JPH0421553B2 - - Google Patents

Info

Publication number
JPH0421553B2
JPH0421553B2 JP16385484A JP16385484A JPH0421553B2 JP H0421553 B2 JPH0421553 B2 JP H0421553B2 JP 16385484 A JP16385484 A JP 16385484A JP 16385484 A JP16385484 A JP 16385484A JP H0421553 B2 JPH0421553 B2 JP H0421553B2
Authority
JP
Japan
Prior art keywords
base material
monomolecular film
film
liquid
liquid level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16385484A
Other languages
Japanese (ja)
Other versions
JPS6142372A (en
Inventor
Kenji Saito
Noritaka Mochizuki
Yukio Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16385484A priority Critical patent/JPS6142372A/en
Priority to US06/760,549 priority patent/US4716851A/en
Publication of JPS6142372A publication Critical patent/JPS6142372A/en
Publication of JPH0421553B2 publication Critical patent/JPH0421553B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばレンズ、反射鏡、受光素子、
発光素子等における光学的曲面を始めとして、高
精度を要求される種々の曲面の成形に利用される
曲面成形方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, a lens, a reflecting mirror, a light receiving element,
The present invention relates to a curved surface molding method used for molding various curved surfaces that require high precision, including optical curved surfaces in light emitting devices and the like.

[従来の技術] 一般に、曲面を得ようとする場合、その曲面が
球面である場合もそうであるが、特に非球面の場
合、こえを高精度に成形するのは極めて困難であ
る。
[Prior Art] Generally, when trying to obtain a curved surface, it is extremely difficult to form the curved surface with high precision, even when the curved surface is a spherical surface, but especially when the curved surface is an aspherical surface.

従来、例えばレンズ収差の是正を図つた非球面
レンズの曲面は、球面レンズのカツターによる
切削、所望の非球面を形成した成形型への流し
込み又は球面レンズへの蒸着等によつて成形さ
れている。
Conventionally, the curved surface of an aspherical lens intended to correct lens aberrations, for example, has been formed by cutting the spherical lens with a cutter, pouring it into a mold with a desired aspherical surface, or vapor-depositing it onto the spherical lens. .

しかしながら、による場合、カツターの当り
具合に応じた凹凸が生じるため、切削した後で研
磨し直す必要があり、このために設定曲面とのず
れが不可避である。による場合、成形型の曲面
自体の精度が問題となるばかりか、高温材料(溶
融ガラス)を流し込んで冷却することになるの
で、不均一な冷却による歪や、成形型と接触する
界面の不均質化が問題となる。による場合、曲
面に均一に蒸着を施すことが困難であるばかり
か、所望の曲面状態に合わせてマスクによるカバ
ー範囲を徐々にずらせながら蒸着を行わなければ
ならず、作業が繁雑で誤差を生じやすい。
However, in this case, unevenness occurs depending on the degree of contact with the cutter, so it is necessary to re-polish after cutting, and for this reason, deviation from the set curved surface is unavoidable. In this case, not only is the accuracy of the curved surface of the mold itself a problem, but also the high temperature material (molten glass) is poured and cooled, which may cause distortion due to uneven cooling and non-uniformity of the interface in contact with the mold. ization becomes a problem. In this case, it is not only difficult to apply vapor deposition uniformly to a curved surface, but also it is necessary to perform vapor deposition while gradually shifting the coverage area of the mask according to the desired curved surface condition, making the work complicated and prone to errors. .

このように、所望の曲面を高精度で成形するこ
とは極めて困難で、特に非球面の場合、かなりの
誤差が避けられない現状にある。
As described above, it is extremely difficult to mold a desired curved surface with high precision, and especially in the case of an aspherical surface, considerable errors are unavoidable.

[発明が解決しようとする問題点] 本発明は、非球面であつても高精度に曲面を成
形できるようにすることをその解決すべき問題点
とするものである。
[Problems to be Solved by the Invention] The problem to be solved by the present invention is to enable molding of curved surfaces with high precision even if they are aspherical.

[問題点を解決するための手段] 本発明において上記問題点を解決するために講
じられた手段は、単分子膜が形成された液面と、
曲面を成形すべき母材の成形面とが交差した状態
で、母材を前記液面に対して往復移動させる曲面
成形方法とすることである。
[Means for solving the problems] In the present invention, the means taken to solve the above problems are as follows:
The object of the present invention is to provide a curved surface forming method in which a base material is reciprocated with respect to the liquid surface in a state where the curved surface is intersected with the molding surface of the base material to be molded.

上記本発明において、単分子膜とは、一分子が
平面的に連なつた厚さの均一な超薄膜のことをい
う。母材は、曲面を成形すべき対象物で、例えば
レンズ、反射鏡、受光素子、発光素子等の光学系
部材が主ではあるが、その他のものでもよい。ま
た、母材の成形面と液面とが交差した状態とは、
母材の成形面の一部が液面下に没し、同時に成形
面の一部が液面上に露出している状態をいう。
In the present invention, the monomolecular film refers to an ultra-thin film with a uniform thickness in which one molecule is connected in a planar manner. The base material is an object on which a curved surface is to be molded, and is mainly an optical system member such as a lens, a reflecting mirror, a light receiving element, a light emitting element, etc., but other materials may also be used. Also, the state where the molding surface of the base material and the liquid level intersect is
A state in which part of the molding surface of the base material is submerged below the liquid level, and at the same time, part of the molding surface is exposed above the liquid level.

[作用] 母材を移動させると、この移動の振幅に応じて
母材の成形面の一定範囲が液面を境にして上下す
ることになる。一方、液面に形成されている単分
子膜は、上記母材の移動と共に、液面を境にして
上下する母材の成形面につづら折り状に付着累積
されることになる。単分子膜を平滑面に移し取る
ことができ、またこれを累積させることができる
ことは、単分子累積法(ラングミユアブロジエツ
ト法)として知られているところで、本発明では
これを曲面の成形に利用しているのである。特に
本発明では、母材の成形面と液面とが交差した状
態で母材を移動させることによつて、単分子膜の
付着累積範囲を母材の移動量で調節できるように
しているものである。そして、単分子膜の付着累
積範囲と累積数を母材の移動量と移動回数で調節
しながら単分子膜を付着累積させて行くことによ
り、一分子分の均一厚という単分子膜によつて、
オングストローム単位での曲面状態の調整が可能
となり、高精度で曲面を成形できるものである。
[Operation] When the base material is moved, a certain range of the molding surface of the base material moves up and down with the liquid level as a boundary, depending on the amplitude of this movement. On the other hand, as the base material moves, the monomolecular film formed on the liquid surface is deposited and accumulated in a meandering pattern on the molding surface of the base material that moves up and down with the liquid level as a boundary. The ability to transfer a monomolecular film onto a smooth surface and to accumulate it is known as the monomolecular accumulation method (Langmeur-Blodget method), and in the present invention, this method can be applied to curved surfaces. It is used for. In particular, in the present invention, by moving the base material in a state where the molding surface of the base material and the liquid level intersect, the accumulated range of adhesion of the monomolecular film can be adjusted by the amount of movement of the base material. It is. Then, by accumulating the monomolecular film while adjusting the cumulative adhesion range and cumulative number of the monomolecular film by the amount of movement and number of movements of the base material, we can create a monomolecular film with a uniform thickness of one molecule. ,
It is possible to adjust the curved surface condition in angstrom units, and it is possible to mold curved surfaces with high precision.

[実施例] 第1図において、1は成膜装置で、液体2を収
容した液槽3の内側に、例えばポリプロピレン等
の単分子膜が付着しにくい材質の内枠4を水平に
釣り、更にこの内枠4の内側に、やはり単分子膜
が付着しにくい材質の成膜枠5を浮べたものとな
つている。成膜枠5は、幅が内枠4の内幅より僅
かに短かい直方体で、図中左右方向に移動可能な
ものである。
[Example] In FIG. 1, reference numeral 1 denotes a film forming apparatus, in which an inner frame 4 made of a material such as polypropylene to which a monomolecular film is difficult to adhere is horizontally placed inside a liquid tank 3 containing a liquid 2, and further Inside this inner frame 4, a film forming frame 5 made of a material to which a monomolecular film does not easily adhere is floated. The film forming frame 5 is a rectangular parallelepiped whose width is slightly shorter than the inner width of the inner frame 4, and is movable in the left-right direction in the figure.

