JPS6142363A - Apparatus for molding curved surface - Google Patents

Apparatus for molding curved surface

Info

Publication number
JPS6142363A
JPS6142363A JP16385584A JP16385584A JPS6142363A JP S6142363 A JPS6142363 A JP S6142363A JP 16385584 A JP16385584 A JP 16385584A JP 16385584 A JP16385584 A JP 16385584A JP S6142363 A JPS6142363 A JP S6142363A
Authority
JP
Japan
Prior art keywords
base material
monomolecular film
film
liquid
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16385584A
Other languages
Japanese (ja)
Inventor
Kenji Saito
謙治 斉藤
Noritaka Mochizuki
望月 則孝
Yukio Nishimura
征生 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP16385584A priority Critical patent/JPS6142363A/en
Priority to US06/760,549 priority patent/US4716851A/en
Publication of JPS6142363A publication Critical patent/JPS6142363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To mold not only a curved surface but also a non-spherical surface with high accuracy, by linearily and reciprocally moving a curved surface forming matrix held to a jig in such a state that the molding surface of said matrix crosses the surface of a liquid. CONSTITUTION:A monomolecular film is formed to the surface of the liquid 2 received in the liquid tank 3 of a film forming apparatus 1. A curved surface forming matrix 9 is held to a jig 10 and linearily reciprocated up and down along with the jig 10 through a support shaft 8 in such a state that the surface of the matrix crosses the surface 12 of the liquid in the liquid tank 3. By this method, a curved surface can be molded with high accuracy by the adhesion and accumulation of an ultra-thin film and the molding of a non-spherical surface can also be performed with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1例えばレンズ、反射鏡、受光素子、発光素子
等における光学的曲面を始めとして、高精度を要求され
る種々の曲面の成形に利用される曲面成形装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to molding of various curved surfaces that require high precision, including optical curved surfaces in lenses, reflecting mirrors, light-receiving elements, light-emitting elements, etc. The present invention relates to a curved surface forming device used.

[従来の技術] 一般に、曲面を得ようとする場合、その曲面が球面であ
る場合もそうであるが、特に非球面の場合、これを高精
度に成形するのは極めて困難である。
[Prior Art] Generally, when trying to obtain a curved surface, even when the curved surface is a spherical surface, it is extremely difficult to form the curved surface with high precision, especially when the curved surface is an aspherical surface.

従来、例えばレンズ収差の是正を図った非球面レンズの
曲面は、■球面レンズのカッターによる切削、■所望の
非球面を形成した成形型への流し込み又は0球面レンズ
への蒸着等によって成形されている。
Conventionally, the curved surface of an aspherical lens intended to correct lens aberrations, for example, has been formed by: (1) cutting with a spherical lens cutter, (2) pouring into a mold with a desired aspherical surface, or vapor deposition on a zero-spherical lens. There is.

しかしながら、■による場合、カッターの当り具合に応
じた凹凸が生じるため、切削した後で研磨し直す必要が
あり、このために設定曲面とのずれが不可避である。■
による場合、成形型の曲面自体の精度が問題となるばか
りか、高温材料(溶融ガラス)を流し込んで冷却するこ
とになるので、不均一な冷却による歪や、成形型と接触
する界面の不均質化が問題となる。■による場合、曲面
に均一に蒸着を施すことが困難であるばかりか、所望の
曲面状態に合わせてマスクによるカバー範囲を徐々にず
らせながら蒸着を行わなければならず、作業が繁雑で誤
差を生じやすい。
However, in the case of (2), unevenness occurs depending on the degree of contact with the cutter, so it is necessary to re-polish after cutting, and for this reason, deviation from the set curved surface is unavoidable. ■
In this case, not only is the accuracy of the curved surface of the mold itself a problem, but also the high temperature material (molten glass) is poured and cooled, which may cause distortion due to uneven cooling and non-uniformity of the interface in contact with the mold. ization becomes a problem. In the case of (3), it is not only difficult to apply vapor deposition uniformly to the curved surface, but also the vapor deposition must be performed while gradually shifting the coverage area of the mask according to the desired curved surface condition, making the work complicated and causing errors. Cheap.

このように、所望の曲面を高精度で成形することは極め
て困難で、特に非球面の場合、かなりの誤差が避けられ
ない現状にある。
As described above, it is extremely difficult to mold a desired curved surface with high precision, and especially in the case of an aspherical surface, considerable errors are unavoidable.

