JPH04217305A - Manufacture of iron-nitride-based high-density sintered body - Google Patents

Manufacture of iron-nitride-based high-density sintered body

Info

Publication number
JPH04217305A
JPH04217305A JP2403506A JP40350690A JPH04217305A JP H04217305 A JPH04217305 A JP H04217305A JP 2403506 A JP2403506 A JP 2403506A JP 40350690 A JP40350690 A JP 40350690A JP H04217305 A JPH04217305 A JP H04217305A
Authority
JP
Japan
Prior art keywords
iron
powder
particles
sintered body
fe4n
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2403506A
Other languages
Japanese (ja)
Inventor
Jun Ota
潤 太田
Koichiro Nakano
中野 皓一朗
Naoki Yamamoto
直樹 山本
Noboru Sakamoto
登 坂本
Hoshiaki Terao
星明 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2403506A priority Critical patent/JPH04217305A/en
Publication of JPH04217305A publication Critical patent/JPH04217305A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To get a practical iron nitride high-density sintered body by a manufacturing process comprising a step for applying nitride treatment to iron or iron alloy powder and making Fe, N, etc., at the periphery of the powder particles, a step for sintering the powder particles, and a step for applying interparticle oxidation treatment. CONSTITUTION:Using water atomized iron powder and carbonyl iron powder, the iron powder is nitrized into nitrized powder by gas nitriding method. For nitriding treatment, using H2 gas and NH3 gas as reaction gas, the particles mainly composed of Fe4N and Fe16N2 or particles whose insides consist of Fe and the peripheries mainly consist of Fe4N or Fe16N2 are formed. As regards the one where approximately the whole has become Fe4N, the reduction treatment is performed in the mixed gas atmosphere of H2/NH3 so as to form the metal shell of Fe on the surface of nitrized powder particles. Then, it is sintered while being oxidated in an oxidative atmosphere.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、高中周波数域用軟磁
性材料として好適な窒化鉄系高密度焼結体の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an iron nitride-based high-density sintered body suitable as a soft magnetic material for high and medium frequency ranges.

【0002】0002

【従来の技術及び発明が解決しようとする課題】窒化鉄
は、窒素の含有量により結晶系が変化し、その磁気的特
性も大きく異なる侵入型化合物である。この窒化鉄は金
属と酸化物の中間的な性質を有する材料であり、金属F
eよりも耐食性、耐候性に優れ、かつ硬いという性質を
有している。特にFe4 N及びFe16N2 は高い
飽和磁化を有しており、耐食性、耐候性、及び機械的特
性が優れた磁性材料としての用途への適用が期待されて
いる。 しかしながら、上述のように優れた特性を考慮した焼結
体を得ることが困難であり、焼結体としての適用はなさ
れていないのが実情である。この発明はかかる事情に鑑
みてなされたものであって、実用的な窒化鉄系高密度焼
結体の製造方法を提供することを目的とする。
BACKGROUND OF THE INVENTION Iron nitride is an interstitial compound whose crystal system changes depending on the nitrogen content and whose magnetic properties also vary greatly. This iron nitride is a material with properties intermediate between metals and oxides, and metal F
It has better corrosion resistance and weather resistance than e, and is harder. In particular, Fe4N and Fe16N2 have high saturation magnetization and are expected to be used as magnetic materials with excellent corrosion resistance, weather resistance, and mechanical properties. However, as mentioned above, it is difficult to obtain a sintered body that takes into consideration the excellent properties, and the actual situation is that it has not been applied as a sintered body. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a practical method for manufacturing an iron nitride-based high-density sintered body.

【0003】0003

【課題を解決するための手段及び作用】この発明に係る
窒化物系高密度焼結体の製造方法は、鉄又は鉄合金粉末
に窒化処理を施して少なくとも粉末粒子の外周部にFe
4 N又はFe16N2 を形成する工程と、このよう
に形成された粉末粒子を焼結させる工程と、これら粒子
に対し粒間酸化処理を施す工程とを備えたことを特徴と
する。
[Means and Effects for Solving the Problems] A method for producing a nitride-based high-density sintered body according to the present invention includes a method for producing a nitride-based high-density sintered body by subjecting iron or iron alloy powder to a nitriding treatment so that at least the outer periphery of the powder particles contains Fe.
The present invention is characterized by comprising a step of forming 4 N or Fe16N2, a step of sintering the powder particles thus formed, and a step of subjecting these particles to intergranular oxidation treatment.

