JPH04216447A - Heat conduction detecting element - Google Patents
Heat conduction detecting elementInfo
- Publication number
- JPH04216447A JPH04216447A JP41089990A JP41089990A JPH04216447A JP H04216447 A JPH04216447 A JP H04216447A JP 41089990 A JP41089990 A JP 41089990A JP 41089990 A JP41089990 A JP 41089990A JP H04216447 A JPH04216447 A JP H04216447A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- heat
- measured
- thermal
- detection element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 88
- 230000005855 radiation Effects 0.000 claims abstract description 24
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000004020 conductor Substances 0.000 claims abstract description 21
- 238000001514 detection method Methods 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 19
- 239000011247 coating layer Substances 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 9
- 239000000126 substance Substances 0.000 abstract description 9
- 230000007423 decrease Effects 0.000 abstract description 4
- 239000010409 thin film Substances 0.000 description 29
- 238000000034 method Methods 0.000 description 17
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910052697 platinum Inorganic materials 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910001120 nichrome Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910017817 a-Ge Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910000078 germane Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 platinum Chemical class 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、熱伝導検出による物質
の熱伝導率測定をはじめ、熱流量計、熱型真空計、厚み
センサおよび形状測定等に用いられるあらゆる熱伝導検
出素子に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to all kinds of thermal conduction detection elements used for measuring the thermal conductivity of substances by detecting thermal conduction, as well as for heat flow meters, thermal vacuum gauges, thickness sensors, shape measurements, and the like.
【0002】0002
【従来の技術】従来の熱伝導の検出法としては、熱伝導
検出素子を被測定物質に接触させて、その物質の熱伝導
率を測定する方法がとられていた(特開昭49−706
72号公報)。すなわち、熱伝導検出素子を被測定物に
密着させ、熱伝導検出素子に周期的な電流を流すことに
より、熱伝導検出素子の被測定物密着側面を吸熱、発熱
作用させ、同時に被測定物密着側面の温度を測定して、
被測定物の熱的物性による測定温度波形の、熱伝導検出
素子に流した電流波形に対する位相の遅れや振幅比の差
異を検出し、あらかじめ何らかの方法で求めておいた被
測定物の密度と比熱の値を用いて、被測定物の熱伝導率
を測定するものである。この方法では、測定装置が比較
的軽量であるという長所がある。[Prior Art] A conventional method for detecting thermal conduction is to bring a thermal conduction detection element into contact with a substance to be measured and measure the thermal conductivity of that substance (Japanese Patent Laid-Open No. 49-706
Publication No. 72). In other words, by placing the thermal conduction detection element in close contact with the object to be measured and passing a periodic current through the thermal conduction detection element, the side surface of the thermal conduction detection element that is in close contact with the object to be measured absorbs and generates heat, and at the same time, the side surface of the thermal conduction detection element that is in close contact with the object to be measured is brought into close contact with the object to be measured. Measure the temperature on the side,
The density and specific heat of the measured object are determined by detecting the difference in phase delay and amplitude ratio of the measured temperature waveform due to the thermal physical properties of the measured object with respect to the current waveform passed through the thermal conduction detection element, and determined in advance by some method. The value of is used to measure the thermal conductivity of the object to be measured. This method has the advantage that the measuring device is relatively lightweight.
【0003】しかしながら、この方法では、被測定物の
密度と比熱の値を、予め何らかの方法で測定しておく必
要があり、被測定物の密度と比熱の値が得られない場合
は被測定物の熱伝導率が測定できなかった。However, with this method, it is necessary to measure the density and specific heat of the object to be measured in advance by some method, and if the density and specific heat values of the object to be measured cannot be obtained, the values of the density and specific heat of the object to be measured cannot be obtained. Thermal conductivity could not be measured.
【0004】またその他の方法としては、低熱伝導率基
板上と高熱伝導率基板の間に被測定物をはさみ、被測定
物の熱伝導率を測定するという方法もとられていた(特
開昭53−107382 号公報)。すなわち低熱伝導
率基板上に発熱手段と、その発熱手段の近傍に温度測定
手段を設け、この低熱伝導率基板と、高熱伝導率の間に
被測定物をはさみ、発熱手段からの熱が被測定物を通過
することによる発熱手段近傍の温度の変化を、温度測定
手段により検出することにより、被測定物の熱伝導率を
測定するものである。この測定方法では、被測定物をは
さんだ場合とはさまない場合の温度を測定するだけでよ
いから、比較的短時間に被測定物の熱伝導率を測定でき
るという長所がある。[0004] Another method has been to sandwich an object to be measured between a low thermal conductivity substrate and a high thermal conductivity substrate and measure the thermal conductivity of the object (Japanese Patent Laid-Open Publication No. 53-107382). That is, a heat generating means is provided on a low thermal conductivity substrate, and a temperature measuring means is provided near the heat generating means, and the object to be measured is sandwiched between the low thermal conductivity substrate and the high thermal conductivity substrate, and the heat from the heating means is measured. The thermal conductivity of the object to be measured is measured by using a temperature measuring means to detect a change in temperature near the heat generating means due to passing through the object. This measurement method has the advantage of being able to measure the thermal conductivity of the object in a relatively short time because it is only necessary to measure the temperature with and without the object to be measured.
【0005】しかしながら、この方法でもまた、測定装
置を同一平面上に形成することはできず、さらに被測定
サンプルを作製する必要があり、被測定物をはさむため
に測定は容易ではなかった。However, even with this method, the measuring devices cannot be formed on the same plane, and it is necessary to prepare a sample to be measured, and measurement is not easy because the object to be measured is sandwiched between the two.
【0006】これらの欠点を克服した熱伝導検出方法と
して、熱不良導体の基板上に加熱用ヒータと薄膜熱電対
を形成し、その基板上に被測定物を接触させることによ
り、その被測定物の熱伝導率等を測定するといった方法
がある。この方法の場合、被測定物の熱伝導率を温度差
の変化として直接読み取っているため、被測定物の密度
あるいは比熱が未知の場合でも、被測定物の熱伝導率が
測定できる。また、この方法では、ヒータからの熱は、
基板端にある冷接点へ向かって、基板に対して平行に流
れるため、従来の縦方向へ熱を流す、高熱伝導率基板と
低熱伝導率基板ではさむ方法に比べ、熱伝導検出素子を
集積化でき、熱伝導の検出が簡単に行え、さらに配管あ
るいは埋設されている被測定物の形状・厚さ等を、非破
壊でかつ所定のサンプルを作成することなく測定できる
といった長所がある。As a thermal conduction detection method that overcomes these drawbacks, a heating heater and a thin film thermocouple are formed on a substrate of a thermally poor conductor, and the object to be measured is brought into contact with the substrate. There is a method of measuring the thermal conductivity, etc. of In this method, the thermal conductivity of the object to be measured is directly read as a change in temperature difference, so even if the density or specific heat of the object is unknown, the thermal conductivity of the object to be measured can be measured. In addition, with this method, the heat from the heater is
Because heat flows parallel to the board toward the cold junction at the edge of the board, the heat conduction detection element is integrated, compared to the conventional method of sandwiching between a high thermal conductivity board and a low thermal conductivity board, which causes heat to flow vertically. It has the advantage of being able to easily detect heat conduction, and also being able to measure the shape, thickness, etc. of piping or buried objects to be measured non-destructively and without creating a predetermined sample.
【0007】このように、熱伝導を利用して被測定物の
熱伝導率あるいは形状を測定する方法は、広く知られ、
またその応用範囲も広い。[0007] As described above, the method of measuring the thermal conductivity or shape of an object to be measured using thermal conduction is widely known.
It also has a wide range of applications.
【0008】[0008]
【発明が解決しようとする課題】以上述べてきたように
、熱不良導体の基板上に加熱用ヒータと薄膜熱電対を形
成し、その基板上に被測定物を接触させることにより、
その被測定物の熱伝導率等を測定するといった方法は非
破壊、集積化、測定が容易といった特徴を有している。[Problems to be Solved by the Invention] As described above, by forming a heating heater and a thin film thermocouple on a substrate of a thermally poor conductor, and bringing the object to be measured onto the substrate,
The method of measuring the thermal conductivity of the object to be measured has the characteristics of being non-destructive, integrated, and easy to measure.
【0009】この基板上に被測定物を接触させる方法は
、その利用範囲として、取外しが困難なガス管等の管の
物体、アスファルトの厚みや、コンクリートの厚み等建
築物や構造物の測定が考えられる。この場合、測定器自
体の大きさは被測定物に応じて大きなものになる。This method of bringing the object to be measured onto the substrate can be used to measure pipe objects such as gas pipes that are difficult to remove, buildings and structures such as the thickness of asphalt and concrete. Conceivable. In this case, the size of the measuring device itself becomes large depending on the object to be measured.
【0010】しかしながら、被測定物に熱伝導検出素子
を密着させて測定する方法において、被測定物の形状が
大きくなった場合、それに応じて測定に用いられる検出
素子の形状を大きくすることが必要である。しかし、熱
伝導検出素子の形状が大きくなると、基板からの放射熱
による熱抵抗が無視できず、熱伝導検出素子の感度の低
下をもたらしていた。[0010] However, in the method of measuring by placing a thermal conduction detection element in close contact with the object to be measured, if the shape of the object to be measured becomes larger, it is necessary to increase the shape of the detection element used for measurement accordingly. It is. However, when the shape of the thermal conduction detection element becomes large, thermal resistance due to radiated heat from the substrate cannot be ignored, resulting in a decrease in the sensitivity of the thermal conduction detection element.
【0011】したがって、基板からの放射熱をできるだ
け小さくすることにより、形状の大きな熱伝導検出素子
に見られる検出感度の低下をできるだけ減少させること
が本発明の課題である。[0011] Therefore, it is an object of the present invention to reduce as much as possible the deterioration in detection sensitivity observed in large thermal conduction detection elements by minimizing the radiation heat from the substrate.
【0012】0012
【発明を解決するための手段】以上のような問題点に鑑
み、本発明では以下の手段を採用した。基板と加熱手段
と温度を検出する検出手段からなる熱伝導検出素子にお
いて、基板を構成する材料であるセラミックのような熱
不良導体のもつ放射率よりも低放射率の物質(例えば白
金、ニクロム、鉄)を用いて基板を被覆する。この被覆
層4(以下、低放射率の物質4ともいう)の熱伝導によ
る熱抵抗は、基板内熱伝導による熱抵抗に支障ない程度
のものとする。このような構成により、基板からの放射
熱による熱抵抗を著しく増大させることができる。Means for Solving the Invention In view of the above-mentioned problems, the present invention adopts the following means. A thermal conduction detection element consisting of a substrate, a heating means, and a detection means for detecting temperature uses a material (for example, platinum, nichrome, coat the substrate with iron). The thermal resistance due to heat conduction of this coating layer 4 (hereinafter also referred to as low emissivity material 4) is set to a level that does not interfere with the thermal resistance due to heat conduction within the substrate. With such a configuration, thermal resistance due to radiant heat from the substrate can be significantly increased.
【0013】[0013]
【作用】熱伝導検出素子の形状が大きく、かつ低放射率
の物質で被覆していない場合、基板からの放射による熱
抵抗は増大し、放射熱の影響が無視できなくなる。これ
に対し、本発明では基板を低放射率の物質からなる被覆
層を有しているので、基板からの放射による熱抵抗は著
しく増大する。その結果、同一のヒータ発熱量に対する
発熱部の温度は上昇し、また、測定上正確に決定しにく
い熱放射による熱抵抗の影響は減少する。このため、放
射熱伝導検出の測定精度が向上する。つまり、形状が既
知の被測定物ではより正確な熱伝導率が求められ、熱伝
導率が既知の被測定物ではより正確な形状が求められる
。[Operation] If the thermal conduction detection element has a large shape and is not coated with a material having a low emissivity, the thermal resistance due to radiation from the substrate increases, and the influence of the radiated heat cannot be ignored. In contrast, in the present invention, since the substrate has a coating layer made of a material with low emissivity, the thermal resistance due to radiation from the substrate increases significantly. As a result, the temperature of the heat generating part increases for the same amount of heat generated by the heater, and the influence of thermal resistance due to heat radiation, which is difficult to accurately determine in measurement, decreases. Therefore, the measurement accuracy of radiation heat conduction detection is improved. In other words, a more accurate thermal conductivity is required for an object to be measured whose shape is known, and a more accurate shape is required for an object to be measured whose thermal conductivity is known.
【0014】[0014]
【実施例】本発明に係わる熱伝導検出素子は、熱不良導
体の基板1と、その基板の所定位置を加熱する加熱手段
2と、その基板上の所望位置の温度を検出する検出手段
3とを備え、少なくともその基板の表面の一部が低放射
率の物質4で被覆したことを特徴としている。[Embodiment] The thermal conduction detection element according to the present invention includes a substrate 1 of a thermally poor conductor, a heating means 2 for heating a predetermined position on the substrate, and a detection means 3 for detecting the temperature at a desired position on the substrate. It is characterized in that at least a part of the surface of the substrate is coated with a material 4 having a low emissivity.
【0015】図1は本発明に係わる熱伝導検出素子の一
実施例を示す図で、図1(A)は素子の上面図、図1(
B)は矢視イ−ロでの端面図である。熱不良導体の基板
1上に、加熱手段2として加熱用薄膜ヒータ(以下、加
熱用薄膜ヒータ2ともいう)と温度の検出手段3として
薄膜熱電対(以下、薄膜熱電対3a、3bともいう)と
が構成され、さらに熱不良導体の基板1の一部は、熱不
良導体の基板1からの放射熱を低減するための低放射率
の物質4により被覆されている。熱不良導体の基板1は
、熱伝導検出のための僅かなヒータ発熱量に対しても、
大きな温度差△Tが得られることが望ましいので、その
材料としては熱伝導率の小さなものが好ましい。また、
加熱手段2としては、薄膜ヒータ等基板1の所定位置を
加熱できるものが用いられ、温度の検出手段3としては
、熱電対等、基板1の所望位置の温度を検出できるもの
が用いられる。熱不良導体の基板1からの放射熱を低減
するための低放射率の物質4は、白金、ニクロム、鉄等
の純粋金属などが主に用いられる。なお、これら低放射
率の物質4が熱不良導体の基板に付着すると、熱不良導
体の基板1の熱抵抗は減少してしまうので、低放射率の
物質4は熱伝導率が小さく、かつ膜厚が薄いことが望ま
しい。FIG. 1 is a diagram showing an embodiment of the thermal conduction detection element according to the present invention, and FIG. 1(A) is a top view of the element, and FIG.
B) is an end view in the direction of arrow E-ro. A heating thin film heater (hereinafter also referred to as a heating thin film heater 2) is provided as a heating means 2 and a thin film thermocouple (hereinafter also referred to as a thin film thermocouple 3a, 3b) as a temperature detection means 3 on a substrate 1 of a thermally poor conductor. Furthermore, a part of the substrate 1 which is a thermally poor conductor is coated with a material 4 having a low emissivity for reducing radiated heat from the substrate 1 which is a thermally poor conductor. The substrate 1, which is a thermally poor conductor, resists even a small amount of heat generated by the heater for detecting thermal conduction.
Since it is desirable to obtain a large temperature difference ΔT, the material is preferably one with low thermal conductivity. Also,
As the heating means 2, a device capable of heating a predetermined position of the substrate 1, such as a thin film heater, is used, and as the temperature detection means 3, a device capable of detecting the temperature of a desired position of the substrate 1, such as a thermocouple, is used. Pure metals such as platinum, nichrome, iron, etc. are mainly used as the low emissivity material 4 for reducing the radiated heat from the substrate 1, which is a thermally poor conductor. Note that if these low emissivity substances 4 adhere to the thermally poor conductor substrate 1, the thermal resistance of the thermally poor conductor substrate 1 will decrease, so the low emissivity substances 4 have low thermal conductivity and are It is desirable that the thickness be thin.
【0016】ここで、本発明による熱伝導検出素子の、
図1に示される実施例の作製法の一例について簡単に説
明する。熱不良導体の基板1を有機溶剤等で十分に洗浄
した後、清浄な雰囲気で乾燥させ、薄膜熱電対3を形成
する。薄膜熱電対3は、ゼーベックが大きいものが望ま
しく、a−Siあるいはa−Geといった非晶質半導体
薄膜等が用いられる。これらの非晶質半導体は、シラン
、ゲルマン、水素等のガスを用い、プラズマCVD法や
光CVD法、ECRCVD法等により堆積する。この堆
積された非晶質半導体を、フォトエッチング技術を用い
て不要部を除去し、所定の薄膜熱電対3a、3bを形成
する。つづいて、加熱用薄膜ヒータ2を形成する。この
薄膜抵抗体としては、真空蒸着法やスパッタ法等により
堆積されたニクロム、タンタル等の金属薄膜等を用いる
。さらに、金等の電極用金属薄膜を堆積し、同様に不要
部を除去し、薄膜熱電対および薄膜ヒータ用のオーミッ
ク電極を形成する。この熱不良導体の基板1の表面の一
部に、白金、ニクロム、鉄等の低放射率の物質4を金属
蒸着法あるいはスパッタ法等により薄く(例えば、数n
m〜1μm程度)形成する。前述の通り、この低放射率
の物質4は熱伝導率が小さく、かつ膜厚が薄いものを用
いる。Here, the thermal conduction detection element according to the present invention has the following characteristics:
An example of the manufacturing method of the embodiment shown in FIG. 1 will be briefly described. After thoroughly cleaning the thermally poor conductor substrate 1 with an organic solvent or the like, it is dried in a clean atmosphere to form a thin film thermocouple 3. The thin film thermocouple 3 preferably has a large Seebeck, and is made of an amorphous semiconductor thin film such as a-Si or a-Ge. These amorphous semiconductors are deposited by a plasma CVD method, a photo CVD method, an ECRCVD method, or the like using a gas such as silane, germane, or hydrogen. Unnecessary portions of the deposited amorphous semiconductor are removed using photo-etching technology to form predetermined thin film thermocouples 3a and 3b. Subsequently, a thin film heater 2 for heating is formed. As this thin film resistor, a metal thin film of nichrome, tantalum, etc. deposited by vacuum evaporation, sputtering, etc. is used. Furthermore, a metal thin film for electrodes such as gold is deposited, and unnecessary parts are similarly removed to form ohmic electrodes for thin film thermocouples and thin film heaters. A low emissivity material 4 such as platinum, nichrome, or iron is deposited on a part of the surface of the thermally poor conductor substrate 1 by metal vapor deposition or sputtering (e.g., several nanometers).
m to 1 μm). As mentioned above, this low emissivity material 4 has a low thermal conductivity and a thin film thickness.
【0017】図2は本発明の第2の実施例であり、図2
(A)は素子の上面図、図2(B)は矢視イ−ロの端面
図である。図1に示される本発明の実施例において、薄
膜ヒータ2および薄膜熱電対3a、3b上に絶縁層5を
形成し、その絶縁層5の上に低放射率の物質4を被覆し
た場合の実施例である。図2に示される実施例において
は、熱不良導体の基板1の全面を低放射率の物質4で被
覆しているので、放射による熱抵抗を増大することがで
き、また、加熱用薄膜ヒータ2および薄膜熱電対3と、
低放射率の物質4との間には絶縁層5が存在しているの
で、電気的な短絡は生じない。この図2に示される実施
例において、絶縁層5には主に四フッ化シリコン、二酸
化シリコン等の薄膜が用いられ、その作製法としては、
プラズマCVD法、ECRCVD法あるいは光CVD法
等が用いられる。FIG. 2 shows a second embodiment of the present invention, and FIG.
2(A) is a top view of the element, and FIG. 2(B) is an end view in the direction of arrows E--RO. In the embodiment of the present invention shown in FIG. 1, an insulating layer 5 is formed on the thin film heater 2 and the thin film thermocouples 3a, 3b, and the insulating layer 5 is coated with a low emissivity material 4. This is an example. In the embodiment shown in FIG. 2, the entire surface of the substrate 1, which is a thermally poor conductor, is coated with a material 4 having a low emissivity, so that the thermal resistance due to radiation can be increased. and a thin film thermocouple 3,
Since the insulating layer 5 is present between the material 4 having a low emissivity, no electrical short circuit occurs. In the embodiment shown in FIG. 2, a thin film of silicon tetrafluoride, silicon dioxide, etc. is mainly used for the insulating layer 5, and its manufacturing method is as follows.
A plasma CVD method, an ECRCVD method, a photoCVD method, or the like is used.
【0018】本発明による熱伝導検出素子の検出原理に
ついて、図3を用いて説明する。図3は、図1に示され
る熱伝導検出素子の基板1の内部の温度勾配を示した模
式図で、被測定物の接触前(図中(a)破線)と接触後
(図中(b)実線)の様子を示している。熱伝導検出素
子の加熱用薄膜ヒータ2により発熱された熱は、ヒート
シンクに熱的に接続された基板1の両端部に向かって流
れる。この時、加熱用薄膜ヒータ2はある一定の温度に
上昇し、加熱用薄膜ヒータ2の近傍の薄膜熱電対3a、
3bの温接点も一定の温度に上昇する。この状態で熱伝
導検出素子に被測定物7を接触させると、基板1の内部
を通過して流れていた熱の一部は被測定物7の内部をを
通過して流れる。従って、被測定物の接触前後での薄膜
熱電対3の温接点の温度は変化する。この変化分を検出
することにより、被測定物7の形状が既知の場合には熱
伝導率を、また被測定物の熱伝導率が既知の場合には形
状を測定できる。The detection principle of the thermal conduction detection element according to the present invention will be explained with reference to FIG. FIG. 3 is a schematic diagram showing the temperature gradient inside the substrate 1 of the thermal conduction detection element shown in FIG. ) solid line). Heat generated by the heating thin film heater 2 of the thermal conduction detection element flows toward both ends of the substrate 1 which is thermally connected to a heat sink. At this time, the heating thin film heater 2 rises to a certain temperature, and the thin film thermocouple 3a near the heating thin film heater 2,
The hot junction point 3b also rises to a constant temperature. When the object to be measured 7 is brought into contact with the thermal conduction detection element in this state, part of the heat that has been flowing through the inside of the substrate 1 flows through the inside of the object to be measured 7. Therefore, the temperature of the hot junction of the thin film thermocouple 3 changes before and after contact with the object to be measured. By detecting this change, the thermal conductivity can be measured if the shape of the object to be measured 7 is known, and the shape can be measured if the thermal conductivity of the object to be measured is known.
【0019】図4は、図2に示される実施例における、
被測定物が接触していない状態での基板内の温度勾配の
図であり、低放射率の物質4による被覆がない場合(a
)と被覆がある場合(b)について示してある。加熱用
薄膜ヒータ2により供給された発熱量は、真空中の場合
、熱不良導体の基板1の内部を流れる基板内熱伝導と、
空間に放射される放射熱伝導とに分かれ、より低温の部
分に伝わる。この時、基板内熱伝導に関する基板熱抵抗
Rsは以下の式(1)で表される。FIG. 4 shows the embodiment shown in FIG.
This is a diagram of the temperature gradient inside the substrate when the object to be measured is not in contact with it, and when there is no coating with the low emissivity material 4 (a
) and the case (b) with a coating are shown. In a vacuum, the amount of heat supplied by the heating thin film heater 2 is due to internal heat conduction flowing inside the substrate 1, which is a thermally poor conductor, and
The heat is divided into radiant heat radiated into space and conduction, and is transmitted to cooler parts. At this time, the substrate thermal resistance Rs regarding the internal heat conduction is expressed by the following equation (1).
【0020】[0020]
【数1】[Math 1]
【0021】また、放射熱伝導に関する放射熱抵抗Rr
は以下の式(2)で表される。[0021] Also, the radiation heat resistance Rr regarding radiation heat conduction
is expressed by the following equation (2).
【0022】[0022]
【数2】[Math 2]
【0023】この放射熱抵抗Rrは、熱不良導体の基板
1の形状および温度条件が同じ場合、熱不良導体の基板
1の表面の放射率εに比例する。従って、放射率εの小
さな物質で表面を覆うことにより放射熱伝導による熱の
流れを低減させることができる。図4に低放射率の物質
4で基板表面を被覆した場合(実線で表示)と、しない
場合(破線で表示)について示した図4から明らかなよ
うに、基板1の表面に低反射率の物質で被覆することに
より、放射による熱抵抗が大幅に減少しているので、同
じヒータ発熱量においてより大きな温度差△Tが得られ
る。This radiation heat resistance Rr is proportional to the emissivity ε of the surface of the thermally poor conductor substrate 1 when the shape and temperature conditions of the thermally poor conductor substrate 1 are the same. Therefore, by covering the surface with a material having a small emissivity ε, it is possible to reduce the flow of heat due to radiation heat conduction. As is clear from FIG. 4, which shows the cases in which the substrate surface is covered with a material 4 with low emissivity (indicated by a solid line) and the case in which it is not covered (indicated by a broken line), it is clear that the surface of the substrate 1 has a low reflectivity. By coating with a substance, the thermal resistance due to radiation is significantly reduced, so a larger temperature difference ΔT can be obtained with the same amount of heat generated by the heater.
【0024】図5は、図2に示される実施例において、
基板長L=1(cm)、基板幅W=1(cm) 、放
射率ε=0.88のガラス基板に、放射率ε=0.05
の白金100 (nm)を基板1の全面に被覆した場合
と被覆しない場合の、温度300(K)における基板内
伝導による熱抵抗と基板からの放射による熱抵抗それぞ
れの基板厚依存性を示したものである。縦軸に熱抵抗、
横軸には基板の厚さをとっている。また、■は熱が基板
内部を伝導し、かつ基板に被覆を施していない場合、■
は熱が基板内部を伝導し、かつ被覆を施した場合、■は
熱は基板から放射され、かつ被覆がない場合、■は熱が
放射され、かつ被覆がある場合をそれぞれ示している。FIG. 5 shows that in the embodiment shown in FIG.
A glass substrate with substrate length L=1 (cm), substrate width W=1 (cm), and emissivity ε=0.88 has an emissivity ε=0.05.
The dependence of the thermal resistance due to conduction within the substrate and the thermal resistance due to radiation from the substrate at a temperature of 300 (K) when the entire surface of the substrate 1 is coated with platinum 100 (nm) and when it is not coated is shown. It is something. Thermal resistance is on the vertical axis,
The horizontal axis represents the thickness of the substrate. In addition, ■ is when heat is conducted inside the board and the board is not coated.
2 shows a case where heat is conducted inside the substrate and a coating is provided, 2 shows a case where heat is radiated from the substrate and there is no covering, and 2 shows a case where heat is radiated and there is a covering.
【0025】図5に示されるように白金100(nm)
による被覆がない場合は、基板厚1(mm) に
おいて基板内熱伝導による熱抵抗と基板からの放射熱に
よる熱抵抗とが等しくなる。これに対し、白金100(
nm)による被覆がある場合は、同じ基板厚1(mm)
において基板からの放射熱による熱抵抗は基板内熱
抵抗の約18倍と1桁以上増大できる。そしてまた、基
板厚約50(μm) 以上においては、基板1からの放
射熱にる熱抵抗は基板内熱伝導による熱抵抗よりも小さ
い。このように、低放射率の物質4である白金を熱不良
導体の基板1に被覆することにより、放射による熱抵抗
を増大でき、温度差△Tを増大できるばかりでなく、放
射の熱抵抗から生じる誤差を減少でき、その結果、測定
精度も高めることができる。すなわち、図5により熱伝
導検出素子において、その基板1に被覆を施すことによ
り、熱放射による熱抵抗が基板1の内部の熱伝導による
熱抵抗よりも大きく作られた場合に正確かつ容易に熱伝
導率の測定及び形状の測定できることが示された。As shown in FIG. 5, platinum 100 (nm)
If there is no coating, the thermal resistance due to internal heat conduction and the thermal resistance due to radiant heat from the substrate are equal at a substrate thickness of 1 (mm). On the other hand, platinum 100 (
If there is a coating by 1 (mm), the same substrate thickness 1 (mm)
In this case, the thermal resistance due to radiant heat from the substrate is approximately 18 times the internal thermal resistance of the substrate, which can be increased by more than one order of magnitude. Furthermore, when the substrate thickness is approximately 50 (μm) or more, the thermal resistance due to radiant heat from the substrate 1 is smaller than the thermal resistance due to internal heat conduction. In this way, by coating the substrate 1, which is a thermally poor conductor, with platinum, which is a material 4 with a low emissivity, it is possible to increase the thermal resistance due to radiation, and not only increase the temperature difference △T, but also reduce the thermal resistance due to radiation. The errors that occur can be reduced, and as a result, the measurement accuracy can also be improved. That is, in the heat conduction detection element shown in FIG. 5, by coating the substrate 1, when the thermal resistance due to heat radiation is made larger than the thermal resistance due to heat conduction inside the substrate 1, it is possible to accurately and easily detect heat. It has been shown that conductivity and shape can be measured.
【0026】また、一般に放射による熱抵抗Rrは、周
囲との熱の授受により決定されるため、放射による熱抵
抗Rrを正確に決定することは極めて困難であり、低放
射率の物質4による被覆を施すことにより、放射による
熱抵抗Rrの影響を抑制することが可能となり、測定精
度も向上する。Furthermore, since the thermal resistance Rr due to radiation is generally determined by the exchange of heat with the surroundings, it is extremely difficult to accurately determine the thermal resistance Rr due to radiation. By applying this, it becomes possible to suppress the influence of radiation on the thermal resistance Rr, and the measurement accuracy also improves.
【0027】[0027]
【発明の効果】まず、本発明の熱伝導検出素子は、熱不
良導体の基板を低放射率の物質で被覆しているため、熱
伝導検出素子が大きい場合においても、熱放射による熱
抵抗を著しく減少させることはない。従って、基板が大
きくなるために起こる、熱放射による熱抵抗の減少、ひ
いては被測定物接触前の温度差の減少といった従来の問
題は解決でき、測定感度は向上する。[Effects of the Invention] First, the thermal conduction detection element of the present invention coats the thermally poor conductor substrate with a low emissivity material, so even if the thermal conduction detection element is large, the thermal resistance due to heat radiation can be reduced. It will not be significantly reduced. Therefore, conventional problems such as a reduction in thermal resistance due to heat radiation and a reduction in temperature difference before contact with the object to be measured, which occur due to an increase in the size of the substrate, can be solved, and measurement sensitivity is improved.
【0028】そして、この結果、熱不良導体の基板上に
加熱用ヒータと薄膜熱電対を形成し、その基板上に被測
定物を接触させ、その被測定物の熱伝導率等を測定する
といった方法における基板からの熱の放射という問題は
解決された。As a result, a heating heater and a thin film thermocouple are formed on a substrate of a thermally poor conductor, an object to be measured is brought into contact with the substrate, and the thermal conductivity of the object is measured. The problem of heat radiation from the substrate in the method has been solved.
【0029】[0029]
【図1】本発明の第1の実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment of the present invention.
【図2】本発明の第2の実施例の構成図。FIG. 2 is a configuration diagram of a second embodiment of the present invention.
【図3】本発明の第1の実施例の温度勾配を示した図。FIG. 3 is a diagram showing a temperature gradient in the first embodiment of the present invention.