[発明が解決しようとする問題点] 本発明は、非球面であっても高精度に曲面を成形できる
ようにすることをその解決すべき問題点とするものであ
る。
[Problems to be Solved by the Invention] The problem to be solved by the present invention is to enable molding of curved surfaces with high precision even if they are aspherical.

[問題点を解決するための手段] 本発明において上記問題点を解決するために講じられた
手段は、液槽内に収容された液体の液面に単分子膜を形
成する成膜装置と、曲面を成形すべき母材を保持する治
具と、この治具に保持された母材を、母材の成形面と前
記液面とが交差した状態で直線的に往復移動させる駆動
部とを有する曲面成形装置とすることである。
[Means for Solving the Problems] The means taken to solve the above problems in the present invention include a film forming apparatus that forms a monomolecular film on the surface of a liquid contained in a liquid tank; A jig that holds a base material to be molded into a curved surface, and a drive unit that linearly reciprocates the base material held by this jig in a state where the molding surface of the base material and the liquid level intersect. The purpose of the present invention is to provide a curved surface forming device with

]−配本発明において、成膜装置としては、従来公知の
ものを好適に利用でき、これによって形成される単分子
膜とは、−分子が平面的に連なった厚さの均一な超薄膜
のことをいう、母材は、曲面を成形すべき対象物で、例
えばレンズ、反射鏡、受光素子、発光素子等の光学系部
材が主ではおるが、その他のものでもよい。また、母材
の成形面と成膜装置の液槽内液面とが交差した状態とは
、母材の成形面の一部が液面下に没し、同時に成形面の
一部が液面トに露出している状態をいう。
] - In the present invention, a conventionally known film forming apparatus can be suitably used, and the monomolecular film formed by this means - an ultra-thin film with a uniform thickness in which molecules are connected in a planar manner. The base material is an object on which a curved surface is to be formed, and is mainly an optical system member such as a lens, a reflecting mirror, a light-receiving element, a light-emitting element, etc., but other materials may also be used. In addition, a state where the molding surface of the base material and the liquid level in the liquid tank of the film forming device intersect means that part of the molding surface of the base material is submerged below the liquid level, and at the same time, part of the molding surface is below the liquid level. This refers to the state in which the material is exposed to the surface.

[作 用] 駆動部によって母材を移動させると、この移動の振幅に
応じて母材の成形面の一定範囲が液面を境にして上下す
ることになる。一方、液面に単分子膜を形成して。うく
と、この単分子膜は、上記母材の移動と共に、液面を境
にして1−下する母材の成形面につづら折り状に付着累
積されることになる。単分子膜を平滑面に移し取ること
ができ、またこれを累積させることができることは、単
分子累積法(ラングミュアブロジェット法)として知ら
れているところで、本発明ではこれを曲面の成形に利用
しているのである。特に本発明では、母材の成形面と液
面とが交差した状態で母材を移動させることによって、
単分子膜の付着累積範囲を母材の移動量で調節できるよ
うにしているものである。そして、中分子膜の付着累積
範囲と累積数を母材の移動量と移動回数で調節しながら
単分子膜を付着累積させて行くことにより、−分子分の
均一厚という単分子膜によって、オングストローム単位
での曲面状態の調整が可能となり、高精度で曲面を成形
できるものである。
[Function] When the base material is moved by the drive unit, a certain range of the molding surface of the base material moves up and down with the liquid level as a boundary, depending on the amplitude of this movement. Meanwhile, a monomolecular film is formed on the liquid surface. As the base material moves, this monomolecular film is deposited and accumulated in a meandering pattern on the molding surface of the base material, which is lower than the liquid level. The ability to transfer a monomolecular film onto a smooth surface and to accumulate it is known as the monomolecular accumulation method (Langmuir-Blodgett method), and in the present invention, this method is utilized for forming curved surfaces. That's what I'm doing. In particular, in the present invention, by moving the base material in a state where the molding surface of the base material and the liquid level intersect,
The cumulative range of monomolecular film adhesion can be adjusted by the amount of movement of the base material. Then, by accumulating the monomolecular film while adjusting the cumulative adhesion range and cumulative number of the medium molecular film by the amount of movement and the number of movements of the base material, a monomolecular film with a uniform thickness of -molecules can be applied to the angstrom. It is possible to adjust the curved surface state in units, and it is possible to mold curved surfaces with high precision.