【0004】このような方法により、Fe4 N若しく
はFe16N2 を主体とする粒子、又は内部がFe若
しくはFe合金で外周部がFe4 N若しくはFe16
N2 を主体とする粒子が、スピネル型磁性酸化物とし
てのFe3 O4 のマトリックス中に分散した状態の
複合焼結体からなる窒化物系高密度焼結体を得ることが
できる。このような高密度焼結体は、高中周波数域用軟
磁性材料として好適である。
[0004] By such a method, particles mainly composed of Fe4N or Fe16N2, or particles containing Fe or Fe alloy in the interior and Fe4N or Fe16 in the outer periphery can be obtained.
It is possible to obtain a nitride-based high-density sintered body consisting of a composite sintered body in which particles mainly composed of N2 are dispersed in a matrix of Fe3O4 as a spinel type magnetic oxide. Such a high-density sintered body is suitable as a soft magnetic material for high and medium frequency ranges.

【0005】従来、軟磁性材料としては、フェライト、
ケイ素鋼板、パ−マロイ、Fe基及びCo基アモルファ
ス合金等が用いられている。このような軟磁性材料は飽
和磁束密度が高くかつ低損失であり、ある程度の透磁率
を有していることが要求される。これらの中でケイ素鋼
板、パ−マロイ及びFe基及びCo基アモルファス合金
等の金属材料は、飽和磁束密度が比較的高く低周波数用
の軟磁性材料として適している。特に、Fe基及びCo
基アモルファス合金は高い透磁率を有している。しかし
、これらは基本的に金属であるため、電気抵抗が低く、
高中周波数用としては適用が困難である。すなわち、損
失(tan δ)は周波数の2乗に比例し電気抵抗に反
比例するため、これら金属磁性材料は高周波数域におい
て損失が大きくなり過ぎるためである。また、金属材料
は耐候性が悪いという欠点がある。一方、Mn−Znフ
ェライト等のフェライト材料は、基本的に酸化物である
ため電気抵抗が高く、低周波数域から高中周波数域まで
使用できる軟磁性材料として広く用いられている。しか
し、フェライト材料は基本的に飽和磁束密度が低く、ま
た、103 kHz以上の高周波数域では急激に損失が
大きくなってしまうという欠点がある。そこで、この発
明では、これら材料の欠点を補い、極めて特性が優れた
軟磁性材料としての上記焼結体を得ることができる製造
方法を提供する。
Conventionally, soft magnetic materials include ferrite,
Silicon steel plates, permalloy, Fe-based and Co-based amorphous alloys, etc. are used. Such soft magnetic materials are required to have a high saturation magnetic flux density, low loss, and a certain degree of magnetic permeability. Among these, metal materials such as silicon steel sheets, permalloy, and Fe-based and Co-based amorphous alloys have relatively high saturation magnetic flux densities and are suitable as soft magnetic materials for low frequencies. In particular, Fe groups and Co
The base amorphous alloy has high magnetic permeability. However, since these are basically metals, they have low electrical resistance.
It is difficult to apply it for high and medium frequencies. That is, since the loss (tan δ) is proportional to the square of the frequency and inversely proportional to the electrical resistance, the loss of these metal magnetic materials becomes too large in the high frequency range. Additionally, metal materials have the disadvantage of poor weather resistance. On the other hand, ferrite materials such as Mn-Zn ferrite have high electrical resistance because they are basically oxides, and are widely used as soft magnetic materials that can be used from low frequency ranges to high and medium frequency ranges. However, ferrite materials basically have a low saturation magnetic flux density, and also have the drawback that loss increases rapidly in a high frequency range of 103 kHz or higher. Therefore, the present invention provides a manufacturing method capable of compensating for the drawbacks of these materials and obtaining the above-mentioned sintered body as a soft magnetic material with extremely excellent properties.