図中左寄りの液槽3の上方には、支持部6に取
付けられた駆動部7が位置している。駆動部7か
ら支持軸8が垂下されており、その先端には母材
9を保持する治具10が取付けられている。
A drive section 7 attached to a support section 6 is located above the liquid tank 3 on the left side in the figure. A support shaft 8 is suspended from the drive section 7, and a jig 10 for holding a base material 9 is attached to the tip of the support shaft 8.

治具10は、第2図に示されるように、支持軸
8の先端に螺合されて取付けられており、母材9
に応じて変換できるようになつている。この治具
10は、下端四方に爪部11を有しており、爪部
11上に母材9の周縁部を掛けることによつて母
材9が保持されている。治具10の爪部11は、
第2図に示される四方のみでなく、全周に設けて
もよい。また、第3図に示されるように、爪部1
1を薄く短かいものとすると邪魔になりにくい。
更に第4図に示されるように、爪部11をピン1
3で支えるようにすると、後述する駆動部7によ
る治具10の移動時に、治具10が液面を切る面
積を小さくでき、その分液面12上の単分子膜の
乱れを抑えることができるので好ましい。このピ
ン13を外方に屈曲させておくと、治具10の液
面12を切る位置が母材9より遠ざかり、治具1
0が単分子膜に与える影響を母材9に及びにくく
できるので好ましい。
As shown in FIG. 2, the jig 10 is screwed onto the tip of the support shaft 8 and is attached to the base material 9.
It can be converted accordingly. This jig 10 has claws 11 on all sides of the lower end, and the base material 9 is held by hooking the peripheral edge of the base material 9 onto the claws 11. The claw portion 11 of the jig 10 is
They may be provided not only on the four sides shown in FIG. 2 but also all around the circumference. Moreover, as shown in FIG.
If 1 is thin and short, it will not get in the way.
Furthermore, as shown in FIG.
3, it is possible to reduce the area that the jig 10 cuts through the liquid surface when the jig 10 is moved by the drive unit 7, which will be described later, and it is possible to suppress disturbance of the monomolecular film on the liquid separation surface 12. Therefore, it is preferable. If this pin 13 is bent outward, the position where the liquid level 12 of the jig 10 is cut is moved away from the base material 9, and the jig 1
0 is preferable because it can make it difficult for the base material 9 to be affected by the monomolecular film.

一方、第1図に示される駆動部7は、上述のよ
うに治具10に保持された母材9を、母材9の表
面と液槽3内の液面12とが交差した状態で、支
持軸8を介して治具10と共に上下に直線的に往
復移動させるものである。例えば、母材9の下面
の曲面状態を成形する場合、第2図aに符号で
示されるように、液面12が母材9の下面と交差
した状態で母材9は上下に往復移動される。ま
た、母材9の上面の曲面状態を成形する場合、第
2図aに符号で示されるように、液面12が母
材9の上面と交差した状態で母材9は上下に往復
移動される。この駆動部7による母材9の移動
は、垂直方向に限らず斜方向であつてもよい。
On the other hand, the drive unit 7 shown in FIG. It is made to linearly reciprocate up and down together with the jig 10 via the support shaft 8. For example, when forming a curved surface on the lower surface of the base material 9, the base material 9 is reciprocated up and down with the liquid level 12 intersecting the lower surface of the base material 9, as indicated by the symbol in FIG. 2a. Ru. In addition, when forming a curved surface on the upper surface of the base material 9, the base material 9 is reciprocated up and down with the liquid level 12 intersecting the upper surface of the base material 9, as indicated by the symbol in FIG. 2a. Ru. The movement of the base material 9 by the drive unit 7 is not limited to the vertical direction, but may be in the oblique direction.

液槽3内に収容される液体2は通常純水で、こ
の液面12を清浄化した後、第1図右側に成膜枠
5を寄せて、例えばベンゼン、クロロホルム等の
揮発性溶媒に溶した膜構成物質の溶液を、スポイ
ト等で数滴液面12上にたらす。膜構成物質とし
ては、通常、同一化学構造内に少なくとも疎水性
部分と親水性部分とを伴有する分子によつて構成
され物質が用いられる。疎水性部分として一般的
なものは、例えば炭素数5〜30程度の長鎖アルキ
ル基等であり、親水性部分として一般的なもの
は、例えばカルボキシル基、アミノ基等の極性基
等である。膜構成物質の具体例としては、アラキ
ジン酸等が挙げられる。
The liquid 2 stored in the liquid tank 3 is usually pure water, and after cleaning the liquid surface 12, the film forming frame 5 is moved to the right side in Fig. 1 and dissolved in a volatile solvent such as benzene or chloroform. A few drops of the solution of the membrane constituent material prepared above are dropped onto the liquid surface 12 using a dropper or the like. As the membrane-constituting substance, a substance composed of molecules having at least a hydrophobic part and a hydrophilic part within the same chemical structure is usually used. Common hydrophobic moieties include, for example, long-chain alkyl groups having about 5 to 30 carbon atoms, and common hydrophilic moieties include, for example, polar groups such as carboxyl groups and amino groups. Specific examples of membrane constituent substances include arachidic acid and the like.

上記膜構成物質の溶液を液面上に滴下展開さ
せ、溶媒が揮発すると、気体膜の状態の単分子膜
が液面上に残される。次いで成膜枠5を第1図左
側に動かし、単分子膜が展開している液面12の
領域を次第に縮めて面密度を増してやると、分子
間相互作用が強まり、液体膜の状態を経て固体膜
となる。そして、この固体膜の状態となつたとき
に、前述のように駆動部7によつて母材9を上下
に往復移動させ、母材9の表面へ単分子膜を付着
累積させて曲面成形が行われる。母材9へ移し取
るに最適な単分子膜の状態は、単分子膜の表面圧
が15〜30dyn/cmとなつていることを一応の目安
として知ることができる。単分子膜が母材9へ付
着累積されるに従つて液面12上の単分子膜分子
の面密度は低下し、表面圧も低下するので、徐々
に成形枠5を移動させて表面圧を一定に保持しな
がら単分子膜の母材9への移し取りを行う。ま
た、母材9の移動速度は、単分子膜を乱すことな
く確実に付着累積できるよう、毎分1cm以下の速
度とすることが好ましい。
When the solution of the membrane-constituting substance is dropped onto the liquid surface and the solvent evaporates, a monomolecular film in the form of a gas film is left on the liquid surface. Next, the film forming frame 5 is moved to the left side in Figure 1, and the region of the liquid surface 12 where the monomolecular film is developed is gradually reduced to increase the surface density. As a result, the intermolecular interaction becomes stronger, and the monomolecular film passes through the state of a liquid film. It becomes a solid film. When this solid film is formed, the base material 9 is reciprocated up and down by the drive unit 7 as described above, and the monomolecular film is deposited and accumulated on the surface of the base material 9 to form a curved surface. It will be done. The optimal state of the monomolecular film to be transferred to the base material 9 can be determined by the surface pressure of the monomolecular film being 15 to 30 dyn/cm. As the monomolecular film is accumulated on the base material 9, the areal density of the monomolecular film molecules on the liquid surface 12 decreases, and the surface pressure also decreases, so the forming frame 5 is gradually moved to reduce the surface pressure. The monomolecular film is transferred to the base material 9 while being held constant. Further, the movement speed of the base material 9 is preferably 1 cm per minute or less so that the monomolecular film can be reliably deposited and accumulated without disturbing it.

次に、母材9への単分子膜の付着累積過程を第
5図で説明する。
Next, the accumulation process of adhesion of the monomolecular film to the base material 9 will be explained with reference to FIG.

まず第5図aに示されるような母材9の成形面
と液面12が交差した状態で母材9を上方へ移動
させると(下方へ移動させても同じ)、同bに示
されるように単分子膜Aが母材9の表面に付着し
て移し取られる。所定量母材9を上方へ移動させ
た後、母材9の成形面と液面12の交差を保ちつ
つ母材9を下方へ移動させると、第5図cに示さ
れるように、前段で母材9の表面に付着された単
分子膜Aの上に単分子膜が重なつて付着され、こ
の母材9の上下の移動を繰り返すことによつて、
同dに示されるように、単分子膜Aは次々とつづ
ら折り状に母材9の表面に付着累積されることに
なる。
First, when the base material 9 is moved upward (the same is true when moved downward) in a state where the molding surface of the base material 9 and the liquid level 12 intersect as shown in FIG. 5a, as shown in FIG. 5b, The monomolecular film A adheres to the surface of the base material 9 and is transferred. After moving the base material 9 upward by a predetermined amount, if the base material 9 is moved downward while maintaining the intersection between the molding surface of the base material 9 and the liquid level 12, as shown in FIG. A monomolecular film is superimposed on the monomolecular film A attached to the surface of the base material 9, and by repeatedly moving the base material 9 up and down,
As shown in d, the monomolecular film A is deposited and accumulated on the surface of the base material 9 one after another in a meandering manner.

母材9が球面レンズの場合、上述のようにして
単分子膜を付着累積させて行くと、第6図に斜線
で示すような範囲に単分子膜が付着累積されるこ
とになる。そして、このドーナツ状に形成される
単分子膜付着累積範囲の幅は、母材9の上下の移
動量で定まり、単分子膜の付着厚は、単分子膜の
付着層数即ち母材9の移動回数で定まる。従つ
て、駆動部7(第1図参照)による母材9の移動
量と移動回数を調節しながら単分子膜を付着累積
させて行けば、任意の範囲に付着厚を変えながら
単分子膜を付着累積でき、例えば球面レンズの非
球面レンズへの成形等を容易に行うことができ
る。
When the base material 9 is a spherical lens, if the monomolecular film is deposited and accumulated as described above, the monomolecular film will be deposited and accumulated in the area shown by diagonal lines in FIG. The width of this donut-shaped monomolecular film accumulation area is determined by the amount of vertical movement of the base material 9, and the adhesion thickness of the monomolecular film is determined by the number of layers of the monomolecular film attached, that is, the amount of the base material 9. Determined by the number of movements. Therefore, if the monomolecular film is deposited and accumulated while adjusting the amount and number of times the base material 9 is moved by the drive unit 7 (see Fig. 1), the monomolecular film can be deposited while changing the deposited thickness within an arbitrary range. It can be deposited and accumulated, making it easy to mold a spherical lens into an aspherical lens, for example.

母材9への単分子膜の付着累積に際し、液面1
2上に単分子膜を形成した後に母材9を第5図a
の状態にすると、本来単分子膜を付着させる必要
のない部分、例えば第6図に示される母材9の中
央部に一層だけではあるが単分子膜が付着するこ
とになる。これを防止するためには、あらかじめ
第5図aのように、母材9の成形面と液面12が
交差した状態に母材9をセツトした後、液面12
上に単分子膜を形成するようにすればよい。但
し、単分子膜は極めて薄く、一層や二層付着して
も曲面状態としては無視できるので、ことさらこ
のようにする必要はない。また、膜構成物質を紫
外線の照射等によつて重合反応を生ずるもの、例
えばジアセチレン等としておき、前述のようにし
て母材9に単分子膜を付着累積させた後、これを
重合させると、母材9への単分子膜の付着状態が
一層強固で安定したものとなるので好ましい。
When the monomolecular film is accumulated on the base material 9, the liquid level 1
After forming a monomolecular film on 2, the base material 9 is
In this state, only one layer of the monomolecular film will be attached to a portion where it is not necessary to attach a monomolecular film, for example, to the central portion of the base material 9 shown in FIG. In order to prevent this, first set the base material 9 in a state where the molding surface of the base material 9 and the liquid level 12 intersect, as shown in FIG.
A monomolecular film may be formed thereon. However, since the monomolecular film is extremely thin and even if one or two layers are attached, it can be ignored as a curved surface, so there is no need to do this. Further, if the film constituent material is a substance that causes a polymerization reaction when irradiated with ultraviolet rays, for example diacetylene, etc., and after depositing and accumulating a monomolecular film on the base material 9 as described above, this is polymerized. This is preferable because the state of adhesion of the monomolecular film to the base material 9 becomes stronger and more stable.

本発明における駆動部7による母材9の上下移
動は、これまで述べた直線的上下往復移動のみで
はなく、更に母材9の中心軸回りの回転を加えた
ものとしたり、母材9の往復傾動等として付与す
ることができる。
The vertical movement of the base material 9 by the drive unit 7 in the present invention is not limited to the linear up and down reciprocating movement described above, but may also include rotation about the central axis of the base material 9, or reciprocation of the base material 9. It can be applied as a tilting motion or the like.

これまで述べて来た直線的上下往復移動のみの
場合、母材9が例えば球面レンズ等であると、一
定速度で母材9を移動させても、母材9の成形面
が湾曲しているので、母材9の表面上における液
面12との交差部の移動速度は変化することにな
る。従つて、母材9への単分子膜の移し取り速度
が母材9の表面位置によつて変化してしまうこと
になる。これに対して上下の直線的往復移動と同
時に母材9を垂直軸回りに回転させると、あたか
も単分子膜を母材9の表面へ螺旋状に巻き付けて
行くようになり、上下移動速度と回転速度の分速
度を一定に保持することにより、単分子膜の母材
9への移し取り速度を一定に保つことができる。
従つて、母材9へ付着累積された単分子膜の性状
を均一なものとしやすい利点がある。
In the case of only the linear up and down reciprocating movement described so far, if the base material 9 is, for example, a spherical lens, the molding surface of the base material 9 will be curved even if the base material 9 is moved at a constant speed. Therefore, the moving speed at the intersection with the liquid level 12 on the surface of the base material 9 will change. Therefore, the speed at which the monomolecular film is transferred to the base material 9 changes depending on the surface position of the base material 9. On the other hand, if the base material 9 is rotated around the vertical axis at the same time as the vertical reciprocating movement, the monomolecular film will be spirally wrapped around the surface of the base material 9, and the vertical movement speed and rotation will change. By keeping the speed constant, the speed at which the monomolecular film is transferred to the base material 9 can be kept constant.
Therefore, there is an advantage that the properties of the monomolecular film accumulated on the base material 9 can be easily made uniform.

一方、第7図に示されるように、母材9の表面
と液面12が交差した状態で母材9を往復傾動さ
せることによつて母材9を上下に往復移動させる
と、例えば母材9が球面レンズの場合、第8図に
斜線で示すような範囲に単分子膜が付着累積され
ることになる。この第8図に示される単分子付着
累積範囲の横方向の幅は、母材9の傾動量で調節
でき、単分子膜の付着厚は、傾動回数で調節でき
る。このような母材9の往復傾動によつて単分子
膜を付着累積させれば、この成形によつて、例え
ば複焦点レンズ等の回転非対称の非球面レンズ等
を容易に得ることができる。更にこの傾動に加え
て、前述した直線的上下往復移動や回転を連続又
は断続的に加えれば、単分子膜の付着累積状態を
より微妙に調整できる。また、母材9の傾動中心
は、母材9がレンズの場合、通常その光軸上にと
られるが、傾動中心を光軸を外して定めることに
より、非対称成形を行うこともできる。
On the other hand, as shown in FIG. 7, when the base material 9 is reciprocated up and down by reciprocating the base material 9 with the surface of the base material 9 and the liquid level 12 intersecting, for example, If 9 is a spherical lens, the monomolecular film will be deposited and accumulated in the shaded area in FIG. The width in the lateral direction of the monomolecular adhesion accumulation range shown in FIG. 8 can be adjusted by the amount of tilting of the base material 9, and the adhesion thickness of the monomolecular film can be adjusted by the number of times of tilting. If a monomolecular film is deposited and accumulated by such reciprocating tilting of the base material 9, a rotationally asymmetric aspherical lens such as a bifocal lens can be easily obtained by this molding. Furthermore, in addition to this tilting, if the above-mentioned linear up-and-down reciprocating movement or rotation is applied continuously or intermittently, the accumulated state of adhesion of the monomolecular film can be adjusted more delicately. Further, when the base material 9 is a lens, the center of tilting of the base material 9 is usually set on the optical axis of the lens, but asymmetric molding can also be performed by setting the center of tilting off the optical axis.

第9図は他の実施例を示す図で、駆動部7に連
結されている支持軸8は、液面12下へと延びて
おり、液面12下にあるこの支持軸8の先端部
に、治具10が上向きに取付けられている。この
治具10には、第10図に示されるように、その
爪部11上に母材9を載置することによつて母材
9が保持されているものである。本実施例におい
ては、母材9の移動を液面12下より行うように
した他は前述の実施例と同じで、同様の作用効果
が得られる。
FIG. 9 is a diagram showing another embodiment, in which a support shaft 8 connected to the drive unit 7 extends below the liquid level 12, and the tip of the support shaft 8 below the liquid level 12 , the jig 10 is attached facing upward. As shown in FIG. 10, this jig 10 holds the base material 9 by placing the base material 9 on the claw portions 11 thereof. This embodiment is the same as the previous embodiment except that the base material 9 is moved from below the liquid level 12, and the same effects can be obtained.

第11図及び第12図も他の実施例を示す図
で、特に成形曲面状態をモニターしながら成形を
行えるようにしたものである。即ち、コリメート
光源14から出される平行光は、図中矢印で示さ
れる方向に進み、まずミラー15aで方向を変え
た後、ハーフミラー16で参照光と測定光に分け
られる。参照光は、ミラー15bで再びハーフミ
ラー16へと反射され、更にハーフミラー16で
反射されて干渉縞読み取り装置17へと送られ
る。一方、測定光は、ミラー15cへと送られ、
そこで反射されて参照レンズ18を通つて治具1
0上の母材9の表面へと送られる。母材9の表面
で反射された測定光は、再び参照レンズ18及び
ミラー15cを通つて干渉縞読み取り装置へと送
られ、参照光との干渉状態から母材9の表面状態
が検出される。従つて、これによつて母材9の表
面状態を検出しながら、この検出結果に応じて母
材9を移動させて単分子膜を付着累積させること
ができ、作業が正確で効率的になる。尚、本実施
例における支持軸8は、駆動部(図示されていな
い)によつて支持部6に沿つて上下に移動される
ものとなつている。
FIGS. 11 and 12 also show other embodiments, in which molding can be carried out while monitoring the state of the molded curved surface. That is, the parallel light emitted from the collimated light source 14 travels in the direction indicated by the arrow in the figure, first changes its direction with the mirror 15a, and then is divided into reference light and measurement light with the half mirror 16. The reference light is reflected by the mirror 15b again to the half mirror 16, further reflected by the half mirror 16, and sent to the interference fringe reading device 17. On the other hand, the measurement light is sent to the mirror 15c,
It is reflected there and passes through the reference lens 18 to the jig 1.
0 to the surface of the base material 9. The measurement light reflected on the surface of the base material 9 is sent to the interference fringe reader through the reference lens 18 and the mirror 15c again, and the surface state of the base material 9 is detected from the interference state with the reference light. Therefore, while detecting the surface condition of the base material 9, it is possible to move the base material 9 according to the detection result and deposit and accumulate the monomolecular film, making the work accurate and efficient. . Note that the support shaft 8 in this embodiment is configured to be moved up and down along the support section 6 by a drive section (not shown).

上述の説明においては、ハーフミラー16とミ
ラー15bで参照光を形成しているが、参照レン
ズ18の反射光を参照光としてもよい。また、母
材9の表面状態の検出は、検出すべき母材9の表
面が液面12上にあるときに行うが、この測定位
置をあらかじめ設定しておき、母材9の移動に伴
つて当該位置に母材9が移動されたときに自動的
に測定を行うようにすることもできる。また、こ
の測定結果から、母材9の移動を、コンピユータ
ー等で制御することもできる。
In the above description, the reference light is formed by the half mirror 16 and the mirror 15b, but the reflected light from the reference lens 18 may also be used as the reference light. In addition, the surface condition of the base material 9 is detected when the surface of the base material 9 to be detected is above the liquid level 12, but this measurement position is set in advance and the surface condition is detected as the base material 9 moves. It is also possible to automatically measure when the base material 9 is moved to the position. Further, from this measurement result, the movement of the base material 9 can be controlled by a computer or the like.