[実施例] 第1図において、lは成膜装置で、液体2を収容した液
槽3の内側に、例えばポリプロピレン等の単分子膜が付
着しにくい材質の内枠4を水平に釣り、更にこの内枠4
の内側に、やはり単分子膜が付着しにくい材質の成膜枠
5を浮べたものとなっている。成膜枠5は、幅が内枠4
の内幅より僅かに短かい直方体で、図中左右方向に移動
可能なものである。
[Example] In FIG. 1, l is a film forming apparatus, and an inner frame 4 made of a material such as polypropylene to which a monomolecular film does not easily adhere is horizontally placed inside a liquid tank 3 containing a liquid 2. This inner frame 4
A film forming frame 5 made of a material to which a monomolecular film does not easily adhere is floated inside. The film forming frame 5 has a width equal to that of the inner frame 4.
It is a rectangular parallelepiped that is slightly shorter than the inner width of the box, and is movable in the left and right directions in the figure.

図中左寄りの液槽3の上方には、支持部6に取付けられ
た駆動部7が位置している。駆動部7から支持軸8が垂
下されており、その先端には母材9を保持する治具lO
が取付けられている。
A drive section 7 attached to a support section 6 is located above the liquid tank 3 on the left side in the figure. A support shaft 8 is suspended from the drive unit 7, and a jig lO for holding the base material 9 is attached to the tip of the support shaft 8.
is installed.

治具lOは、第2図に示されるように、支持軸8の先端
に螺合されて取付けられており、母材9に応じて交換で
きるようになっている。この治J410は、下端四方に
爪部11を有しており、爪部IN−に母材9の周縁部を
掛けることによって母材9が保持されている。拍AlO
の爪部11は、第2図に示される四方のみでなく、全周
に設けてもよい、また、第3図に示されるように、爪部
11を薄く短かいものとすると邪魔になりにくい、更に
第4図に示されるように、爪部11をビン13で支える
ようにすると、後述する駆動部7による治具10の移動
時に、治JLIOが液面を切る面積を小さくでき、その
分液面121の単分子膜の乱れを抑えることができるの
で好ましい、このビン13を外方に屈曲させておくと、
治具10の液面12を切る位置が母材9より遠ざかり、
11具lOが単分子膜に与える影響を母材9に及びに〈
〈できるので好ましい。
As shown in FIG. 2, the jig IO is screwed onto the tip of the support shaft 8 and can be replaced depending on the base material 9. This jig J410 has claws 11 on all sides of the lower end, and the base material 9 is held by hooking the peripheral edge of the base material 9 onto the claws IN-. Beat AlO
The claws 11 may be provided not only on the four sides as shown in FIG. 2, but also all around the circumference.Also, as shown in FIG. 3, if the claws 11 are thin and short, they will not get in the way. Furthermore, as shown in FIG. 4, if the claw part 11 is supported by the bottle 13, the area where the jig JLIO cuts the liquid surface can be reduced when the jig 10 is moved by the drive part 7, which will be described later. It is preferable to bend the bottle 13 outward, since this can suppress disturbance of the monomolecular film on the liquid surface 121.
The position where the jig 10 cuts the liquid level 12 is farther away from the base material 9,
11 The influence of lO on the monomolecular film extends to the base material 9.
<It is preferable because it can be done.

一方、第1図に示される駆動部7は、上述のように治具
10に保持された母材9を、母材9の表面と液槽3内の
液面12とが交差した状態で、支持軸8を介して治具1
0と共に上下に直線的に往復移動させるものである0例
えば、母材9の下面の曲面状態を成形する場合、第2図
(a)に符号Iで示されるように、液面12が母材9の
下面と交差した状態で母材9はに下に往復移動される。
On the other hand, the drive unit 7 shown in FIG. Jig 1 via support shaft 8
For example, when molding a curved surface on the lower surface of the base material 9, the liquid level 12 moves upward and downward with the base material as indicated by the symbol I in FIG. 2(a). The base material 9 is reciprocated downward while intersecting the lower surface of the base material 9.

また、母材9の」二面の曲面状態を成形する場合、第2
図(a)に符号■で示されるように、液面12が母材9
の上面と交差した状態で母材9は上下に往復移動される
。この駆動部7による母材9の移動は、垂直方向に限ら
ず斜方向であってもよい。
In addition, when molding the two curved surfaces of the base material 9, the second
As shown by the symbol ■ in Figure (a), the liquid level 12 is lower than the base material 9.
The base material 9 is reciprocated up and down while intersecting the upper surface of the base material 9. The movement of the base material 9 by the drive unit 7 is not limited to the vertical direction, but may be in the oblique direction.

