JPH04216463A - Method for monitoring state of plant - Google Patents

Method for monitoring state of plant

Info

Publication number
JPH04216463A
JPH04216463A JP40268190A JP40268190A JPH04216463A JP H04216463 A JPH04216463 A JP H04216463A JP 40268190 A JP40268190 A JP 40268190A JP 40268190 A JP40268190 A JP 40268190A JP H04216463 A JPH04216463 A JP H04216463A
Authority
JP
Japan
Prior art keywords
plant
state
plants
carbon dioxide
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40268190A
Other languages
Japanese (ja)
Other versions
JPH0712261B2 (en
Inventor
Hiroyasu Ito
博康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP40268190A priority Critical patent/JPH0712261B2/en
Publication of JPH04216463A publication Critical patent/JPH04216463A/en
Publication of JPH0712261B2 publication Critical patent/JPH0712261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To rapidly and accurately monitor the health or growth state of a plant. CONSTITUTION:In a method for monitoring the state of a plant, at first, a live plant is grown under many kinds of environments different in temp., humidity, the quantity of sunshine or the like and temporarily set to a carbon dioxide atmosphere during growth to detect fluorescence generated from the irradiated part with exciting light and the correlation between the kind of growing environment and the detection result of fluorescence is preliminarily calculated (first step). Next, the plant in a state to be monitored is temporarily set to a carbon dioxide atmosphere and irradiated with exciting light to detect fluorescence generated from the irradiated part with exciting light (second step). Next, by comparing the correlation calculated in the first step with the detection result of the second step, the state of the plant is discriminated (step 3). By this method, the state of the plant can be monitored.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】  本発明は生きた植物の健康状
態や生育状態をモニタする方法に関する。
TECHNICAL FIELD The present invention relates to a method for monitoring the health and growth status of living plants.

【0002】0002

【従来の技術】  植物の健康状態や生育状態は、温度
や日照度などにより変化し、また病気や害虫などによっ
ても変動する。そこで、植物を良好に生育させるために
は、その状態をモニタし、結果に応じて生育環境をコン
トロ―ルすることが必要になる。
[Prior Art] The health condition and growth condition of plants change depending on temperature, sunlight intensity, etc., and also due to diseases, pests, etc. Therefore, in order to grow plants well, it is necessary to monitor their condition and control the growing environment according to the results.

【0003】0003

【発明が解決しようとする課題】  しかし、植物の健
康状態を迅速かつ正確にモニタすることは、一般的には
極めて難しい。
[Problems to be Solved by the Invention] However, it is generally extremely difficult to quickly and accurately monitor the health status of plants.

【0004】例えば、温度が低すぎて良好な生育条件に
ないことは、実際に成長が十分でないことを観察しない
限り判別が難しく、いわば生育の結果を見ないと正確な
モニタができない。これは、病気などについても同様で
、実際に症状が現れないと判別し難い。そこで、本発明
は、植物の健康状態や生育状態を、微妙な変化であって
も正確かつ迅速にモニタできる方法を提供することを目
的とする。
[0004] For example, if the temperature is too low to provide good growth conditions, it is difficult to determine unless the growth is actually observed to be sufficient, and accurate monitoring cannot be performed unless the growth results are observed. The same is true for illnesses, which are difficult to identify unless symptoms actually appear. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method that can accurately and quickly monitor the health status and growth status of plants, even when there are subtle changes.

【0005】[0005]

【課題点を解決するための手段】  本発明に係る植物
の状態をモニタする方法は、生きた植物を温度、湿度、
日照量等の異なる多種類の生育環境下で生育させ、生育
中に当該植物を一時的に炭酸ガス雰囲気にセットして励
起光の照射部分から生じる螢光を検出し、生育環境の種
類と螢光の検出結果の相関関係をあらかじめ求めておく
第1のステップと、モニタすべき状態にある植物を一時
的に炭酸ガス雰囲気にセットして励起光を照射しながら
当該励起光の照射部分から生じる螢光を検出する第2の
ステップと、第1のステップで求めた相関関係と第2の
ステップでの検出結果を対比することにより、植物の状
態を判別する第3のステップとを備えることを特徴とす
る。
[Means for Solving the Problems] The method for monitoring the condition of plants according to the present invention is a method for monitoring living plants by controlling temperature, humidity,
The plants are grown under many types of growth environments with different amounts of sunlight, etc., and the plants are temporarily set in a carbon dioxide atmosphere during growth to detect the fluorescence generated from the area irradiated with excitation light. The first step is to determine the correlation between the light detection results in advance, and the plant to be monitored is temporarily set in a carbon dioxide atmosphere, and while the excitation light is irradiated, the plant that is in the state to be monitored is irradiated with the excitation light. A second step of detecting fluorescence, and a third step of determining the state of the plant by comparing the correlation obtained in the first step with the detection result in the second step. Features.