【図4】本発明の第2の実施例の温度勾配を示した図。FIG. 4 is a diagram showing a temperature gradient in a second embodiment of the present invention.
【図5】本発明の第2の実施例で、熱抵抗の基板依存性
を示した図。FIG. 5 is a diagram showing substrate dependence of thermal resistance in a second embodiment of the present invention.
1 基板。 2 加熱手段。 3 検出手段。 4 被覆層(物質)。 5 絶縁層。 1. Board. 2 Heating means. 3 Detection means. 4 Coating layer (substance). 5 Insulating layer.
Claims (2)
良導体の基板(1)と、前記基板の所定位置を加熱する
加熱手段(2)と、前記加熱手段により加熱された前記
基板上の所望の位置の温度を検出する検出手段(3)と
を備えた熱伝導検出素子において、前記基板の表面の少
なくとも一部を覆う前記基板よりも低放射率の物質でな
る被覆層(4)を備えていることを特徴とする熱伝導検
出素子。1. A substrate (1) of a thermally poor conductor that is thermally connected to a heat sink, a heating means (2) for heating a predetermined position of the substrate, and a substrate heated by the heating means. A thermal conduction detection element comprising a detection means (3) for detecting the temperature at a desired position, a coating layer (4) made of a material having a lower emissivity than the substrate and covering at least a part of the surface of the substrate. A thermal conduction detection element characterized by comprising:
て、前記基板は、そこからの熱放射による熱抵抗が前記
基板内部の熱伝導による熱抵抗よりも大きく作られてい
ることを特徴とする熱伝導検出素子。2. The thermal conduction detection element according to claim 1, wherein the substrate is made so that the thermal resistance due to heat radiation from the substrate is larger than the thermal resistance due to thermal conduction inside the substrate. A thermal conduction detection element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2410899A JP2989900B2 (en) | 1990-12-14 | 1990-12-14 | Heat conduction detection element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2410899A JP2989900B2 (en) | 1990-12-14 | 1990-12-14 | Heat conduction detection element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04216447A true JPH04216447A (en) | 1992-08-06 |
JP2989900B2 JP2989900B2 (en) | 1999-12-13 |
Family
ID=18519988
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2410899A Expired - Fee Related JP2989900B2 (en) | 1990-12-14 | 1990-12-14 | Heat conduction detection element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2989900B2 (en) |
-
1990
- 1990-12-14 JP JP2410899A patent/JP2989900B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2989900B2 (en) | 1999-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ashauer et al. | Thermal flow sensor for liquids and gases based on combinations of two principles | |
JP3175887B2 (en) | measuring device | |
Völklein et al. | Measuring methods for the investigation of in‐plane and cross‐plane thermal conductivity of thin films | |
Goodson et al. | Solid layer thermal-conductivity measurement techniques | |
Dames | Measuring the thermal conductivity of thin films: 3 omega and related electrothermal methods | |
US4577976A (en) | Multi-layered thin film heat transfer gauge | |
US5411600A (en) | Ultrathin film thermocouples and method of manufacture | |
JP3118459B2 (en) | Sensing system that measures the eigenvalue of the measured object using the change in thermal resistance | |
Alvarez-Quintana et al. | Extension of the 3ω method to measure the thermal conductivity of thin films without a reference sample | |
US20040121509A1 (en) | Nanowire filament | |
JP3310430B2 (en) | Measuring device and measuring method | |
CN101881668A (en) | Infrared temperature sensor of bridge structure | |
Borca-Tasciuc et al. | Experimental techniques for thin-film thermal conductivity characterization | |
Du et al. | Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining | |
Nishimura et al. | Measurement of in-plane thermal and electrical conductivities of thin film using a micro-beam sensor: A feasibility study using gold film | |
JP3501746B2 (en) | Fluid measurement method | |
JPH04216447A (en) | Heat conduction detecting element | |
Kuntner et al. | Determining the thin-film thermal conductivity of low temperature PECVD silicon nitride | |
KR100292799B1 (en) | Micro Flow / Flow Sensors with Membrane Structure, and Flow / Flow Measurement Methods Using Them | |
Indermuehle et al. | A phase-sensitive technique for the thermal characterization of dielectric thin films | |
Song et al. | A new structure for measuring the thermal conductivity of thin film | |
JPH04235338A (en) | Humidity sensor | |
Berlicki et al. | Vacuum pressure thermal thin-film sensor | |
JPS6385364A (en) | Flow velocity detector | |
DeVecchio et al. | Measurement of thermal diffusivity of small, high conductivity samples using a phase sensitive technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |