JPH04216339A - Magneto-optical recording medium and production thereof - Google Patents

Magneto-optical recording medium and production thereof

Info

Publication number
JPH04216339A
JPH04216339A JP40216690A JP40216690A JPH04216339A JP H04216339 A JPH04216339 A JP H04216339A JP 40216690 A JP40216690 A JP 40216690A JP 40216690 A JP40216690 A JP 40216690A JP H04216339 A JPH04216339 A JP H04216339A
Authority
JP
Japan
Prior art keywords
layer
magneto
optical recording
recording medium
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP40216690A
Other languages
Japanese (ja)
Inventor
Yasunobu Hashimoto
康宣 橋本
Tsutomu Tanaka
努 田中
Masami Tsutsumi
正己 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP40216690A priority Critical patent/JPH04216339A/en
Publication of JPH04216339A publication Critical patent/JPH04216339A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide the magneto-optical recording medium having a high sensitivity by forming the magneto-optical recording medium having an overwritable multilayered structure on the magneto-optical recording medium on which particularly information is already recorded. CONSTITUTION:This magneto-optical recording medium is provided with the 1st layer 3 of memory layers for recording/reproducing, the 2nd layer 4 which is an auxiliary layer to assist writing, the 3rd layer 5 which is a coupling layer to control the coupling of the 2nd layer and the 4th layer, and the 4th layer 6 which is an initialization layer to initialize the 2nd layer as the multilayered films coupled to each other by the exchange interactions on each other on a substrate 1 and is constituted by lowering the thermal conductivity of at least one layer of the above-mentioned 3rd layer and 4th layer 6 lower than the thermal conductivity of either of the above-mentioned 1st layer or 2nd layer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【産業上の利用分野】本発明は光磁気記録媒体に係り、
特に既に情報記録されている光磁気記録媒体面上にオー
バーライトが可能な多層構造の光磁気記録媒体で、高感
度な光磁気記録媒体、およびその製造方法に関する。光
ディスクには再生専用のコンパクトディスク、書き込み
および再生が可能な光磁気ディスク等があるが、情報の
記録再生が容易なオーバーライト可能な光磁気ディスク
が注目されている。
[Industrial Application Field] The present invention relates to a magneto-optical recording medium.
In particular, the present invention relates to a highly sensitive magneto-optical recording medium, which is a multilayer structured magneto-optical recording medium that can be overwritten on the surface of the magneto-optical recording medium on which information has already been recorded, and a method for manufacturing the same. Optical disks include read-only compact disks, writeable and readable magneto-optical disks, and overwritable magneto-optical disks that allow easy recording and playback of information are attracting attention.

【従来の技術】従来、本出願人は特開平1−24105
1号に於いて、互いに交換相互作用により結合する光磁
気記録媒体を4層構造に積層し、第1層を記録/再生の
ためのメモリ層、第2層を書き込みを補助する補助層、
該補助層上にこの補助層を初期化する初期化層を設け、
この補助層と初期化層の間にキュリー温度が補助層より
低い結合層を設け、外部補助磁界を用いずに、書き込み
光の強弱のみでオーバーライト可能な光磁気記録媒体を
提案している。
[Prior Art] Previously, the present applicant has published Japanese Patent Application Laid-Open No. 1-24105
In No. 1, magneto-optical recording media that are coupled to each other by exchange interaction are stacked in a four-layer structure, the first layer being a memory layer for recording/reproducing, the second layer being an auxiliary layer for assisting writing,
providing an initialization layer for initializing the auxiliary layer on the auxiliary layer;
A coupling layer with a Curie temperature lower than that of the auxiliary layer is provided between the auxiliary layer and the initialization layer, and a magneto-optical recording medium is proposed that can be overwritten only by the strength of the writing light without using an external auxiliary magnetic field.

【発明が解決しようとする課題】然し、かかる従来構造
の光磁気記録媒体は、該媒体の積層数が増加するために
、該媒体全体の膜厚が厚くなり、情報の書き込みのため
のレーザ光の熱がメモリ層より多層構造に積層された他
の層を通じて逃散するために、書き込みの感度が低下す
る問題がある。本発明は上記した欠点を除去し、外部補
助磁界を用いずに書き込みができるように、媒体を多層
構造に積層しても書き込みの感度が低下しない、高感度
の光磁気記録媒体の提供を目的とする。
[Problems to be Solved by the Invention] However, in the magneto-optical recording medium of the conventional structure, as the number of laminated layers of the medium increases, the film thickness of the entire medium becomes thicker, and it becomes difficult to use the laser beam for writing information. Since heat is dissipated from the memory layer through other layers stacked in a multilayer structure, there is a problem that writing sensitivity decreases. The present invention aims to eliminate the above-mentioned drawbacks and provide a highly sensitive magneto-optical recording medium in which the writing sensitivity does not decrease even when the medium is stacked in a multilayer structure so that writing can be performed without using an external auxiliary magnetic field. shall be.

【課題を解決するための手段】上記目的を達成する本発
明の光磁気記録媒体およびその製造方法は、記録/再生
のメモリ層の第1層と、書き込みを補助する補助層の第
2層と、第2層と第4層の結合を制御する結合層の第3
層と、第2層を初期化する初期化層の第4層とを、互い
に交換相互作用により結合する多層膜として基板上に設
けた光磁気記録媒体に於いて、前記第3層と第4層のう
ちの少なくとも1層の熱伝導率を、前記第1層、第2層
のいずれの熱伝導率よりも低くしたことを特徴とする。 また前記第3層と第4層のうちの少なくとも1層の熱伝
導率が、0.08W/cm・K 以下であることを特徴
とする。また前記第1層と第2層を製膜する際のスパッ
タガス圧より高いスパッタガス圧で、第3層または第4
層を製膜することを特徴とするものである。
[Means for Solving the Problems] The magneto-optical recording medium of the present invention which achieves the above object and its manufacturing method have a first layer of a memory layer for recording/reproduction and a second layer of an auxiliary layer for assisting writing. , a third bonding layer that controls the bonding between the second layer and the fourth layer.
In a magneto-optical recording medium provided on a substrate as a multilayer film in which a fourth layer of an initialization layer for initializing a second layer is bonded to each other by exchange interaction, the third layer and a fourth layer are bonded to each other by exchange interaction. It is characterized in that the thermal conductivity of at least one of the layers is lower than the thermal conductivity of either the first layer or the second layer. Further, the thermal conductivity of at least one of the third layer and the fourth layer is 0.08 W/cm·K or less. In addition, the third layer or the fourth layer is
It is characterized by forming layers.

【作用】第3層の結合層、第4層の初期化層の熱伝導率
を低下させることで、基板側より第1層のメモリ層に照
射した書き込み用のレーザ光の熱の内で、上記第3層、
および第4層を通じて加熱スポット周辺に逃げる熱分を
小さくする。このようにすることで、より低いレーザパ
ワーで書き込みが可能、つまり書き込みの感度が向上す
る。熱伝導率を下げる方法としては製膜時のスパッタガ
ス圧を増加させる。スパッタガス圧が高くなると、膜中
へのガスの取り込み量が多く成って、製膜された膜に間
隙が生じやすくなり、そのため、熱伝導率が低下する。
[Operation] By lowering the thermal conductivity of the third bonding layer and the fourth initialization layer, the heat of the writing laser beam irradiated from the substrate side to the first memory layer is The third layer above,
And the amount of heat escaping to the vicinity of the heating spot through the fourth layer is reduced. By doing so, writing can be performed with lower laser power, that is, writing sensitivity is improved. A method for lowering the thermal conductivity is to increase the sputtering gas pressure during film formation. When the sputtering gas pressure increases, the amount of gas taken into the film increases, making it easier to form gaps in the formed film, resulting in a decrease in thermal conductivity.