[発明の効果] 本発明によれば、単分子膜というオングストロ
ームオーダーの超薄膜の付着累積によつて曲面を
成形でき、この単分子膜の付着範囲及び累積層数
も自由に調節できるので、高精度に曲面を成形で
き、非球面の成形も高精度に行うことができるも
のである。
[Effects of the Invention] According to the present invention, a curved surface can be formed by accumulating an ultra-thin film on the order of angstroms called a monomolecular film, and the adhesion range and cumulative number of layers of this monomolecular film can be freely adjusted. It is possible to form curved surfaces with high precision, and also to form aspherical surfaces with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図は
その治具の拡大図でaは縦断面図、bは底面図、
第3図及び第4図は各々治具の他の例を示す縦断
面図、第5図a〜dは単分子膜の付着累積過程の
説明図、第6図は単分子膜の付着累積範囲を示す
図、第7図a〜cは母材の傾動状態を示す図、第
8図は単分子膜の付着累積範囲を示す図、第9図
は本発明の他の実施例の概略図、第10図はその
治具の拡大縦断面図、第11図は本発明の更に他
の実施例の概略図、第12図はその母材付近の拡
大図である。 1:成膜装置、2:液体、3:液槽、7:駆動
部、9:母材、10:治具。
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is an enlarged view of the jig, a is a vertical sectional view, b is a bottom view,
Figures 3 and 4 are longitudinal cross-sectional views showing other examples of the jig, Figures 5 a to d are illustrations of the monomolecular film deposition accumulation process, and Figure 6 is the monomolecular film deposition accumulation range. Figures 7a to 7c are diagrams showing the tilting state of the base material, Figure 8 is a diagram showing the cumulative adhesion range of the monomolecular film, and Figure 9 is a schematic diagram of another embodiment of the present invention. FIG. 10 is an enlarged vertical sectional view of the jig, FIG. 11 is a schematic diagram of still another embodiment of the present invention, and FIG. 12 is an enlarged view of the vicinity of the base material. 1: Film forming apparatus, 2: Liquid, 3: Liquid tank, 7: Drive section, 9: Base material, 10: Jig.

Claims (1)

【特許請求の範囲】[Claims] 1 単分子膜が形成された液面と、曲面を成形す
べき母材の成形面とが交差した状態で、母材を前
記液面に対して往復移動させることを特徴とする
曲面成形方法。
1. A method for forming a curved surface, which comprises moving the base material back and forth with respect to the liquid surface in a state where the liquid surface on which the monomolecular film is formed intersects with the molding surface of the base material on which the curved surface is to be molded.
JP16385484A 1984-08-06 1984-08-06 Method for molding curved surface Granted JPS6142372A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16385484A JPS6142372A (en) 1984-08-06 1984-08-06 Method for molding curved surface
US06/760,549 US4716851A (en) 1984-08-06 1985-07-30 Curved surface shaping apparatus and curved surface shaping method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16385484A JPS6142372A (en) 1984-08-06 1984-08-06 Method for molding curved surface

Publications (2)

Publication Number Publication Date
JPS6142372A JPS6142372A (en) 1986-02-28
JPH0421553B2 true JPH0421553B2 (en) 1992-04-10

Family

ID=15782015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16385484A Granted JPS6142372A (en) 1984-08-06 1984-08-06 Method for molding curved surface

Country Status (1)

Country Link
JP (1) JPS6142372A (en)

Also Published As

Publication number Publication date
JPS6142372A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
US5263888A (en) Method of manufacture of liquid crystal display panel
CN102203672B (en) Imprint lithography system and method
CN100365507C (en) Template for room temperature, low pressure micro-and nano-imprint lithography
US7399978B2 (en) Method and device for irradiating spots on a layer
JPH06504009A (en) object manufacturing equipment
JP3446835B2 (en) Press mold for glass optical element
US10067330B2 (en) Dispersing immersion liquid for high resolution imaging and lithography
US4716851A (en) Curved surface shaping apparatus and curved surface shaping method using the same
US5455062A (en) Capillary device for lacquering or coating plates or disks
Zaltron et al. Optofluidic platform for the manipulation of water droplets on engineered LiNbO3 surfaces
EP0541401A1 (en) Method for the formation of two-dimensional particle arrangements
US4222070A (en) Recording video information on a flexible master disc
JPH0421553B2 (en)
US4646678A (en) Thin film deposition
JPS6142363A (en) Apparatus for molding curved surface
JPS6142365A (en) Apparatus for molding curved surface
JPS6142366A (en) Apparatus for molding curved surface
JPS6187103A (en) Forming device of curved surface
JPS61111173A (en) Formation of curved surface
JPS61111167A (en) Device for forming curved surface
JPS61111172A (en) Formation of curved surface
JPS6142364A (en) Apparatus for molding curved surface
JPS5872127A (en) Optical focus position adjusting method
JP2558355B2 (en) Three-dimensional shape forming method
JPH05506313A (en) A method for producing a gel plate for separating and moving macromolecules by electrophoresis, and a gel plate obtained by this method