【0006】[0006]

【作用】  本発明によれば、まず第1のステップにお
いて、多種類の状態にある植物について、炭酸ガス雰囲
気下での螢光が検出される。そして、上記の多種類の状
態と螢光の検出結果との相対関係が、あらかじめ求めら
れて記録される。
[Operation] According to the present invention, in the first step, fluorescence in a carbon dioxide atmosphere is detected for plants in various states. Then, the relative relationships between the various states described above and the fluorescence detection results are determined in advance and recorded.

【0007】そして、第2のステップでモニタのための
螢光検出がされ、第3のステップで前述の相対関係と対
比される。このため、モニタすべき植物の状態が、どの
ような状態に最も近いかが、容易に判別される。
[0007] In the second step, fluorescence is detected for monitoring, and in the third step, the above-mentioned relative relationship is compared. Therefore, it is easy to determine which state the plant to monitor is closest to.

【0008】[0008]

【実施例】  以下、添付図面を参照にて本発明の実施
例を説明する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0009】図1および図2は、モニタの状況を概念図
で示している。いま、温室などの環境下に図1に示すよ
うに多数の鉢11が置かれ、ここに生育状態や健康状態
をモニタするためのサンプル植物12と、農業的生産活
動に供するための栽培植物13が育てられているとする
。そして、温室内は所定の温度、湿度、施肥量、日照な
どの条件下にコントロ―ルされているとする。
FIGS. 1 and 2 conceptually illustrate the monitor situation. Now, as shown in FIG. 1, a large number of pots 11 are placed in an environment such as a greenhouse, in which sample plants 12 for monitoring growth and health conditions and cultivated plants 13 for use in agricultural production activities are placed. Suppose that is being grown. It is assumed that the inside of the greenhouse is controlled under predetermined conditions such as temperature, humidity, amount of fertilizer, and sunlight.

【0010】モニタに際しては、図示のような透明な容
器21を用意し、これでサンプル植物12を定期的に密
封する。容器21にはガス供給口22とガス排出口23
が設けられており、これを介して容器21の内部は純粋
な炭酸ガスの雰囲気とされる。
[0010] For monitoring, a transparent container 21 as shown in the figure is prepared, and the sample plant 12 is periodically sealed in it. The container 21 has a gas supply port 22 and a gas discharge port 23.
A pure carbon dioxide atmosphere is created inside the container 21 through this.

【0011】また、容器21には光源駆動装置24に接
続された励起光源25と、サンプル植物12から生じた
螢光を検出するための光検出器26が取り付けられ、光
検出器26は検出出力を記録するためのレコ―ダ27に
接続されている。
Further, an excitation light source 25 connected to a light source driving device 24 and a photodetector 26 for detecting fluorescence generated from the sample plant 12 are attached to the container 21, and the photodetector 26 outputs a detection output. It is connected to a recorder 27 for recording.

【0012】上記のような装置を用いて植物の状態をモ
ニタするためには、まず第1のステップとして、環境を
様々に変化させて螢光を記録することが行われる。例え
ば、温度を15℃、17℃、19℃、21℃、と様々に
変化させてサンプル植物12を生育させ、各温度の生育
環境にあるサンプル植物12について、図2に示す状態
が設定される。すなわち、サンプル植物12を純粋な炭
酸ガス雰囲気におきながら、励起光源25から励起光が
照射される。そして、光検出器26により螢光が検出さ
れ、レコ―ダ27に記録される。この記録は、炭酸ガス
の供給停止後についてもなされる。この記録を各温度ご
とに行い、また、日照量や供給水分量施肥量などを変化
させた場合についても行なう。このような記録を定期的
に行ないながら、サンプル植物12を生育させて健康状
態や生育状態を観察し、これをまとめると、植物の状態
と螢光の強度や時間変化との相対関係が求まる。
[0012] In order to monitor the condition of plants using the above-mentioned device, the first step is to record fluorescence while changing the environment in various ways. For example, the sample plants 12 are grown at various temperatures such as 15°C, 17°C, 19°C, and 21°C, and the conditions shown in FIG. 2 are set for the sample plants 12 in the growth environment at each temperature. . That is, excitation light is irradiated from the excitation light source 25 while the sample plant 12 is placed in a pure carbon dioxide atmosphere. Then, the fluorescent light is detected by the photodetector 26 and recorded on the recorder 27. This record is also made after the supply of carbon dioxide gas is stopped. This record is performed for each temperature, and also when the amount of sunlight, water supply, amount of fertilizer applied, etc. are changed. While making such records regularly, the sample plants 12 are grown and their health and growth conditions are observed. By summarizing the results, the relative relationship between the plant's condition and the intensity and time change of the fluorescent light can be determined.