液槽3内に収容される液体2は通常純水で、この液面1
2を清浄化した後、第1図右側に成膜枠5を寄せて、例
えばベンゼン、クロロホルム等の揮発性溶媒に溶した膜
構成物質の溶液を、スポイト等で数滴液面12上にたら
す、膜構成物質としては、通常、同一化学構造内に少な
くとも疎水性部分と親水性部分とを伴有する分子によっ
て構成される物質が用いられる。@水性部分として一般
的なものは、例えば炭素数5〜30程度の長鎖アルキル
基等であり、親水性部分として一般的なものは、例えば
カルボキシル基、アミノ基等の極性基等である。膜構成
物質の具体例としては、アラキシン酸等が挙げられる。
The liquid 2 contained in the liquid tank 3 is usually pure water, and this liquid level 1
2, move the film forming frame 5 to the right side of Figure 1 and drop a few drops of a solution of the film constituent material dissolved in a volatile solvent such as benzene or chloroform onto the liquid surface 12 using a dropper or the like. As the membrane-constituting substance, a substance composed of molecules having at least a hydrophobic part and a hydrophilic part in the same chemical structure is usually used. A common aqueous moiety is, for example, a long chain alkyl group having about 5 to 30 carbon atoms, and a common hydrophilic moiety is a polar group such as a carboxyl group or an amino group. Specific examples of membrane constituent substances include alaxic acid and the like.

−1−記膜構成物質の溶液を液面トに滴下展開させ、溶
媒が揮発すると、気体膜の状態の単分子膜が液面りに残
される0次いで成膜枠5を第1図左側に動かし、中分子
膜が展開している液面12の領域を次第に縮めて面密度
を増してやると、分子間相互作用が強まり、液体膜の状
態を経て固体膜となる。そして、この固体膜の状態とな
ったときに、前述のように駆動部7によって母材9を1
−下に往復移動させ、母材9の表面へ単分子膜を付着累
積させて曲面成形が行われる。母材9へ移し取るに最適
な単分子膜の状態は、単分子膜の表面圧が15〜30d
yn/c■となっていることを一応の目安として知るこ
とができる0m分子膜が母材9へ付着累積されるに従っ
て液面12J−の単分子膜分子の面密度は低下し、表面
圧も低下するので、徐々に成形枠5を移動させて表面圧
を一定に保持しながら単分子膜の母材9への移し取りを
行う、また、母材9の移動速度は、単分子膜を乱すこと
なく確実に付着累積できるよう、毎分IC■以下の速度
とすることが好ましい。
-1- A solution of the film-forming substance is dropped onto the liquid surface, and when the solvent evaporates, a monomolecular film in the form of a gaseous film is left on the liquid surface.Next, the film forming frame 5 is placed on the left side of Figure 1. When the liquid surface 12 where the intermediate molecular film is developed is moved and the area of the liquid surface 12 where the middle molecular film is developed is gradually reduced to increase the surface density, the interaction between molecules is strengthened, and the state changes from a liquid film state to a solid film. Then, when this solid film state is reached, the base material 9 is rotated by the drive unit 7 as described above.
- The monomolecular film is deposited and accumulated on the surface of the base material 9 by reciprocating downward movement to form a curved surface. The optimal state of the monomolecular film to be transferred to the base material 9 is when the surface pressure of the monomolecular film is 15 to 30 d.
As a rough guide, we can know that yn/c ■.As the 0m molecular film is accumulated on the base material 9, the areal density of the monomolecular film molecules at the liquid level 12J- decreases, and the surface pressure also decreases. Therefore, the monomolecular film is transferred to the base material 9 by gradually moving the molding frame 5 and keeping the surface pressure constant. Also, the moving speed of the base material 9 is such that the monomolecular film is not disturbed. In order to ensure that the adhesion can be accumulated without any problems, it is preferable to set the speed to less than IC2 per minute.

次に、母材9への単分子膜の付着累積過程を第5図で説
明する。
Next, the accumulation process of adhesion of the monomolecular film to the base material 9 will be explained with reference to FIG.

まず第5図(a)に示されるような母材9の成形面と液
面12が交差した状態で母材9を上方へ移動させると(
下方へ移動させても同じ)、同(b)に示されるように
単分子膜Aが母材9の表面に付着して移し取られる。所
定量母材9を上方へ移動させた後、母材9の成形面と液
面12の交差を保ちつつ母材9を下方へ移動させると、
第5図(C)に示されるように、前段で母材9の表面に
付着された単分子1111Aの上に単分子膜Aが重なっ
て付着され、この母材9の上下の移動を繰り返すことに
よって、同(d)に示されるように、単分子11Aは次
々とつづら折り状に母材9の表面に付着累積されること
になる。
First, when the base material 9 is moved upward in a state where the molding surface of the base material 9 and the liquid level 12 intersect as shown in FIG. 5(a),
(The same is true even if the monomolecular film A is moved downward), and as shown in FIG. After moving the base material 9 upward by a predetermined amount, when the base material 9 is moved downward while maintaining the intersection between the molding surface of the base material 9 and the liquid level 12,
As shown in FIG. 5(C), the monomolecular film A is deposited in an overlapping manner on the monolayer 1111A deposited on the surface of the base material 9 in the previous stage, and the vertical movement of this base material 9 is repeated. As a result, the single molecules 11A are deposited one after another on the surface of the base material 9 in a meandering manner, as shown in FIG.

母材9が球面レンズの場合、上述のようにして単分子膜
を付着累積させて行くと、第6図に斜線で示すような範
囲に単分子膜が付着累積されることになる。そして、こ
のドーナツ状に形成される中分子膜付着累積範囲の幅は
、母材9のに下の移動量で定まり、単分子膜の付着厚は
、単分子膜の付着層数即ち母材9の移動回数で定まる。
When the base material 9 is a spherical lens, if the monomolecular film is deposited and accumulated as described above, the monomolecular film will be deposited and accumulated in the area shown by diagonal lines in FIG. The width of this doughnut-shaped intermediate molecular film adhesion cumulative range is determined by the amount of downward movement of the base material 9, and the adhesion thickness of the monomolecular film is determined by the number of adhering layers of the monomolecular film, that is, the base material 9. It is determined by the number of movements.

従って、駆動部7(第1図参照)による母材9の移動量
と移動回数を調節しながら単分子膜を付着累積させて行
けば、任意の範囲に付着厚を変えながら単分子膜を付着
累積でき、例えば球面レンズの非球面レンズへの成形等
を容易に行うことができる。
Therefore, if the monomolecular film is deposited and accumulated while adjusting the movement amount and number of movements of the base material 9 by the drive unit 7 (see Fig. 1), the monomolecular film can be deposited while changing the adhesion thickness within an arbitrary range. It can be accumulated and, for example, a spherical lens can be easily molded into an aspherical lens.

母材9への単分子膜の付着累積に際し、液面12上に単
分子膜を形成した後に母材9を第5図(a)の状態にす
ると、本来単分子膜を付着させる必要のない部分、例え
ば第6図に示される母材9の中央部に一層だけではある
が単分子膜が付着することになる。これを防止するため
には、あらかじめ第5図(a)のように、母材9の成形
面と液面12が交差した状態に母材9をセットした後、
液面12上に単分子膜を形成するようにすればよい、但
し、単分子膜は極めて薄く、一層や二層付着しても曲面
状態としては無視できるので、ことさらこのようにする
必要はない、また、膜構成物質を紫外線の照射等によっ
て重合反応を生ずるもの、例えばジアセチレン等として
おき、前述のようにして母材9に単分子膜を付着累積さ
せた後、これを重合させると、母材9への単分子膜の付
着状態が一層強固で安定したものとなるので好ましい。
When accumulating the attachment of a monomolecular film to the base material 9, if the base material 9 is brought into the state shown in FIG. A monomolecular film is attached to a portion, for example, the central portion of the base material 9 shown in FIG. 6, although it is only one layer. In order to prevent this, first set the base material 9 in a state where the molding surface of the base material 9 and the liquid level 12 intersect, as shown in FIG. 5(a), and then
It is sufficient to form a monomolecular film on the liquid surface 12. However, since the monomolecular film is extremely thin and even if one or two layers are attached, it can be ignored as a curved surface state, so there is no need to do this. Also, if the film constituent material is a substance that causes a polymerization reaction when irradiated with ultraviolet rays, such as diacetylene, and the monomolecular film is deposited and accumulated on the base material 9 as described above, and then polymerized, This is preferable because the state of adhesion of the monomolecular film to the base material 9 becomes stronger and more stable.

本発明における駆動部7による母材9の移動は、これま
で述べた直線的−上下往復移動のみではなく、更に母材
9の中心軸回りの回転を加えたものとしたり、母材9の
往復傾動を加えたものとして付与することができる。
The movement of the base material 9 by the drive unit 7 in the present invention is not limited to the linear up-and-down reciprocating movement described above, but may also include rotation around the central axis of the base material 9, or reciprocation of the base material 9. It can be applied in addition to tilting motion.