【0006】次に、この発明により得ようとする焼結体
について説明する。図1は、鉄−窒素系の状態図である
。この状態図の中でγ´相がFe4 Nであり、α’’
相がFe16N2 である。Fe4 Nは、鉄のfcc
相の体心位置に窒素原子が入ったペロブスカイト型結晶
格子を有している。この相は常温でも安定であり、Tc
=488℃の強磁性体である。常温での飽和磁化は19
5emu/gと純鉄より若干低い程度であり、磁性材料
として有望である。一方、Fe16N2 は準安定相で
あり、bcc格子を母体としたbct結晶格子を有する
。このbct構造はbcc構造の鉄の体心位置に規則的
に窒素原子が入り込んだ型となっている。この相の常温
での飽和磁化は260emu/gと純鉄の1.2倍であ
り、これも磁性材料として有望である。また、大気中に
おいて、Fe4 N及びFe16N2 の表面には緻密
なα−Fe2 O3 が形成されるので、表面にFe3
 O4 が形成されるFeよりも耐候性に優れている。 さらに、これらは窒化物であるから鉄よりもかなり硬い
Next, a sintered body to be obtained by the present invention will be explained. FIG. 1 is a phase diagram of the iron-nitrogen system. In this phase diagram, the γ' phase is Fe4N, and the α''
The phase is Fe16N2. Fe4N is iron fcc
It has a perovskite-type crystal lattice with nitrogen atoms at the body center of the phase. This phase is stable even at room temperature, and Tc
= 488°C ferromagnetic material. Saturation magnetization at room temperature is 19
It is 5 emu/g, which is slightly lower than pure iron, and is promising as a magnetic material. On the other hand, Fe16N2 is a metastable phase and has a bct crystal lattice with a bcc lattice as its matrix. This bct structure is a type in which nitrogen atoms are regularly inserted into the body center position of iron in the bcc structure. The saturation magnetization of this phase at room temperature is 260 emu/g, which is 1.2 times that of pure iron, and is also promising as a magnetic material. In addition, since dense α-Fe2 O3 is formed on the surfaces of Fe4 N and Fe16N2 in the atmosphere, Fe3
It has better weather resistance than Fe, which forms O4. Furthermore, since they are nitrides, they are considerably harder than iron.

【0007】このような、Fe4 N又はFe16N2
 を主体とする粒子をスピネル型磁性酸化物としてのF
e3 O4 等のマトリックス中に分散させた状態の複
合焼結体は、電気抵抗が高いスピネルをマトリックスと
しているので、高抵抗を維持することができ、しかも、
飽和磁束密度が大きいFe4 N又はFe16N2 を
スピネル型磁性酸化物マトリックス中の磁性粒子として
用いているので、磁性の連続性を維持することができ、
フェライトよりも高い飽和磁束密度及び比較的高い透磁
率を得ることができる。従って、高中周波数においても
損失が小さい。また、マトリックス中の磁性粒子は、少
なくともその外周部が耐候性が高いFe4 N若しくは
Fe16N2 を主体としているので、金属系の軟磁性
材料よりも耐候性に優れている。
[0007] Such Fe4N or Fe16N2
F as a spinel-type magnetic oxide containing particles mainly composed of
The composite sintered body dispersed in a matrix such as e3 O4 uses spinel, which has high electrical resistance, as a matrix, so it can maintain high resistance, and
Since Fe4N or Fe16N2, which has a high saturation magnetic flux density, is used as the magnetic particles in the spinel magnetic oxide matrix, magnetic continuity can be maintained.
Higher saturation magnetic flux density and relatively higher magnetic permeability than ferrite can be obtained. Therefore, loss is small even at high and medium frequencies. Furthermore, since the magnetic particles in the matrix are mainly composed of Fe4N or Fe16N2, which have high weather resistance, at least their outer peripheral portions, they have better weather resistance than metal-based soft magnetic materials.

【0008】このような焼結体を製造するためには、先
ず、出発原料としての鉄粉を準備する。この鉄粉として
は、粒子径が0.1〜200μmのものが好ましく、C
VD法による超微粒鉄粉、カ−ボニル鉄粉、水アトマイ
ズ粉、ガスアトマイズ粉、還元鉄粉を用いることができ
る。また、これらの鉄粉としては純鉄のみならず、Fe
−Co合金を用いることもできる。
[0008] In order to manufacture such a sintered body, first, iron powder is prepared as a starting material. This iron powder preferably has a particle size of 0.1 to 200 μm, and C
Ultrafine iron powder produced by the VD method, carbonyl iron powder, water atomized powder, gas atomized powder, and reduced iron powder can be used. In addition, these iron powders include not only pure iron but also Fe.
-Co alloy can also be used.

【0009】次に、このような鉄粉末又は鉄合金粉末を
適宜の方法で窒化する。この場合に窒化処理時間が十分
に長ければ粒子を完全にFe4 N若しくはFe16N
2 にすることができ、また窒化処理時間が短ければ外
周部だけを窒化して内部がFe若しくはFe合金で外周
部がFe4N若しくはFe16N2 で構成された粒子
を製造することができる。この処理に際して、窒素供給
量、温度等の窒化条件を適宜規定することによってFe
4 N及びFe16N2 のいずれかを形成することが
できる。なお、前述したように、Fe16N2は準安定
相であるので、窒化処理後急冷することにより得られる
Next, such iron powder or iron alloy powder is nitrided by an appropriate method. In this case, if the nitriding time is long enough, the particles will be completely converted to Fe4N or Fe16N.
2, and if the nitriding treatment time is short, it is possible to nitride only the outer periphery to produce particles whose interior is made of Fe or Fe alloy and the outer periphery is made of Fe4N or Fe16N2. During this process, by appropriately specifying nitriding conditions such as nitrogen supply amount and temperature, Fe
4N or Fe16N2 can be formed. Note that, as described above, since Fe16N2 is a metastable phase, it can be obtained by rapid cooling after nitriding.

【0010】窒化処理の方法としては、ガス窒化法及び
イオン窒化法が好適である。ガス窒化法においては、反
応容器内に鉄粉末を装入し、外部ヒ−タにて容器内を例
えば500℃程度に加熱しながら、容器内にNH3 ガ
ス、H2 ガス等を送入して鉄粉末を窒化する。また、
イオン窒化法においては、反応容器内を高真空に保持し
、この容器内に反応ガスとしてのN2 等を送入してグ
ロ−放電により鉄粉末を窒化する。
[0010] As the nitriding method, gas nitriding method and ion nitriding method are suitable. In the gas nitriding method, iron powder is charged into a reaction vessel, and while the inside of the vessel is heated to about 500°C using an external heater, NH3 gas, H2 gas, etc. are fed into the vessel to remove iron. Nitrid the powder. Also,
In the ion nitriding method, the inside of a reaction vessel is maintained at a high vacuum, and N2 or the like as a reaction gas is introduced into the vessel to nitride iron powder by glow discharge.

【0011】次に、窒化処理された鉄粉を焼結させる。 この場合の焼結は、形成する窒化鉄がFe4 Nの場合
には、圧粉成形した後、通常焼成により行うことができ
る。Fe16N2 の場合には、この相が準安定相であ
り急冷する必要があることから爆発成形により焼結を行
う。 爆発成形は火薬の爆発力を利用するもので瞬間的に生ず
る巨大な圧力と加工速度を利用して粉末を成形すると共
に、焼結させるものである。この爆発成形は、静水圧成
形のように塑性型の中に粉末を充填して水中に置き爆発
力を加えて成形する方法で行うこともできるし、普通の
押型の構造でパンチに爆発力を加える方法で行ってもよ
い。なお、この焼結は、後に続く粒間酸化処理の際に必
要な粒間酸化を生じさせることができる程度の焼結体が
得られるように行われる。
Next, the nitrided iron powder is sintered. In this case, when the iron nitride to be formed is Fe4N, the sintering can be carried out by compacting and then firing normally. In the case of Fe16N2, since this phase is a metastable phase and requires rapid cooling, sintering is performed by explosive molding. Explosive molding utilizes the explosive power of gunpowder, and utilizes the instantaneous enormous pressure and processing speed to shape and sinter powder. Explosive molding can be performed by filling a plastic mold with powder, placing it in water, and applying explosive force, such as in isostatic pressing, or by applying explosive force to a punch using a normal pressing mold structure. You can also do this by adding. Note that this sintering is performed so as to obtain a sintered body that is capable of producing the intergranular oxidation necessary for the subsequent intergranular oxidation treatment.

【0012】その後、この焼結体に対し粒間酸化処理を
施す。この粒間酸化処理は焼結体を590℃程度に保持
して、酸化性ガスを供給することにより行われる。これ
により焼結体粒子の周囲にFe3 O4 等のマトリッ
クスが形成され、高密度焼結体が得られる。なお、この
粒間酸化はこのように焼結処理の後に行ってもよいが、
焼結雰囲気を弱酸化雰囲気にして焼結処理の過程で焼結
と同時に行うこともできる。
[0012] Thereafter, this sintered body is subjected to intergranular oxidation treatment. This intergranular oxidation treatment is performed by maintaining the sintered body at about 590° C. and supplying an oxidizing gas. As a result, a matrix of Fe3O4 or the like is formed around the sintered particles, resulting in a high-density sintered body. Note that this intergranular oxidation may be performed after the sintering treatment as described above, but
It is also possible to perform the sintering simultaneously with sintering in the process of sintering by making the sintering atmosphere a weakly oxidizing atmosphere.

【0013】これらの工程により、上述した、Fe4 
N若しくはFe16N2 を主体とする粒子、又は内部
がFe若しくはFe合金で外周部がFe4 N若しくは
Fe16N2 を主体とする粒子が、スピネル型磁性酸
化物としてのFe3 O4 等のマトリックス中に分散
した状態の複合焼結体からなる窒化物系高密度焼結体が
得られる。
Through these steps, the above-mentioned Fe4
A composite in which particles mainly composed of N or Fe16N2, or particles whose interior is Fe or Fe alloy and whose outer periphery is mainly Fe4N or Fe16N2, are dispersed in a matrix such as Fe3O4 as a spinel magnetic oxide. A nitride-based high-density sintered body made of a sintered body is obtained.

【0014】このようなFe4 N又はFe16N2 
を含む磁性粒子とスピネル型磁性酸化物マトリックスと
の複合焼結体は、Fe4 N又はFe16N2 を含む
磁性粒子とスピネル型磁性酸化物マトリックスとの体積
比が6/100〜100/100であることが好ましい
。また、このような高密度焼結体は、理論密度の98%
以上の密度を有していることが好ましい。上述の方法で
製造された窒化鉄系の複合焼結体は、高中周波数用軟磁
性材料として適した磁気特性を有し、かつ耐候性に優れ
ている。
[0014] Such Fe4N or Fe16N2
The composite sintered body of magnetic particles containing Fe4N or Fe16N2 and a spinel-type magnetic oxide matrix may have a volume ratio of 6/100 to 100/100. preferable. In addition, such a high-density sintered body has a density of 98% of the theoretical density.
It is preferable to have a density equal to or higher than that. The iron nitride-based composite sintered body produced by the above-described method has magnetic properties suitable as a soft magnetic material for high and medium frequencies, and is excellent in weather resistance.

【0015】[0015]

【実施例】以下、この発明の実施例について説明する。 (実施例1)[Embodiments] Examples of the present invention will be described below. (Example 1)

【0016】この実施例においては、出発原料として粒
径が1〜40μmの水アトマイズ鉄粉及びカ−ボニル鉄
粉を用いた。この鉄粉をガス窒化法により窒化処理して
窒化粉とした。この窒化処理は、反応ガスとしてH2 
ガス及びNH3 ガスを用い、H2 /NH3 を0/
100〜90/10まで変化させ、室温〜750℃の範
囲で5分間〜2時間の窒化処理を行った。その結果、F
e4 N若しくはFe16N2 を主体とする粒子、又
は内部がFeで外周部がFe4 N若しくはFe16N
2 を主体とする粒子が形成された。これらの窒化粉の
うち、H2 /NH3 が50/50〜70/30、温
度500℃で30分間保持の条件で窒化処理してほぼ全
体がFe4 Nとなったものについて、H2 /NH3
 が40/60〜60/40の混合ガス雰囲気中で30
0℃、5〜15分間の還元処理を行った。これにより窒
化粉末粒子の表面にFeのメタルシェルが形成された。
In this example, water atomized iron powder and carbonyl iron powder with a particle size of 1 to 40 μm were used as starting materials. This iron powder was nitrided using a gas nitriding method to obtain nitrided powder. This nitriding process uses H2 as a reaction gas.
Using gas and NH3 gas, H2 /NH3 is 0/
The nitriding process was carried out at a temperature ranging from room temperature to 750°C for 5 minutes to 2 hours, varying the temperature from 100 to 90/10. As a result, F
Particles mainly composed of e4 N or Fe16N2, or particles with Fe inside and Fe4 N or Fe16N on the outer periphery
Particles mainly consisting of 2 were formed. Among these nitrided powders, H2 /NH3 was nitrided under conditions of 50/50 to 70/30 and maintained at a temperature of 500°C for 30 minutes to become almost entirely Fe4N.
30 in a mixed gas atmosphere of 40/60 to 60/40
Reduction treatment was performed at 0°C for 5 to 15 minutes. As a result, a metal shell of Fe was formed on the surface of the nitrided powder particles.

【0017】次いで、この粉末を成形し、その後、酸化
性雰囲気中で粒間を酸化しながら焼結させた。その結果
、Fe4 N粒子がスピネル型磁性酸化物としてのFe
3 O4のマトリックス中に分散した状態の複合焼結体
からなる窒化物系高密度焼結体が得られた。この焼結体
の物性及び特性は以下に示す通りであった。 密度                6.53g/c
m3    鉄損W              0.
85W/cm3    最大透磁率μmax     
  800比抵抗ρ            0.01
Ω・cm飽和磁化MS        171emu 
/g以上のように、高中周波数用軟磁性材料として優れ
た磁気的特性を有する高密度焼結体が得られたことが確
認された。 (実施例2) この実施例においては、出発原料として粒径が1〜40
μmの水アトマイズ鉄粉を用い、実施例1と同じ条件で
窒化処理した。
Next, this powder was molded and then sintered in an oxidizing atmosphere while oxidizing the intergranular areas. As a result, the Fe4N particles became Fe as spinel-type magnetic oxide.
A nitride-based high-density sintered body consisting of a composite sintered body dispersed in a matrix of 3 O4 was obtained. The physical properties and characteristics of this sintered body were as shown below. Density 6.53g/c
m3 Iron loss W 0.
85W/cm3 Maximum permeability μmax
800 specific resistance ρ 0.01
Ω・cm Saturation magnetization MS 171emu
/g or more, it was confirmed that a high-density sintered body having excellent magnetic properties as a soft magnetic material for high and medium frequencies was obtained. (Example 2) In this example, the starting material has a particle size of 1 to 40
Nitriding treatment was carried out under the same conditions as in Example 1 using μm water atomized iron powder.

【0018】これらの窒化粉のうち、H2 /NH3 
が50/50〜70/30、温度500℃で30分間保
持の条件で窒化処理してほぼ全体が窒化されたものにつ
いて、H2 /NH3 が40/60〜60/40の混
合ガス雰囲気中で300℃、5〜15分間の還元処理を
行った。これにより窒化粉末粒子の表面にFeメタルシ
ェルが形成された。
Among these nitrided powders, H2 /NH3
300% in a mixed gas atmosphere with H2/NH3 of 40/60 to 60/40 for those that were almost entirely nitrided by nitriding under conditions of 50/50 to 70/30 and a temperature of 500°C for 30 minutes. Reduction treatment was carried out at 5°C for 5 to 15 minutes. As a result, an Fe metal shell was formed on the surface of the nitrided powder particles.

【0019】この粉末にMn粉及びZn粉を加えてVブ
レンダ−により混合し、次いで、この粉末を成形し、そ
の後、酸化性雰囲気中で粒間を酸化しながら焼結させた
。その結果、窒化粒子がスピネル型磁性酸化物としての
Fe3 O4 等のマトリックス中に分散した状態の複
合焼結体からなる窒化物系高密度焼結体が得られた。こ
の焼結体の物性及び特性を測定した結果、実施例1とほ
ぼ同様の値が得られた。すなわち、高中周波数用軟磁性
材料として優れた磁気的特性を有する高密度焼結体が得
られたことが確認された。
Mn powder and Zn powder were added to this powder and mixed in a V blender, and then this powder was molded and then sintered in an oxidizing atmosphere while oxidizing the particles. As a result, a nitride-based high-density sintered body consisting of a composite sintered body in which nitride particles were dispersed in a matrix of Fe3O4 or the like as a spinel-type magnetic oxide was obtained. As a result of measuring the physical properties and characteristics of this sintered body, almost the same values as in Example 1 were obtained. That is, it was confirmed that a high-density sintered body having excellent magnetic properties as a soft magnetic material for high and medium frequencies was obtained.

【0020】[0020]

【発明の効果】この発明によれば、実用的な窒化鉄系高
密度焼結体の製造方法を提供することができる。この方
法によって製造された焼結体は高電気抵抗及び高飽和磁
化を有しているため損失が小さく、かつ透磁率が比較的
大きいので、高中周波数用の軟磁性材料に好適である。 また、金属系の軟磁性材料よりも耐候性に優れているの
で実用的である。
According to the present invention, a practical method for producing an iron nitride-based high-density sintered body can be provided. The sintered body produced by this method has high electrical resistance and high saturation magnetization, resulting in low loss, and relatively high magnetic permeability, so it is suitable as a soft magnetic material for high and medium frequencies. In addition, it is practical because it has better weather resistance than metal-based soft magnetic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