【0013】次に、第2のステップとしてモニタのため
の螢光検出を行ないながら、第3のステップとして実際
のモニタを行なう。すなわち、モニタすべき状態にある
サンプル植物12を図2の如くセットし、螢光を検出す
る。そして、この検出結果を、第1のステップで得られ
た相対関係と対比する。すると、サンプル植物12がど
のような状態にあるかが判明し、これは栽培植物13に
ついても同様であると考えられるので、温度や供給水分
量をコントロ―ルし、生育に適した条件を作る。
Next, as a second step, fluorescence detection for monitoring is performed, and as a third step, actual monitoring is performed. That is, a sample plant 12 in a state to be monitored is set as shown in FIG. 2, and fluorescence is detected. This detection result is then compared with the relative relationship obtained in the first step. As a result, it becomes clear what kind of condition the sample plant 12 is in, and this is thought to be the same for the cultivated plant 13, so the temperature and amount of water supplied are controlled to create conditions suitable for growth. .

【0014】上記の方法によれば、植物の状態の微妙な
変化を極めて敏感にモニタできる。なぜならば、炭酸ガ
スと励起光は植物の本来的生命活動、すなわち光合成の
源泉であり、この光合成サイクルの副産物として螢光が
生成される。すると、植物が健康であるか否かにより光
合成は大きく左右されるので、螢光を検出することで植
物をモニタする情報が得られる。例えば、図3に示すよ
うに、励起光を照射している状態で期間T1 〜T2 
について炭酸ガスを供給すると、植物が不健康な状態に
あるときは光合成が少なく、螢光強度の時間変化は実線
のカ―ブAのようになる。これに対し、植物が普通の状
態にあるときは、点線のカ―ブBのようになり、特に良
好な状態にあるときは、光合成が活発で、螢光強度は一
点鎖線のカ―ブCのようになる。
According to the above method, subtle changes in the condition of plants can be monitored extremely sensitively. This is because carbon dioxide gas and excitation light are the sources of plants' original life activity, that is, photosynthesis, and fluorescence is produced as a byproduct of this photosynthetic cycle. Since photosynthesis is greatly influenced by whether the plant is healthy or not, information for monitoring the plant can be obtained by detecting fluorescence. For example, as shown in FIG. 3, the period T1 to T2 is
When carbon dioxide gas is supplied to the plant, when the plant is in an unhealthy state, photosynthesis is low, and the change in fluorescence intensity over time becomes like the solid curve A. On the other hand, when plants are in normal conditions, the dotted line shows curve B, and when plants are in particularly good conditions, photosynthesis is active and the fluorescence intensity is shown as dotted line curve C. become that way.

【0015】[0015]

【発明の効果】  以上、詳細に説明した通り本発明の
モニタ方法では、炭酸ガスの雰囲気下での励起光による
螢光を検出し、これを基準デ―タとしてあらかじめ求め
ておいた相関関係と対比し、健康状態や生育状態をモニ
タしている。この場合、植物から生じる螢光は、植物の
生命活動である光合成サイクルの副産物であるため、極
めて微妙な状態の変化についても、迅速かつ正確に判別
できる。
[Effects of the Invention] As explained above in detail, the monitoring method of the present invention detects fluorescence caused by excitation light in a carbon dioxide atmosphere, and uses this as reference data to correlate with the predetermined correlation. We compare them and monitor their health and growth status. In this case, since the fluorescence emitted from plants is a byproduct of the photosynthetic cycle, which is the life activity of plants, even extremely subtle changes in state can be determined quickly and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】植物の状態をモニタする様子を示す概念図であ
る。
FIG. 1 is a conceptual diagram showing how the condition of plants is monitored.

【図2】植物の状態をモニタする装置を示す図である。FIG. 2 is a diagram showing a device for monitoring the condition of plants.

【図3】植物の状態に応じた螢光強度の変化を示す図で
ある。
FIG. 3 is a diagram showing changes in fluorescence intensity depending on the state of plants.

【符号の説明】[Explanation of symbols]