これまで述べて来た直線的上下往復移動のみの場合、母
材9が例えば球面レンズ等であると、一定速度で母材9
を移動させても、母材9の成形面が湾曲しているので、
母材9の表面上における液面12との交差部の移動速度
は変化することになる。従って、母材9への単分子膜の
移し取り速度が母材9の表面位置によって変化してしま
うことになる。これに対して上下の直線的往復移動と同
時に母材9をの中心軸回りに回転させると、あたかも単
分子膜を母材9の表面へ螺旋状に巻き付けて行くように
なり、−L下移動速度と回転速度の分速度を一定に保持
することにより、単分子膜の母材9への移し取り速度を
一定に保つことができる。従って、母材9へ付着累積さ
れた単分子膜の性状を均一なものとしやすい利点がある
In the case of only the linear up and down reciprocating movement described so far, if the base material 9 is, for example, a spherical lens, the base material 9 moves at a constant speed.
Even if the molding surface of the base material 9 is curved,
The speed of movement at the intersection with the liquid level 12 on the surface of the base material 9 will change. Therefore, the speed at which the monomolecular film is transferred to the base material 9 changes depending on the surface position of the base material 9. On the other hand, if the base material 9 is rotated around the central axis at the same time as the vertical and linear reciprocating movement, the monomolecular film will be spirally wrapped around the surface of the base material 9, and the -L downward movement will occur. By keeping the speed and the rotational speed constant, the rate at which the monomolecular film is transferred to the base material 9 can be kept constant. Therefore, there is an advantage that the properties of the monomolecular film accumulated on the base material 9 can be easily made uniform.

一方、第7図に示されるように、母材9の表面と液面1
2が交差した状態で母材9を往復傾動させると、例えば
母材9が球面レンズの場合、第8図に斜線で示すような
範囲に単分子膜が付着累積されることになる。この第8
図に示される単分子付着累積範囲の横方向の幅は、母材
9の傾動量で調節でき、単分子膜の付着厚は、傾動回数
で調節できる。このような母材9の往復傾動を上下直線
往復移動に併せて単分子膜を付着累積させれば、この成
形によって、例えば複焦点レンズ等の回転非対称の非球
面レンズ等を容易に得ることができる。更にこの傾動と
共に前述した回転を連続又は断続的に加えれば、中分子
膜の付着累積状態をより微妙に調整できる。また、母材
9の傾動中心は、母材9がレンズの場合、通常その光軸
上にとられるが、傾動中心を光軸を外して定めることに
より、非対称成形を行うこともできる。
On the other hand, as shown in FIG. 7, the surface of the base material 9 and the liquid level 1
When the base material 9 is tilted back and forth in a state in which the two lenses intersect, for example, if the base material 9 is a spherical lens, the monomolecular film will be deposited and accumulated in the area shown by diagonal lines in FIG. This eighth
The lateral width of the monomolecular adhesion accumulation range shown in the figure can be adjusted by the amount of tilting of the base material 9, and the adhesion thickness of the monomolecular film can be adjusted by the number of times of tilting. If such a reciprocating tilting movement of the base material 9 is combined with an up-and-down linear reciprocating movement and a monomolecular film is deposited and accumulated, it is possible to easily obtain a rotationally asymmetric aspherical lens such as a bifocal lens through this molding. can. Furthermore, if the above-mentioned rotation is applied continuously or intermittently along with this tilting, the accumulated state of adhesion of the middle molecular film can be adjusted more delicately. Further, when the base material 9 is a lens, the center of tilting of the base material 9 is usually set on the optical axis of the lens, but asymmetric molding can also be performed by setting the center of tilting off the optical axis.

第9図は他の実施例を示す図で、駆動部7に連結されて
いる支持軸8は、液面12下へと延びており、液面12
下にあるこの支持軸8の先端部に、治具lOが上向きに
取付けられている。この治具10には、第1O図に示さ
れるように、その爪部It上に母材9を載置することに
よって母材9が保持されているものである0本実施例に
おいては、母材9の移動を液面12下より行うようにし
た他は前述の実施例と同じで、同様の作用効果が得られ
る。
FIG. 9 is a diagram showing another embodiment, in which the support shaft 8 connected to the drive unit 7 extends below the liquid level 12.
A jig IO is attached to the tip of the support shaft 8 located below, facing upward. As shown in FIG. 1O, this jig 10 has a base material 9 held by placing the base material 9 on its claws It. This embodiment is the same as the previous embodiment except that the material 9 is moved from below the liquid level 12, and the same effects can be obtained.

第11図及び第12図も他の実施例を示す図で、特に成
形曲面状態をモニターしながら成形を行えるようにした
ものである。即ち、コリメート光源14から出される平
行光は、図中矢印で示される方向に進み、まずミラー1
5aで方向を変えた後、/\−フミラー18で参照光と
測定光に分けられる。参照光は、ミラー15bで再び八
−ブミラー16へと反射され、更にハーフミラ−18で
反射されて干渉縞読み取り装置17へと送られる。一方
、測定光は、ミラー15cへと送られ、そこで反射され
て参照レンズ18を通って治具10上の母材9の表面へ
と送られる。母材9の表面で反射された測定光は、再び
参照レンズ18及びミラー15cを通って干渉縞読み取
り装置へと送られ、参照光との干渉状態から母材9の表
面状態が検出される。従って、これによって母材9の表
面状態を検出しながら、この検出結果に応じて母材9を
移動させて単分子膜を付着累積させることができ、作業
が正確で効率的になる。尚、本実施例における支持軸8
は、駆動部(図示されていない)によって支持部6に沿
って上下に移動されるものとなっている。
FIGS. 11 and 12 also show other embodiments, in which molding can be carried out while monitoring the state of the molded curved surface. That is, the parallel light emitted from the collimated light source 14 travels in the direction shown by the arrow in the figure, and first hits the mirror 1.
After the direction is changed at 5a, the beam is separated into a reference beam and a measurement beam by a /\-fumirror 18. The reference light is reflected by the mirror 15b again to the eight-beam mirror 16, further reflected by the half mirror 18, and sent to the interference fringe reading device 17. On the other hand, the measurement light is sent to the mirror 15c, reflected there, and sent to the surface of the base material 9 on the jig 10 through the reference lens 18. The measurement light reflected on the surface of the base material 9 is sent through the reference lens 18 and the mirror 15c again to the interference fringe reading device, and the surface state of the base material 9 is detected from the state of interference with the reference light. Therefore, while detecting the surface condition of the base material 9, the base material 9 can be moved in accordance with the detection result to deposit and accumulate the monomolecular film, making the work accurate and efficient. Note that the support shaft 8 in this embodiment
is moved up and down along the support section 6 by a drive section (not shown).

上述の説明においては、ハーフミラ−1Bとミラー15
bで参照光を形成しているが、参照レンズ18の反射光
を参照光としてもよい、また、母材9の表面状態の検出
は、検出すべき母材9の表面が液面12上にあるときに
行うが、この測定位置をあらかじめ設定しておき、母材
9の移動に伴って当該位置に母材9が移動されたときに
自動的に測定を行うようにすることもできる。また、こ
の測定結果から、母材9の移動を、コンピューター等で
制御することもできる。
In the above description, half mirror 1B and mirror 15
Although the reference light is formed in step b, the reflected light from the reference lens 18 may also be used as the reference light.Also, the surface condition of the base material 9 can be detected when the surface of the base material 9 to be detected is on the liquid level 12. Although this measurement is performed at a certain time, it is also possible to set the measurement position in advance and automatically perform the measurement when the base material 9 is moved to the position as the base material 9 moves. Further, based on this measurement result, the movement of the base material 9 can be controlled by a computer or the like.

[発明の効果] 本発明によれば、単分子膜というオングストロームオー
ダーの超薄膜の付着累積によって曲面を成形でき、この
単分子膜の付着範囲及び累積層数も自由に調節できるの
で、高精度に曲面を成形でき、非球面の成形も高精度に
行うことができるものである。
[Effects of the Invention] According to the present invention, a curved surface can be formed by the accumulation of an angstrom-order ultra-thin film called a monomolecular film, and the adhesion range and cumulative number of layers of this monomolecular film can be freely adjusted, so that it can be formed with high precision. It can mold curved surfaces and can also mold aspherical surfaces with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図、第2図はその治具
の拡大図で(a)は縦断面図、(b)は底面図、第3図
及び第4図は各々治具の他の例を示す縦断面図、第5図
(a)〜(d)は単分子膜の付着累積過程の説明図、第
6図は単分子膜の付着累積範囲を示す図、第7図(a)
〜(c)は母材の傾動状態を示す図、wIJB図は単分
子膜の付着累積範囲を示す図、第9図は本発明の他の実
施例の概略図、第1θ図はその治具の拡大縦断面図、第
11図は本発明の更に他の実施例の概略図、第12図は
その母材付近の拡大図である。 1:成膜装置、2:液体、3:液槽、 7:駆動部、  9:母材、lO:#tJL。
Fig. 1 is a schematic diagram of an embodiment of the present invention, Fig. 2 is an enlarged view of the jig, (a) is a longitudinal cross-sectional view, (b) is a bottom view, and Figs. 3 and 4 are each a jig. A vertical cross-sectional view showing another example of the tool, FIGS. 5(a) to 5(d) are explanatory diagrams of the monomolecular film adhesion accumulation process, FIG. 6 is a diagram showing the monomolecular film adhesion accumulation range, and FIG. 7 Diagram (a)
~(c) is a diagram showing the tilting state of the base material, the wIJB diagram is a diagram showing the cumulative adhesion range of the monomolecular film, Figure 9 is a schematic diagram of another embodiment of the present invention, and Figure 1θ is the jig. FIG. 11 is a schematic view of still another embodiment of the present invention, and FIG. 12 is an enlarged view of the vicinity of the base material. 1: Film forming apparatus, 2: Liquid, 3: Liquid tank, 7: Drive unit, 9: Base material, lO: #tJL.

Claims (1)

【特許請求の範囲】[Claims] 1)液槽内に収容された液体の液面に単分子膜を形成す
る成膜装置と、曲面を形成すべき母材を保持する治具と
、この治具に保持された母材を、母材の成形面と前記液
面とが交差した状態で直線的に往復移動させる駆動部と
を有することを特徴とする曲面成形装置。
1) A film forming device that forms a monomolecular film on the surface of a liquid contained in a liquid tank, a jig that holds a base material on which a curved surface is to be formed, and a base material held in this jig, A curved surface forming apparatus comprising: a drive unit that linearly reciprocates in a state where the forming surface of the base material and the liquid surface intersect with each other.
JP16385584A 1984-08-06 1984-08-06 Apparatus for molding curved surface Pending JPS6142363A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP16385584A JPS6142363A (en) 1984-08-06 1984-08-06 Apparatus for molding curved surface
US06/760,549 US4716851A (en) 1984-08-06 1985-07-30 Curved surface shaping apparatus and curved surface shaping method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16385584A JPS6142363A (en) 1984-08-06 1984-08-06 Apparatus for molding curved surface

Publications (1)

Publication Number Publication Date
JPS6142363A true JPS6142363A (en) 1986-02-28

Family

ID=15782031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16385584A Pending JPS6142363A (en) 1984-08-06 1984-08-06 Apparatus for molding curved surface

Country Status (1)

Country Link
JP (1) JPS6142363A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156572A (en) * 2012-01-31 2013-08-15 Hoya Corp Method for manufacturing spectacle lens, and lens holding tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156572A (en) * 2012-01-31 2013-08-15 Hoya Corp Method for manufacturing spectacle lens, and lens holding tool

Similar Documents

Publication Publication Date Title
US7399978B2 (en) Method and device for irradiating spots on a layer
US4776868A (en) Lenses and lens arrays
USRE46433E1 (en) Method and device for irradiating spots on a layer
EP0607262A1 (en) Crystal forming device and automated crystallization system
CN1033479A (en) The measuring method of wall thickness of transparent articles
CN101356453B (en) Coater
Zaltron et al. Optofluidic platform for the manipulation of water droplets on engineered LiNbO3 surfaces
US4716851A (en) Curved surface shaping apparatus and curved surface shaping method using the same
JPS6142363A (en) Apparatus for molding curved surface
US4222070A (en) Recording video information on a flexible master disc
JPS6142365A (en) Apparatus for molding curved surface
JPS6142372A (en) Method for molding curved surface
JPS6142366A (en) Apparatus for molding curved surface
JPS6142364A (en) Apparatus for molding curved surface
JPS6187103A (en) Forming device of curved surface
JPS61111173A (en) Formation of curved surface
JPS61111167A (en) Device for forming curved surface
JPS61111172A (en) Formation of curved surface
JPS5872127A (en) Optical focus position adjusting method
JPS6193863A (en) Apparatus for molding curved surface
US20030183961A1 (en) Method of drawing a pattern on a base material by scanning a beam
JP5896550B2 (en) Crystallization plate
RU2115144C1 (en) Method of formation of liquid optical surfaces
JPS6239731A (en) Apparatus for measuring photo-physical properties of membrane
JP5943409B2 (en) Crystallization plate