【第1図】鉄−窒素系の状態図。[Fig. 1] Phase diagram of the iron-nitrogen system.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鉄又は鉄合金粉末に窒化処理を施して
少なくとも粉末粒子の外周部にFe4 N又はFe16
N2 を形成する工程と、このように形成された粉末粒
子を焼結させる工程と、これら粒子に対し粒間酸化処理
を施す工程とを備えたことを特徴とする窒化鉄系高密度
焼結体の製造方法。
Claim 1: Iron or iron alloy powder is subjected to nitriding treatment so that Fe4 N or Fe16 is added to at least the outer periphery of the powder particles.
An iron nitride-based high-density sintered body comprising a step of forming N2, a step of sintering the powder particles thus formed, and a step of subjecting these particles to intergranular oxidation treatment. manufacturing method.
JP2403506A 1990-12-19 1990-12-19 Manufacture of iron-nitride-based high-density sintered body Pending JPH04217305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2403506A JPH04217305A (en) 1990-12-19 1990-12-19 Manufacture of iron-nitride-based high-density sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2403506A JPH04217305A (en) 1990-12-19 1990-12-19 Manufacture of iron-nitride-based high-density sintered body

Publications (1)

Publication Number Publication Date
JPH04217305A true JPH04217305A (en) 1992-08-07

Family

ID=18513245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2403506A Pending JPH04217305A (en) 1990-12-19 1990-12-19 Manufacture of iron-nitride-based high-density sintered body

Country Status (1)

Country Link
JP (1) JPH04217305A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905323A (en) * 2010-07-23 2010-12-08 华南理工大学 High-speed pressing and forming method for high-density iron-base powder
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101905323A (en) * 2010-07-23 2010-12-08 华南理工大学 High-speed pressing and forming method for high-density iron-base powder
US10068689B2 (en) 2011-08-17 2018-09-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11742117B2 (en) 2011-08-17 2023-08-29 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US11217371B2 (en) 2013-02-07 2022-01-04 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10692635B2 (en) 2013-02-07 2020-06-23 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US9715957B2 (en) 2013-02-07 2017-07-25 Regents Of The University Of Minnesota Iron nitride permanent magnet and technique for forming iron nitride permanent magnet
US10504640B2 (en) 2013-06-27 2019-12-10 Regents Of The University Of Minnesota Iron nitride materials and magnets including iron nitride materials
US11195644B2 (en) 2014-03-28 2021-12-07 Regents Of The University Of Minnesota Iron nitride magnetic material including coated nanoparticles
US10961615B2 (en) 2014-06-30 2021-03-30 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US11214862B2 (en) 2014-08-08 2022-01-04 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US12018386B2 (en) 2019-10-11 2024-06-25 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O

Similar Documents

Publication Publication Date Title
US9378876B2 (en) Ferromagnetic particles and process for producing the same, and anisotropic magnet, bonded magnet and compacted magnet
JP4134111B2 (en) Method for producing insulating soft magnetic metal powder compact
JP2008028162A (en) Soft magnetic material, manufacturing method therefor, and dust core
JP2014060183A (en) Soft magnetic material and method for manufacturing the same
JPH04217305A (en) Manufacture of iron-nitride-based high-density sintered body
CN110997187B (en) Method for manufacturing dust core and method for manufacturing electromagnetic component
JP2003142310A (en) Dust core having high electrical resistance and manufacturing method therefor
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JPH04329847A (en) Manufacture of fe-ni alloy soft magnetic material
JP2008172257A (en) Method for manufacturing insulating soft magnetic metal powder molding
JPH05222483A (en) Production of iron nitride based high density sintered compact
US6723179B2 (en) Soft magnetism alloy powder, treating method thereof, soft magnetism alloy formed body, and production method thereof
JPH07135106A (en) Magnetic core
JPH0521220A (en) Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density
JPH02156038A (en) Making of permanent magnet
JPH04225204A (en) Dust core
KR101537888B1 (en) a method for fabricating metal powder on which an oxide insulation film is formed, and metal powder fabricated thereby
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JPH0525581A (en) Manufacture of iron nitride base high density sintered body
JPH069273A (en) High density sintered product of iron nitride
JP2004156102A (en) Production method for high-density high-resistance composite soft magnetic sintered material
JPH0582328A (en) Iron nitride series high density sintered material
JPH04218607A (en) Sintered compact having pore in surface
JPS6238411B2 (en)