11…鉢 12…サンプル植物 21…容器 22…ガス供給口 23…ガス排出口 25…励起光源 26…光検出器 11...pot 12...Sample plants 21...Container 22...Gas supply port 23...Gas exhaust port 25...Excitation light source 26...Photodetector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  生きた植物を温度、湿度、日照量等の
異なる多種類の生育環境下で生育させ、生育中に当該植
物を一時的に炭酸ガス雰囲気にセットして励起光を照射
しながら当該励起光の照射部分から生じる螢光を検出し
、前記生育環境の種類と螢光の検出結果の相関関係をあ
らかじめ求めておく第1のステップと、モニタすべき状
態にある植物を一時的に炭酸ガス雰囲気にセットして励
起光を照射しながら当該励起光の照射部分から生じる螢
光を検出する第2のステップと、  前記第1のステッ
プで求めた相関関係と前記第2のステップでの検出結果
を対比することにより、植物の状態を判別する第3のス
テップと、を備えることを特徴とする植物の状態をモニ
タする方法。
[Claim 1] Living plants are grown under various growth environments with different temperatures, humidity, amount of sunlight, etc., and during growth, the plants are temporarily set in a carbon dioxide atmosphere and irradiated with excitation light. The first step is to detect the fluorescent light generated from the irradiated part of the excitation light and find the correlation between the type of growth environment and the detected fluorescent light in advance, and to temporarily detect the plant in the state to be monitored. A second step of detecting fluorescence generated from the irradiated part of the excitation light while setting it in a carbon dioxide atmosphere and irradiating the excitation light; A method for monitoring the condition of a plant, comprising: a third step of determining the condition of the plant by comparing the detection results.
JP40268190A 1990-12-17 1990-12-17 How to monitor the condition of plants Expired - Fee Related JPH0712261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40268190A JPH0712261B2 (en) 1990-12-17 1990-12-17 How to monitor the condition of plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40268190A JPH0712261B2 (en) 1990-12-17 1990-12-17 How to monitor the condition of plants

Publications (2)

Publication Number Publication Date
JPH04216463A true JPH04216463A (en) 1992-08-06
JPH0712261B2 JPH0712261B2 (en) 1995-02-15

Family

ID=18512479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40268190A Expired - Fee Related JPH0712261B2 (en) 1990-12-17 1990-12-17 How to monitor the condition of plants

Country Status (1)

Country Link
JP (1) JPH0712261B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758746A1 (en) * 1995-08-10 1997-02-19 Societe Des Produits Nestle S.A. Method for examining the quality of material by measuring photon emission in different gaseous atmospheres
JP2017051125A (en) * 2015-09-08 2017-03-16 国立大学法人埼玉大学 Growth diagnostic method, growth diagnostic apparatus, data measurement device, growth diagnostic program, growth assisting method, growth assisting device, and growth assisting program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0758746A1 (en) * 1995-08-10 1997-02-19 Societe Des Produits Nestle S.A. Method for examining the quality of material by measuring photon emission in different gaseous atmospheres
WO1997006427A1 (en) * 1995-08-10 1997-02-20 Societe Des Produits Nestle S.A. Method for examining the quality of material
JP2017051125A (en) * 2015-09-08 2017-03-16 国立大学法人埼玉大学 Growth diagnostic method, growth diagnostic apparatus, data measurement device, growth diagnostic program, growth assisting method, growth assisting device, and growth assisting program

Also Published As

Publication number Publication date
JPH0712261B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
Reddy et al. Soil-Plant-Atmosphere-Research (SPAR) facility: A tool for plant research and modeling
US7987632B2 (en) Expert system for controlling plant growth in a contained environment
Lokhande et al. Quantifying temperature effects on cotton reproductive efficiency and fiber quality
Dresbøll et al. Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging
Binder et al. Applications of chlorophyll fluorescence for stock quality assessment with different types of fluorometers
US20030146394A1 (en) Method and apparatus for monitoring a condition in chlorophyll containing matter
CN115984026A (en) Intelligent agricultural management system based on cloud computing
JPH04216463A (en) Method for monitoring state of plant
Testezlaf et al. A real-time irrigation control system for greenhouses
TW202203750A (en) Mushroom growth monitoring system and method which can achieve the purposes of modularized equipment, precisely monitoring mushroom cultivation, and enhancing economy benefit
CN113075946A (en) Environmental monitoring system based on environmental information feedback
CN113884138B (en) Big data-based intelligent planting monitoring system
JP2012152151A (en) Plant factory for molecular diagnosis and molecular diagnostic method
EP1303748B1 (en) Method and apparatus for detecting the onset of stress and the recovery from stress in chlorophyll containing matter
Upchurch et al. Concepts in deficit irrigation: Defining a basis for effective management
EP4110039A1 (en) A plant growth monitoring system and method
TW202119150A (en) Growth environment monitoring method and system for bag-type cultivated mushrooms including an external field growth environmental factor sensing unit, an internal field growth environmental factor sensing unit, an image acquisition module, a piece of environment control equipment and a control unit
CN117093040B (en) Intelligent adjusting system for agricultural planting greenhouse
US20230385703A1 (en) High-resolution environmental sensor imputation using machine learning
Aharari et al. Development of IoT-based smart agriculture monitoring system for red radish plants production
US20210349069A1 (en) Monitoring device, plant growth monitoring method using monitoring device, and plant factory
TWI759586B (en) Farmland irrigation recommendation method
Wheeler Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989)
TWM599000U (en) Big data management system for medicinal plants
CN110503364A (en) A kind of supply-chain management system based on industry internet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees