昇温することによって当該溶融金属浴
の表面から金属原子を蒸発させていく。従って蒸発有効
面積は溶融金属浴の表面積で決まり、高真空下における
蒸発量は熱エネルギーによって一義的にコントロールす
ることができる。
By the way, when a metal material is heated and evaporated by the above-mentioned heating means in a vacuum, the melting point of a normal metal material is considerably lower than the temperature at which the vapor pressure is sufficiently increased, so the usual procedure is to use a crucible, etc. The metal material is first melted in the raw material bath, and the temperature is further increased to evaporate metal atoms from the surface of the molten metal bath. Therefore, the effective area for evaporation is determined by the surface area of the molten metal bath, and the amount of evaporation under high vacuum can be controlled primarily by thermal energy.

ところがCrやMg等の昇華性金属は、高真空条件の下
では当該金属の融点未満の温度でも高い蒸気圧を示すの
で、この様な金属に熱エネルギーを加えると溶融の始ま
っていない金属材料表面からの蒸発が進行する。このと
きは金属材料表面全体が蒸発有効面積となり、該蒸発有
効面積は金属材料の比表面積によって著しく変わってく
るばかりでなく、蒸発の進行に伴なって金属材料が小さ
くなるにつれて該蒸発有効面積は経時的に変化する。従
って、加える熱エネルギーを一定に保っても、単位面積
当たりの投入エネルギー量、即ちパワー密度が変化する
ため、総金属材料表面積からの総蒸発量を一定に維持す
ることは困難である。
However, sublimable metals such as Cr and Mg exhibit high vapor pressure under high vacuum conditions even at temperatures below the metal's melting point. Evaporation from the At this time, the entire surface of the metal material becomes the effective area for evaporation, and not only does the effective area for evaporation vary significantly depending on the specific surface area of the metal material, but as the metal material becomes smaller as evaporation progresses, the effective area for evaporation decreases. Change over time. Therefore, even if the applied thermal energy is kept constant, the amount of input energy per unit area, that is, the power density changes, so it is difficult to maintain the total amount of evaporation from the total surface area of the metal material constant.

一方原料金属材料を連続的に供給することを考えれば、
原料形状はワイヤ状やシート状であることが理想的であ
るが、CrやMg等の昇華性金属はFe、AI、Zr、
Cu、Ti等の様に塑性加工することができず、必然的
にブロック状、ブリケット状、粉片状、粉末状、インゴ
ット状等のものに限定されてしまう。
On the other hand, considering the continuous supply of raw metal materials,
Ideally, the shape of the raw material is wire or sheet, but sublimable metals such as Cr and Mg are suitable for Fe, AI, Zr,
Unlike Cu, Ti, etc., it cannot be plastically worked, and is inevitably limited to shapes such as blocks, briquettes, flakes, powders, and ingots.

[発明が解決しようとする課題] こうしたことから昇華性金属材料を用いる場合は、蒸発
の安定性を図るという点を特に考慮し、昇華性金属材料
を粉末状とし、これを原料槽に充填して加熱・蒸発する
のが最も理想的な手段であるとされていた。しかしなが
ら、この様な手段では、下記の様な大きな問題があった
。即ち、粉末状の昇華性金属表面に電子ビーム照射を行
なうと、粉末原料が飛散し、蒸着室内に粉塵が舞ったり
、飛散した粉末の一部が電子銃の中に侵入して電子ビー
ムの不連続化現象(アーキング現象)が発生したり、電
子銃のカソードの寿命を縮めたり、電子銃中の粉末の除
去の為のメンテナンスが必要となる等の問題があった。
[Problem to be solved by the invention] For these reasons, when using a sublimable metal material, the sublimable metal material is powdered and filled into a raw material tank, with special consideration given to the stability of evaporation. The most ideal method was to heat and evaporate it. However, such means have the following major problems. In other words, when the surface of a sublimable metal powder is irradiated with an electron beam, the powder raw material is scattered, causing dust to fly inside the deposition chamber, or some of the scattered powder entering the electron gun and causing failure of the electron beam. There were problems such as the occurrence of a continuity phenomenon (arcing phenomenon), the shortening of the life of the cathode of the electron gun, and the need for maintenance to remove powder in the electron gun.

特に昇華性金属材料としてCrを使用した場合は、Cr
が磁性体であるので、Crが多量に飛散すると、電子線
を原料槽に導入するのに必要な磁場が乱され、電子ビー
ムを原料檀内に照射する為の制御が困難なものとなる。
In particular, when Cr is used as a sublimable metal material, Cr
Since Cr is a magnetic material, if a large amount of Cr is scattered, the magnetic field required to introduce the electron beam into the raw material tank will be disturbed, making it difficult to control the electron beam irradiation into the raw material tank.

これらの現象が発生すると、当然のことながら操業自体
が不安定なものとなり、蒸着めっき製品を安定して製造
することができなくなり、工業的連続生産にとって極め
て不利である。
When these phenomena occur, the operation itself becomes unstable as a matter of course, making it impossible to stably manufacture vapor-deposited plating products, which is extremely disadvantageous for continuous industrial production.

本発明は上記の様な事情に着目してなされたものであっ
て、その目的は、蒸発速度の安定を図り、安定した蒸着
めっき操業が実現できる昇華性金属材料を提供すること
にある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to provide a sublimable metal material that can stabilize the evaporation rate and realize stable vapor deposition plating operations.

[課題を解決する為の手段] 上記課題を解決することのできた本発明とは、電子ビー
ム加熱方式による蒸着めっきを実施する際に用いる昇華
性金属材料であって、平均粒径が3〜50mmの粒状ま
たは塊状体である点に要旨を有する蒸着用昇華性金属材
料である。
[Means for Solving the Problems] The present invention, which has solved the above problems, is a sublimable metal material used when carrying out vapor deposition plating using an electron beam heating method, and which has an average particle size of 3 to 50 mm. It is a sublimable metal material for vapor deposition which is in the form of particles or lumps.

[作用] 以下、実験の経緯に沿って本発明の作用効果を詳述する
[Function] Hereinafter, the function and effect of the present invention will be described in detail along the course of the experiment.

本発明者らは、昇華性金属材料の代表例としてCrを使
用し、第1図に示す真空蒸着めっき設備を用い、特に昇
華性金属材料の大きさが蒸発挙動に与える影響について
調べた。即ち第1図において1は蒸着室、2は連続鋼帯
、3はサポートロール、4はCr加熱用の電子銃、5は
電子ビーム。
The present inventors used Cr as a representative example of a sublimable metal material, and used the vacuum evaporation plating equipment shown in FIG. 1 to particularly investigate the influence of the size of the sublimable metal material on its evaporation behavior. That is, in FIG. 1, 1 is a vapor deposition chamber, 2 is a continuous steel strip, 3 is a support roll, 4 is an electron gun for heating Cr, and 5 is an electron beam.

6は排気口、7は原料槽、8は昇華性金属材料(原料)
を夫々示し、高真空に保たれた蒸着室1の原料槽7に装
入された昇華性金属材料8を電子ビーム5によって加熱
・蒸発せしめ、その上方を連続走行する連続鋼帯2の表
面にCr蒸気を連続的に蒸着させた。尚このとぎの電子
ビーム5の照射は第2図に示す様に、昇華性金属材料8
上にジグザグに走査させつつ行なった。
6 is an exhaust port, 7 is a raw material tank, 8 is a sublimable metal material (raw material)
The sublimable metal material 8 charged into the raw material tank 7 of the vapor deposition chamber 1 kept in a high vacuum is heated and evaporated by the electron beam 5, and the surface of the continuous steel strip 2 running continuously above it is heated and evaporated by the electron beam 5. Cr vapor was continuously deposited. Incidentally, this irradiation with the electron beam 5 is performed on the sublimable metal material 8 as shown in FIG.
I did this while scanning in a zigzag pattern upwards.

その結果、昇華性金属材料8の大台さによって、蒸発挙
動が著しく変動することが確認された。
As a result, it was confirmed that the evaporation behavior varied significantly depending on the size of the sublimable metal material 8.

