JPH04216432A - Lifetime judging method of frp driving shaft - Google Patents

Lifetime judging method of frp driving shaft

Info

Publication number
JPH04216432A
JPH04216432A JP41921090A JP41921090A JPH04216432A JP H04216432 A JPH04216432 A JP H04216432A JP 41921090 A JP41921090 A JP 41921090A JP 41921090 A JP41921090 A JP 41921090A JP H04216432 A JPH04216432 A JP H04216432A
Authority
JP
Japan
Prior art keywords
shaft
driving shaft
frp
torsion angle
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41921090A
Other languages
Japanese (ja)
Inventor
Hiroshi Kahata
加幡 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP41921090A priority Critical patent/JPH04216432A/en
Publication of JPH04216432A publication Critical patent/JPH04216432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PURPOSE:To prevent a trouble of an FRP driving shaft by measuring the torque and the torsion angle transmitted by the driving shaft, obtaining the relationship therebetween at real time thereby to monitor the change of the rigidity of the driving shaft, and judging that the driving shaft should be changed when the rigidity starts to be decreased. CONSTITUTION:A torque measuring device 9 is mounted to a metallic driving shaft 2 at the side of an engine 1, and a torsion angle measuring device is provided to a flange 6 at the side of an output shaft 8 of an FRP driving shaft 5. When a variable torque is applied to the driving shaft 5, as the repeating number of times is increased, the torsion angle is also increased, resulting in the break of the shaft. Therefore, the relationship between the torque detected by the torque measuring device 9 and the torsion angle detected by the torsion angle detecting device 10 is monitored during driving of the engine, so that the change of the rigidity of the shaft is detected. Accordingly, the degree of the damage of the shaft is evaluated. When the rigidity of the shaft starts to be decreased, the shaft is exchanged. In this manner, the shaft is prevented from being caught in trouble.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はFRP製駆動軸の寿命判
定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining the life of an FRP drive shaft.

【0002】0002

【従来の技術】従来の金属製駆動軸の場合は、超音波探
傷等の非破壊検査技術が確立されているため、微小な欠
陥でも検知することができる。しかし、FRP製駆動軸
は超音波の減衰が著しいため、そのような欠陥について
は検知することができない。また、X線を使う場合でも
その分解能がさほど良くないことから、事前に破壊を予
測することはできない。
2. Description of the Related Art In the case of conventional metal drive shafts, even minute defects can be detected because non-destructive testing techniques such as ultrasonic flaw detection have been established. However, since the FRP drive shaft significantly attenuates ultrasonic waves, such defects cannot be detected. Furthermore, even when using X-rays, the resolution is not very good, so it is not possible to predict destruction in advance.

【0003】0003

【発明が解決しようとする課題】FRP製駆動軸につい
て損傷の度合を検知し、駆動軸のトラブルを防止するこ
とのできる寿命判定方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a lifespan determination method that can detect the degree of damage to an FRP drive shaft and prevent troubles with the drive shaft.

【0004】0004

【課題を解決するための手段】FRP製軸が伝達してい
るトルク及びねじり角を計測し、両者の関係をリアルタ
イムで求めることによってFRP製駆動軸の剛性の変化
を監視し、剛性が低下し始めたならば、交換時期と判断
するようにした。
[Means for solving the problem] By measuring the torque and torsion angle transmitted by the FRP shaft and finding the relationship between the two in real time, changes in the rigidity of the FRP drive shaft can be monitored and the rigidity can be detected. Once it started, I knew it was time to replace it.

【0005】[0005]

【実施例】第1図で、1はエンジンである。2はエンジ
ン側金属製駆動軸で、端部にフランジ3を備えている。 5はFRP製駆動軸で、フランジ4でエンジン側金属製
駆動軸2側のフランジ3と連結されている。6は駆動軸
の他端側のフランジで、出力軸8側のフランジ7と連結
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In FIG. 1, 1 is an engine. Reference numeral 2 denotes a metal drive shaft on the engine side, which has a flange 3 at its end. Reference numeral 5 denotes an FRP drive shaft, which is connected by a flange 4 to a flange 3 on the engine side metal drive shaft 2 side. Reference numeral 6 denotes a flange on the other end side of the drive shaft, which is connected to a flange 7 on the output shaft 8 side.