【実施例】以下、図面を用いて本発明の一実施例につき
詳細に説明する。図1に示すように、本発明の光磁気記
録媒体は、透明なガラス、或いはポリカーボネイトの基
板1上にテルビウム−二酸化シリコン(Tb−SiO2
) より成る保護層2−1 がスパッタ法で形成され、
その上にはテルビウム−鉄−コバルト(Tb−Fe−C
o)より成り、保磁力が15KOe 以上、キュリー温
度が200 ℃で遷移金属リッチのメモリ層の第1層3
が50nmの厚さにマグネトロンスパッタ法で形成され
ている。またその上にはガドリニウム−ジスプロシウム
−鉄−コバルト(Gd−Dy−Fe−Co) より成り
、保磁力が3KOe、キュリー温度が260 ℃で希土
類リッチの補助層の第2層4が120nm の厚さにマ
グネトロンスパッタ法で形成されている。なお、第1層
、第2層の製膜時のスパッタガス圧は0.2Pa とし
た。更にその上にはテルビウム−鉄(Tb−Fe) よ
り成り、保磁力が3KOe、キュリー温度が120 ℃
で遷移金属リッチ(遷移金属成分の磁化の強さの方が、
希土類金属成分の磁化の強さより大)の結合層の第3層
5が20nmの厚さでマグネトロンスパッタ法で形成さ
れ、更にその上にはテルビウム−コバルト(Tb−Co
) より成り、保磁力が8KOe、キュリー温度が30
0 ℃以上で希土類リッチ(希土類金属成分の磁化の強
さの方が遷移金属成分の磁化の強さより大)の初期化層
の第4層6が40nmの厚さにマグネトロンスパッタ法
で形成されている。そしてその上にはTb−SiO2 
よりなる保護層2−2 が形成されている。このように
して形成された本発明の光磁気記録媒体の物理的定数を
表1に示す。また第1、第2および第3実施例を表2を
用いて説明する。但し表2に於いて、(高)は熱伝導率
が大を意味し、(低)は熱伝導率が小であるのを意味す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. As shown in FIG. 1, the magneto-optical recording medium of the present invention has terbium-silicon dioxide (Tb-SiO2) on a transparent glass or polycarbonate substrate 1.
) is formed by a sputtering method,
On top of that is terbium-iron-cobalt (Tb-Fe-C).
o) The first layer 3 of the transition metal-rich memory layer has a coercive force of 15 KOe or more, a Curie temperature of 200° C.
is formed to a thickness of 50 nm by magnetron sputtering. Further, on top of that, there is a second layer 4 of a rare earth-rich auxiliary layer made of gadolinium-dysprosium-iron-cobalt (Gd-Dy-Fe-Co) with a coercive force of 3 KOe and a Curie temperature of 260°C, with a thickness of 120 nm. It is formed by magnetron sputtering method. Note that the sputtering gas pressure during film formation of the first layer and the second layer was 0.2 Pa. Furthermore, it is made of terbium-iron (Tb-Fe) with a coercive force of 3KOe and a Curie temperature of 120°C.
transition metal rich (the magnetization strength of the transition metal component is
A third layer 5 of a coupling layer with a magnetization strength higher than that of the rare earth metal component is formed with a thickness of 20 nm by magnetron sputtering, and on top of this, terbium-cobalt (Tb-Co) is formed.
) with a coercive force of 8 KOe and a Curie temperature of 30
The fourth layer 6 of the initialization layer, which is rare earth rich (the magnetization strength of the rare earth metal component is greater than the magnetization strength of the transition metal component) at 0° C. or higher, is formed to a thickness of 40 nm by magnetron sputtering. There is. And on top of that is Tb-SiO2
A protective layer 2-2 is formed. Table 1 shows the physical constants of the magneto-optical recording medium of the present invention thus formed. Further, the first, second and third embodiments will be explained using Table 2. However, in Table 2, (high) means high thermal conductivity, and (low) means low thermal conductivity.