まず昇華性金属材料8を比較的大きなものとした場合に
は、蒸発量の安定性に乏しくなることが判明した。これ
は、次の様に考えることができる。即ち、大きな形状の
昇華性金属材料8を隙間なく原料槽7内に装入すること
は困難であり、どうしても金属材料8間に隙間が生じる
。この様な状態で電子ビームを照射すると、上層の昇華
性金属材料8表面だけを照射することができず、それら
の隙間を通った電子ビームによって下層側の昇華性金属
材料8が照射されたり、場合によっては原料槽7の底面
にも照射され、その為最上層を占める昇華性金属材料8
の表面に照射される有効電子ビームエネルギーが不確定
となりそれが蒸発量の不安定さとなって現われてくるも
のと考えられる。また昇華性金属材料8が大きい場合に
は、上述した如く蒸発有効面積が変動し易く、このこと
も蒸発量の安定性を損ねる理由と考えられた。しかしな
がら本発明者らが実験によって確認したところによると
、昇華性金属材料8の平均粒径を50mm以下とすれば
、上記の様な不都合が実質的に回避でき、安定した蒸発
量が達成されることが分かった。尚本発明における昇華
性金属材料8は球状の場合に限らず、塊状の場合をも含
む趣旨である。また上記平均粒径とは、塊状の場合にお
いては最大粒径の平均を意味する。また平均粒径のより
好ましい大きさは、30mm以下であり、この様な昇華
性金属材料であれば、上述の様な不都合が最も効果的に
回避できる。
First, it has been found that when the sublimable metal material 8 is made relatively large, the stability of the amount of evaporation becomes poor. This can be considered as follows. That is, it is difficult to charge large-sized sublimable metal materials 8 into the raw material tank 7 without gaps, and gaps inevitably occur between the metal materials 8. When an electron beam is irradiated in such a state, it is not possible to irradiate only the surface of the sublimable metal material 8 on the upper layer, and the sublimable metal material 8 on the lower layer side may be irradiated by the electron beam passing through the gap between them. In some cases, the bottom surface of the raw material tank 7 is also irradiated, so that the sublimable metal material 8 that occupies the top layer
It is thought that the effective electron beam energy irradiated onto the surface of the surface becomes uncertain, and this appears as instability in the amount of evaporation. Furthermore, when the sublimable metal material 8 is large, the effective area for evaporation tends to fluctuate as described above, and this was also thought to be a reason for impairing the stability of the amount of evaporation. However, the inventors have confirmed through experiments that if the average particle size of the sublimable metal material 8 is set to 50 mm or less, the above-mentioned disadvantages can be substantially avoided and a stable amount of evaporation can be achieved. That's what I found out. The sublimable metal material 8 in the present invention is not limited to a spherical shape, but also includes a lump-like shape. Moreover, the above-mentioned average particle size means the average of the maximum particle size in the case of a lump. Further, a more preferable average particle size is 30 mm or less, and if such a sublimable metal material is used, the above-mentioned disadvantages can be avoided most effectively.

次に、本発明者らは、昇華性金属材料8が非常に小さい
場合について検討を行なったところ、粒径3mm未満の
ものについては原料の飛散現象が生じ、蒸発量の安定性
に乏しいことが分かった。特に60メツシユアンダー(
粒径で0.4mm以下)のものについては、わずかの出
力の電子ビームを照射しただけでも表面近傍の原料が飛
散し、原料槽の外にこぼれてしまったり、場合によって
は原料槽上方で一種の「砂嵐」的な現象が生じて蒸着め
っきができなくなるという不都合が生じた。また前述し
たアーキング現象も顕著なものとなる。
Next, the present inventors investigated the case where the sublimable metal material 8 is very small, and found that if the particle size is less than 3 mm, the scattering phenomenon of the raw material occurs and the stability of the evaporation amount is poor. Do you get it. Especially 60 mesh under (
For particles (with a particle size of 0.4 mm or less), even if the electron beam is irradiated with a small amount of power, the raw material near the surface will scatter and spill outside the raw material tank, or in some cases, a type of material may be formed above the raw material tank. This caused the inconvenience that a "sandstorm"-like phenomenon occurred, making it impossible to carry out vapor deposition plating. Furthermore, the arcing phenomenon described above becomes noticeable.

これらの現象は、粒径を大きくしていくことによってそ
の頻度を確実に減少させることができるが、蒸発量の安
定性や蒸着めっき製品の品質安定性を考慮すると、粒径
が3mm未満の昇華性金属材料は使用し難いことが判明
した。
The frequency of these phenomena can definitely be reduced by increasing the particle size, but considering the stability of evaporation amount and quality stability of vapor-deposited plating products, sublimation with a particle size of less than 3 mm It has been found that metallic materials are difficult to use.

尚平均粒径が3〜5mm程度のものについては、多少の
飛散現象が生じることもあるが、これは昇華性金属材料
を電子ビーム加熱によって真空めっきを行なう際にはあ
る程度は避けられない現象と考えられ、その程度の飛散
現象では実質的には蒸発量の安定性やめつき製品のめフ
き付着量分布には格別の悪影響を及ぼさない。上記飛散
を極力避けるという観点からすれば、昇華性金属材料の
粒径は5111m以上とするのが好ましい。
For particles with an average diameter of about 3 to 5 mm, some scattering phenomenon may occur, but this is an unavoidable phenomenon to some extent when performing vacuum plating on sublimable metal materials by electron beam heating. However, this level of scattering phenomenon does not substantially have a particularly negative effect on the stability of the evaporation amount or the distribution of the amount of coating on the surface of the applied product. From the viewpoint of avoiding the above-mentioned scattering as much as possible, the particle size of the sublimable metal material is preferably 5111 m or more.

以上の理由から、本発明者らは、電子ビーム加熱方式に
よる蒸着めっきを実施する際に用いる昇華性金属材料と
して、その平均粒径を3〜50mm、好ましくは5〜3
0+nmとすればよいことを見出し、本発明を完成した
For the above reasons, the present inventors set the average particle size of the sublimable metal material to 3 to 50 mm, preferably 5 to 3
They found that it is sufficient to set the wavelength to 0+nm, and completed the present invention.

以下本発明を実施例によって更に詳細に説明するが、下
記実施例は本発明を限定する性質のものではなく、前・
後記の趣旨に徴して設計変更することはいずれも本発明
の技術的範囲に含まれるものである。
Hereinafter, the present invention will be explained in more detail with reference to examples, but the following examples are not intended to limit the present invention.
Any design changes for the purposes described below are included within the technical scope of the present invention.

[実施例] 第1図に示した構成の真空蒸着めっき設備を使用し、様
々な形状のCrを蒸発原料とし、下記の条件で帯状鋼板
の連続Cr蒸着めっき処理を行なった。
[Example] Using vacuum evaporation plating equipment having the configuration shown in FIG. 1, continuous Cr evaporation plating treatment was performed on a strip steel plate under the following conditions using Cr in various shapes as an evaporation raw material.

Crの原料形状:平均粒径が0.4ma+未満のものか
ら、最長軸方向の平均長さが 100mmの塊状のものまで様々 なサイズのCrを使用した (Cr純度、 99.4%以上)。
Raw material shape of Cr: Various sizes of Cr were used, ranging from those with an average particle diameter of less than 0.4 ma+ to those in the form of blocks with an average length of 100 mm in the longest axis direction (Cr purity, 99.4% or more).

原料槽    :アルミナーシリカ系るつぼ被めっき鋼
板 :冷延鋼板(極低炭素T1キルト鋼) 被めっき鋼板の前処理:オフラインでアルカリ電解脱脂
後、真空中で電子ビーム 照射による予熱(300℃)、 およびArイオンボンバードメ ントによる表面活性化処理 蒸着室真空度 : 8 X 10−’TorrCr加熱
源  、電子ビーム加熱(電子銃の原料表面でのパワー
密度;0.1〜 1.0にW/cm2) ラインスピード+20m/分 めっき付着量 :3μm (目W4) 結果を第1表に示す。
Raw material tank: Alumina-silica crucible Steel plate to be plated: Cold-rolled steel plate (ultra-low carbon T1 quilt steel) Pretreatment of steel plate to be plated: Off-line alkaline electrolytic degreasing, preheating by electron beam irradiation in vacuum (300°C), and surface activation treatment by Ar ion bombardment Deposition chamber Vacuum degree: 8 x 10-'TorrCr heating source, electron beam heating (electron gun power density on the raw material surface: 0.1 to 1.0 W/cm2) Line speed + 20 m/min Plating deposition amount: 3 μm (mesh W4) The results are shown in Table 1.