【0006】9はエンジン側金属製駆動軸2に取付けた
トルク計測器、10はFRP製駆動軸5の出力軸8側に
取付けたフランジ6に設けたねじり角度計測器である。
Reference numeral 9 denotes a torque measuring device attached to the metal drive shaft 2 on the engine side, and 10 denotes a torsion angle measuring device attached to the flange 6 attached to the output shaft 8 side of the FRP drive shaft 5.

【0007】さて、FRP製駆動軸について変動トルク
を負荷した場合、どの荷重レべルにおいても、破壊に至
る寿命の1/5から1/2の負荷回数を超えるあたりか
ら軸の剛性が低下し始めるため、同じ負荷が掛っても、
ねじり角度は徐々に増加し始めることが、ねじり疲労試
験の結果から明らかとなっている(第2図参照)。
[0007] When a variable torque is applied to an FRP drive shaft, the rigidity of the shaft decreases at any load level when the number of loads exceeds 1/5 to 1/2 of the lifespan leading to failure. To start, even if the same load is applied,
It is clear from the results of the torsion fatigue test that the torsion angle begins to increase gradually (see Figure 2).

【0008】従って、エンジン稼働中にトルク計測器9
によるトルクとねじり角度計測器10によるFRP製駆
動軸のねじり角の関係を常に監視し、剛性が低下してい
ないかどうかを確認することにより、FRP製駆動軸が
損傷を受けているか否かを確かめることができる。
[0008] Therefore, when the engine is running, the torque measuring device 9
By constantly monitoring the relationship between the torque and the torsion angle of the FRP drive shaft measured by the torsion angle measuring device 10 and checking whether the rigidity has decreased, it is possible to determine whether or not the FRP drive shaft is damaged. I can confirm it.

【0009】第2図はFRP製軸のねじり疲労試験中の
ねじり角と繰り返し回数(寿命)の関係を示す。第2図
で横軸は繰り返し回数(logN)、縦軸はねじり角度
を示し、FRP製駆動軸のスケールモデルでの実験結果
の1例を示す。実験の条件は最大負荷トルク250kg
f・m、最小負荷トルク0kgf・m、変動トルクとし
ての負荷周波数1Hzである。
FIG. 2 shows the relationship between the torsion angle and the number of repetitions (life) during a torsional fatigue test of an FRP shaft. In FIG. 2, the horizontal axis shows the number of repetitions (logN), the vertical axis shows the twist angle, and shows an example of experimental results using a scale model of an FRP drive shaft. The experimental conditions were a maximum load torque of 250 kg.
f·m, the minimum load torque is 0 kgf·m, and the load frequency as a fluctuating torque is 1 Hz.

【0010】図から明らかなように、繰り返し回数が増
加するにつれて、ねじり角度も次第に増加し、最大ねじ
り角度31.54゜で破壊している。
As is clear from the figure, as the number of repetitions increases, the twist angle also gradually increases, and failure occurs at the maximum twist angle of 31.54°.

【0011】このように駆動力伝達中のFRP製駆動軸
の負荷トルクとねじり角を測定し、軸の剛性の変化を検
知して損傷の度合いを評価し、剛性が落ち始めたならば
軸の交換を行うことにより、トラブルを未然に防止する
ことが可能となる。
[0011] In this way, the load torque and torsion angle of the FRP drive shaft during driving force transmission are measured, changes in shaft rigidity are detected to evaluate the degree of damage, and if the rigidity begins to decrease, the shaft is By replacing it, it is possible to prevent trouble from occurring.

【0012】0012

【効果】FRP製駆動軸が変動荷重を受けて破壊に至る
までの特性を利用し、損傷の度合いを評価することによ
り、駆動軸のトラブルを未然に防止することができるよ
うになった。
[Effect] By utilizing the characteristics of the FRP drive shaft being subjected to fluctuating loads until it breaks down and evaluating the degree of damage, it is now possible to prevent problems with the drive shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係る寿命判別方法の剛性検知システム
図。
FIG. 1 is a diagram of a rigidity detection system of a lifespan determination method according to the present invention.

【図2】FRP製軸の繰り返し回数とねじり角の関係を
示すグラフ。
FIG. 2 is a graph showing the relationship between the number of repetitions and torsion angle of an FRP shaft.

【符号の説明】[Explanation of symbols]

1  エンジン 2  金属製駆動軸 3  フランジ 4  フランジ 5  FRP製駆動軸 6  フランジ 7  フランジ 8  出力軸 9  トルク計測器 E  ねじり角度計測器 1 Engine 2 Metal drive shaft 3 Flange 4 Flange 5 FRP drive shaft 6 Flange 7 Flange 8 Output shaft 9 Torque measuring device E Torsion angle measuring device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  FRP製軸が伝達しているトルク及び
ねじり角を計測し、両者の関係をリアルタイムで求める
ことによってFRP製駆動軸の剛性の変化を監視し、軸
の剛性が低下し始めたならば、交換時期と判断すること
を特徴とするFRP製駆動軸の寿命判定方法。
[Claim 1] Changes in the rigidity of the FRP drive shaft were monitored by measuring the torque and torsion angle transmitted by the FRP shaft and determining the relationship between the two in real time, and it was determined that the rigidity of the shaft began to decrease. If so, a method for determining the lifespan of an FRP drive shaft, characterized by determining that it is time to replace it.
JP41921090A 1990-12-14 1990-12-14 Lifetime judging method of frp driving shaft Pending JPH04216432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41921090A JPH04216432A (en) 1990-12-14 1990-12-14 Lifetime judging method of frp driving shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41921090A JPH04216432A (en) 1990-12-14 1990-12-14 Lifetime judging method of frp driving shaft

Publications (1)

Publication Number Publication Date
JPH04216432A true JPH04216432A (en) 1992-08-06

Family

ID=18526862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41921090A Pending JPH04216432A (en) 1990-12-14 1990-12-14 Lifetime judging method of frp driving shaft

Country Status (1)

Country Link
JP (1) JPH04216432A (en)

Similar Documents

Publication Publication Date Title
US6629058B2 (en) Fault diagnosis method and apparatus
JP5113874B2 (en) Structural integrity monitoring system
JP2017219469A (en) State monitoring device and state monitoring method
JP3411841B2 (en) Failure diagnosis method and failure diagnostic device
US20180217026A1 (en) Methods and systems for estimating residual useful life of a rolling element bearing
EP3789748A1 (en) A system and method for health monitoring of a bearing system
US4304135A (en) Constraint factor for structural monitoring
CN104964820A (en) Rotary machine broken shaft fault on-line prediction method and apparatus
RU2478923C2 (en) Diagnostics method of technical state of inter-rotor bearing of two-shaft gas turbine engine
JPH04216432A (en) Lifetime judging method of frp driving shaft
WO2019245036A1 (en) Method for manufacturing pressure accumulator
JP3646551B2 (en) Seal member inspection method
RU2337348C1 (en) Method for determination of fatigue damage of crank shafts
JP7208622B2 (en) Strain measuring device for metal structure and method for detecting deterioration damage of metal structure
Michaels et al. Self‐Calibrating Ultrasonic Methods for In‐Situ Monitoring of Fatigue Crack Progression
CN105157961A (en) Broken shaft failure online prediction device and method for rotary mechanical power source rotor shaft
Tandon et al. Detection of defects at different locations in ball bearings by vibration and shock pulse monitoring
RU2735130C1 (en) Method of estimating service life of a rolling bearing
CN110023646A (en) Method for determining the state of a torsional vibration damper of a vehicle
JPH09178546A (en) Damage detector for belt
RU2108560C1 (en) Method determining residual resource of structure
RU2789616C1 (en) Method for diagnostics of the rolling element jams in the bearing
SU1170343A1 (en) Method of nondestructive inspection of traction electric motor shafts
JP2004245633A (en) Method for detecting defective press fitting
Patidar et al. Study of detection of defects in rolling element bearings using vibration and acoustic measurement methods-A Review