【表1】 第3層と第4層を製膜する際のスパッタガス圧を変動さ
せて形成した光磁気記録媒体に、書き込みの線速を10
m/sec 、書き込み磁場を300 Oe 、低レベ
ルのライトパワーを5mW 、マーク長を1.5 μm
 として、レーザ光を照射して書き込み、この際の二次
高調波が最小となるレーザパワーを縦軸とし、横軸を製
膜ガス圧とした場合の各実施例の関係曲線を図2に示す
。図2で点Aは従来の光磁気記録媒体で、第1、第2、
第3および第4層ともArガスのスパッタガス圧を0.
2Pa として、製膜した従来の光磁気記録媒体の特性
を示す。
[Table 1] The linear speed of writing was set at
m/sec, write magnetic field of 300 Oe, low level write power of 5 mW, mark length of 1.5 μm.
Figure 2 shows the relationship curves for each example when the vertical axis is the laser power that minimizes the second harmonic and the horizontal axis is the film-forming gas pressure. . Point A in FIG. 2 is a conventional magneto-optical recording medium, where the first, second,
For both the third and fourth layers, the Ar gas sputtering gas pressure was set to 0.
2Pa, the characteristics of a conventional magneto-optical recording medium made into a film are shown.

【表2】 図2に示すように曲線11、12、13の如く、実施例
1、2、3共にスパッタガス圧が増加するにつれて二次
高調波が最小となるレーザパワーの値が低下し、このこ
とは書き込みのレーザーパワーが低下することを示して
いる。図3に書き込みレーザパワーの変調レベル図を示
す。また図4に第3層を製膜する際のArガスのスパッ
タガス圧と、熱伝導率の関係曲線、および第4層を製膜
する際のスパッタガス圧と熱伝導率との関係曲線を示す
。 図2に示すように、本実施例の効果が表れるPSHM 
( 高レベルのレーザパワー) が11.8mW以下に
なる場合について考察する。実施例1のように第3層だ
け高ガス圧で製膜する場合と実施例2のように第4層だ
け高ガス圧で製膜する場合で検討すると、実施例1では
0.7Pa 以上、実施例2では0.4Pa 以上で製
膜した場合に書き込みレーザパワーが低下する効果が表
れる。そしてこの条件で製膜した場合、この膜を熱伝導
率の値より考慮すると、図4の曲線21、22に示すよ
うに、実施例1に於ける第3層の熱伝導率は0.08W
/cm・K 以下、実施例2の第4層の熱伝導率は0.
11W/cm・K となる。従って余裕を見て第3層お
よび/または第4層の熱伝導率は0.08W/cm・K
 とすると良い。またスパッタガス圧を大きくし過ぎる
と、形成される膜が多孔質状態になるので2Pa 以下
程度の値にすることが好ましい。また第1層、および第
2層の熱伝導率を低下させると、更に感度は向上する傾
向に有るが、本発明のようにスパッタガスのガス圧を増
加させて熱伝導率を低下させる方法を用いると、スパッ
タガス圧を増加させるに連れて、形成される膜の磁気特
性が悪くなり、特に第1層および第2層の膜を製膜する
際にスパッタガス圧を増加すると、記録特性に悪影響を
及ぼす恐れが生じる。一方、第3層、第4層の場合は、
第2層を初期化する機能しか有しないために、多少磁気
特性が悪く成っても記録特性には影響を及ぼさない。従
ってスパッタガス圧を増加して熱伝導率を低下する方法
は、本発明のように第3層と第4層にのみ適用するのが
、実用上効果的である。
[Table 2] As shown in curves 11, 12, and 13 in FIG. 2, as the sputtering gas pressure increases in Examples 1, 2, and 3, the value of the laser power at which the second harmonic becomes the minimum decreases. This indicates that the writing laser power is reduced. FIG. 3 shows a modulation level diagram of the writing laser power. In addition, Figure 4 shows the relationship curve between Ar gas sputtering gas pressure and thermal conductivity when forming the third layer, and the relationship curve between sputtering gas pressure and thermal conductivity when forming the fourth layer. show. As shown in Figure 2, PSHM exhibits the effects of this embodiment.
Consider the case where (high level laser power) becomes 11.8 mW or less. When considering the case where only the third layer is formed at high gas pressure as in Example 1 and the case where only the fourth layer is formed at high gas pressure as in Example 2, in Example 1, the pressure is 0.7 Pa or more, In Example 2, when the film is formed at a pressure of 0.4 Pa or more, the effect of reducing the writing laser power appears. When the film was formed under these conditions, the thermal conductivity of the third layer in Example 1 was 0.08W, as shown in curves 21 and 22 of FIG.
/cm・K Below, the thermal conductivity of the fourth layer of Example 2 is 0.
It becomes 11W/cm・K. Therefore, considering the margin, the thermal conductivity of the third layer and/or the fourth layer is 0.08 W/cm・K.
It is good to say. Furthermore, if the sputtering gas pressure is increased too much, the formed film will become porous, so it is preferable to set the sputtering gas pressure to a value of about 2 Pa or less. Furthermore, if the thermal conductivity of the first layer and the second layer is lowered, the sensitivity tends to further improve. If the sputtering gas pressure is increased, the magnetic properties of the formed film will deteriorate.In particular, if the sputtering gas pressure is increased when forming the first and second layer films, the recording properties will deteriorate. There is a risk of adverse effects. On the other hand, in the case of the third and fourth layers,
Since it only has the function of initializing the second layer, even if the magnetic properties deteriorate somewhat, the recording properties will not be affected. Therefore, it is practically effective to apply the method of decreasing the thermal conductivity by increasing the sputtering gas pressure only to the third and fourth layers as in the present invention.

【発明の効果】以上述べたように本発明によれば、外部
磁界を用いずに光変調の強度を変えて書き込みを行うオ
ーバーライト方式の媒体に於いて、その媒体の厚さを厚
くしても感度の低下しない光磁気記録媒体が得られる効
果がある。
[Effects of the Invention] As described above, according to the present invention, in an overwrite type medium in which writing is performed by changing the intensity of optical modulation without using an external magnetic field, the thickness of the medium can be increased. Also, it is possible to obtain a magneto-optical recording medium with no decrease in sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の光磁気記録媒体の断面図である。FIG. 1 is a cross-sectional view of a magneto-optical recording medium of the present invention.

【図2】  第3層および/または第4層の製膜ガス圧
と書き込みレーザパワーとの関係図である。
FIG. 2 is a diagram showing the relationship between the film forming gas pressure of the third layer and/or the fourth layer and the writing laser power.

【図3】  書き込みレーザパワーの変調レベルの説明
図である。
FIG. 3 is an explanatory diagram of the modulation level of writing laser power.

【図4】  製膜のスパッタガス圧と熱伝導率との関係
図である。
FIG. 4 is a diagram showing the relationship between sputtering gas pressure for film formation and thermal conductivity.

【符号の説明】[Explanation of symbols]

1   基板 2−1,2−2   保護層 3   第1層(メモリ層) 4   第2層(補助層) 5   第3層(結合層) 6   第4層(初期化層) 11,12,13    本実施例の製膜ガス圧とレー
ザパワーとの関係曲線
1 Substrate 2-1, 2-2 Protective layer 3 1st layer (memory layer) 4 2nd layer (auxiliary layer) 5 3rd layer (bonding layer) 6 4th layer (initialization layer) 11, 12, 13 pieces Relationship curve between film forming gas pressure and laser power in Example

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  記録/再生のメモリ層の第1層(3)
 と、書き込みを補助する補助層の第2層(4) と、
第2層と第4層の結合を制御する結合層の第3層(5)
 と、第2層を初期化する初期化層の第4層(6) と
を、互いに交換相互作用により結合する多層膜として基
板(1) 上に設けた光磁気記録媒体に於いて、前記第
3層(5) と第4層(6) のうちの少なくとも1層
の熱伝導率を、前記第1層(3) 、第2層(4) の
いずれの熱伝導率よりも低くしたことを特徴とする光磁
気記録媒体。
[Claim 1] First layer (3) of recording/playback memory layer
and a second layer (4) of an auxiliary layer that assists writing.
Third layer (5) of the bonding layer that controls the bonding between the second layer and the fourth layer
In a magneto-optical recording medium provided on a substrate (1) as a multilayer film in which a fourth layer (6) of an initialization layer that initializes a second layer are bonded to each other by exchange interaction, The thermal conductivity of at least one of the third layer (5) and the fourth layer (6) is lower than the thermal conductivity of either the first layer (3) or the second layer (4). Features of magneto-optical recording media.
【請求項2】  前記第3層(5) と第4層(6) 
のうちの少なくとも1層の熱伝導率が、0.08W/c
m・K 以下であることを特徴とする請求項1記載の光
磁気記録媒体。
[Claim 2] The third layer (5) and the fourth layer (6)
The thermal conductivity of at least one of the layers is 0.08 W/c
2. The magneto-optical recording medium according to claim 1, wherein the magneto-optical recording medium has a particle diameter of m·K or less.
【請求項3】  請求項1、或いは2記載の光磁気記録
媒体を製造する方法であって、第1層(3) と第2層
(4) を製膜する際のスパッタガス圧より高いスパッ
タガス圧で、第3層(5) または第4層(6) を製
膜することを特徴とする光磁気記録媒体の製造方法。
3. A method for manufacturing a magneto-optical recording medium according to claim 1 or 2, wherein the sputtering gas pressure is higher than the sputtering gas pressure used when forming the first layer (3) and the second layer (4). A method for manufacturing a magneto-optical recording medium, characterized in that the third layer (5) or the fourth layer (6) is formed using gas pressure.
JP40216690A 1990-12-14 1990-12-14 Magneto-optical recording medium and production thereof Withdrawn JPH04216339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40216690A JPH04216339A (en) 1990-12-14 1990-12-14 Magneto-optical recording medium and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40216690A JPH04216339A (en) 1990-12-14 1990-12-14 Magneto-optical recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPH04216339A true JPH04216339A (en) 1992-08-06

Family

ID=18511990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40216690A Withdrawn JPH04216339A (en) 1990-12-14 1990-12-14 Magneto-optical recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPH04216339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325277A (en) * 1992-05-18 1993-12-10 Mitsubishi Electric Corp Magneto-optical recording medium and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05325277A (en) * 1992-05-18 1993-12-10 Mitsubishi Electric Corp Magneto-optical recording medium and its manufacture

Similar Documents

Publication Publication Date Title
JP3056902B2 (en) Magneto-optical recording medium
JPH06180874A (en) Magneto-optical recording medium
KR100634103B1 (en) Magneto-optical recording medium and method of manufacturing magneto-optical recording medium
JPH04216339A (en) Magneto-optical recording medium and production thereof
JP3426034B2 (en) Magneto-optical recording medium, recording / reproducing method, and method of manufacturing magneto-optical recording medium
JPH04355239A (en) Magneto-optical recording method and magneto-optical recording medium
JPS6314342A (en) Magneto-optical recording medium
JPH02778B2 (en)
JP3414823B2 (en) Magneto-optical recording medium
JPH0834013B2 (en) Magneto-optical recording medium
JP3206226B2 (en) Optical information recording medium and reproducing method
JPH0474328A (en) Magneto-optical recording medium
JP2740814B2 (en) Magneto-optical recording medium
JP2753583B2 (en) Magneto-optical recording medium
JP2795434B2 (en) Magneto-optical recording medium
JP3999978B2 (en) Magneto-optical recording medium
JPS61104442A (en) Photomagnetic recording system
JP2757560B2 (en) Magneto-optical recording medium
KR100209584B1 (en) Magneto-optical disk
JPS6370947A (en) Magneto-optical recording medium
JPH0414641A (en) Structure for magneto-optical recording film and its recording method
JPH02304750A (en) Magneto-optical disk medium
JPH07141709A (en) Magneto-optical recording medium
JPH11120619A (en) Optical recording medium
JPH01263960A (en) Medium for magneto-optical memory

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312