第1表から明らかな様に、本発明で規定する要件を満足
する昇華性金属材料を用いれば、蒸発原料表面に照射す
る電子ビームにおけるパワー密度の大小に関係なく、原
料の飛散もなく、安定した蒸発量が得られ、優れた品質
の蒸着Crめっき鋼板が得られている。
As is clear from Table 1, if a sublimable metal material that satisfies the requirements stipulated by the present invention is used, the material will not be scattered and will be stable regardless of the power density of the electron beam irradiated onto the surface of the evaporated material. A high evaporation amount was obtained, and a vapor-deposited Cr-plated steel sheet of excellent quality was obtained.

[発明の効果コ 本発明は以上の様に構成されており、蒸発速度の安定を
図り、安定した蒸着めっき操業が実現できる昇華性金属
材料が得られた。
[Effects of the Invention] The present invention is constructed as described above, and a sublimable metal material that can stabilize the evaporation rate and realize stable vapor deposition plating operations has been obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は昇華性金属材料を用いた場合の真空蒸着めっき
法を例示する概念図、第2図は電子ビームの照射状態を
示す概略説明図である。
FIG. 1 is a conceptual diagram illustrating a vacuum evaporation plating method using a sublimable metal material, and FIG. 2 is a schematic explanatory diagram showing an electron beam irradiation state.

Claims (1)

【特許請求の範囲】[Claims]  電子ビーム加熱方式による蒸着めっきを実施する際に
用いる昇華性金属材料であって、平均粒径が3〜50m
mの粒状または塊状体であることを特徴とする蒸着用昇
華性金属材料。
A sublimable metal material used when performing vapor deposition plating using an electron beam heating method, with an average particle size of 3 to 50 m.
A sublimable metal material for vapor deposition, characterized in that it is in the form of particles or lumps of m.
JP12490590A 1990-05-14 1990-05-14 Sublimable metallic material for vapor deposition Pending JPH0421769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12490590A JPH0421769A (en) 1990-05-14 1990-05-14 Sublimable metallic material for vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12490590A JPH0421769A (en) 1990-05-14 1990-05-14 Sublimable metallic material for vapor deposition

Publications (1)

Publication Number Publication Date
JPH0421769A true JPH0421769A (en) 1992-01-24

Family

ID=14897016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12490590A Pending JPH0421769A (en) 1990-05-14 1990-05-14 Sublimable metallic material for vapor deposition

Country Status (1)

Country Link
JP (1) JPH0421769A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202658A (en) * 1990-11-30 1992-07-23 Riken Corp Ion-plating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202658A (en) * 1990-11-30 1992-07-23 Riken Corp Ion-plating method

Similar Documents

Publication Publication Date Title
CA1157806A (en) Cubic boron nitride preparation
US6495002B1 (en) Method and apparatus for depositing ceramic films by vacuum arc deposition
RU2139948C1 (en) Method of formation of deformed metal product from consumable electrode, its version, ingot, deformed metal product and consumable electrode
Ertürk et al. Comparison of the steered arc and random arc techniques
JPH0421769A (en) Sublimable metallic material for vapor deposition
JPH06299353A (en) Continuous vacuum deposition device
RU2477763C1 (en) Method for obtaining polymer nanocomposite material
US3395030A (en) Carbide flame spray material
JP2604940B2 (en) Evaporating material for ion plating
DE2820183A1 (en) METHOD AND DEVICE FOR COVERING THE SURFACE OF AN ELECTRICALLY CONDUCTIVE WORKPIECE
JPH062137A (en) Vapor deposition plating method
JPH07145473A (en) Method for plating of vapor deposited alloy
JPH06116717A (en) Vapor deposition plating method for sublimatable material
JPH01263265A (en) Vacuum arc deposition method
JPH03170661A (en) Method for evaporating sublimable metal
KR0138045B1 (en) Method for manufacturing tin vacuum deposited steel plate
JP2596434B2 (en) Method for producing ultrafine alloy particles
JPH0539565A (en) Vaporizing tank for sublimating material chip
Koneru Development and Characterization of CuCr Composite Coatings & Thin Films as Contact Materials for Vacuum Interrupters
JPH08283942A (en) Method for vaporizing sublimable metallic material
JPH0313562A (en) Production of vapor deposition al-cr alloy plated steel material
JP3140025B2 (en) Method for producing particle-dispersed aluminum alloy using high energy density heat source
JP2874436B2 (en) Vacuum evaporation method
JPH06116718A (en) Vapor deposition plating method for sublimable material
Sanders et al. Arc Deposition