JPH04214678A - Solar battery - Google Patents
Solar batteryInfo
- Publication number
- JPH04214678A JPH04214678A JP2401931A JP40193190A JPH04214678A JP H04214678 A JPH04214678 A JP H04214678A JP 2401931 A JP2401931 A JP 2401931A JP 40193190 A JP40193190 A JP 40193190A JP H04214678 A JPH04214678 A JP H04214678A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gas
- solar cell
- type layer
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 claims abstract description 73
- 229910003460 diamond Inorganic materials 0.000 claims abstract description 71
- 239000000758 substrate Substances 0.000 claims abstract description 60
- 239000004065 semiconductor Substances 0.000 claims abstract description 29
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 3
- 238000010030 laminating Methods 0.000 claims description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 238000000151 deposition Methods 0.000 abstract description 31
- 230000006866 deterioration Effects 0.000 abstract description 26
- 239000010419 fine particle Substances 0.000 abstract description 8
- 238000005530 etching Methods 0.000 abstract description 6
- 238000009792 diffusion process Methods 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000002463 transducing effect Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 91
- 230000000052 comparative effect Effects 0.000 description 26
- 230000008021 deposition Effects 0.000 description 26
- 238000000034 method Methods 0.000 description 21
- -1 polyethylene Polymers 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000002994 raw material Substances 0.000 description 15
- 125000005843 halogen group Chemical group 0.000 description 14
- 125000004429 atom Chemical group 0.000 description 13
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 12
- 229910001220 stainless steel Inorganic materials 0.000 description 12
- 239000010935 stainless steel Substances 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 11
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 11
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 239000007858 starting material Substances 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 8
- 239000001257 hydrogen Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 8
- 239000010409 thin film Substances 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 7
- 239000011651 chromium Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052736 halogen Inorganic materials 0.000 description 5
- 150000002367 halogens Chemical class 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000013081 microcrystal Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- ILAHWRKJUDSMFH-UHFFFAOYSA-N boron tribromide Chemical compound BrB(Br)Br ILAHWRKJUDSMFH-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002366 halogen compounds Chemical class 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 238000005488 sandblasting Methods 0.000 description 4
- 150000003377 silicon compounds Chemical class 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- 229910021630 Antimony pentafluoride Inorganic materials 0.000 description 2
- 229910017011 AsBr3 Inorganic materials 0.000 description 2
- 229910017009 AsCl3 Inorganic materials 0.000 description 2
- 229910017050 AsF3 Inorganic materials 0.000 description 2
- 229910015845 BBr3 Inorganic materials 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- 229910014264 BrF Inorganic materials 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 229910005267 GaCl3 Inorganic materials 0.000 description 2
- 229910020667 PBr3 Inorganic materials 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910007264 Si2H6 Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910000074 antimony hydride Inorganic materials 0.000 description 2
- VBVBHWZYQGJZLR-UHFFFAOYSA-I antimony pentafluoride Chemical compound F[Sb](F)(F)(F)F VBVBHWZYQGJZLR-UHFFFAOYSA-I 0.000 description 2
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 2
- GUNJVIDCYZYFGV-UHFFFAOYSA-K antimony trifluoride Chemical compound F[Sb](F)F GUNJVIDCYZYFGV-UHFFFAOYSA-K 0.000 description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 229910000070 arsenic hydride Inorganic materials 0.000 description 2
- JMBNQWNFNACVCB-UHFFFAOYSA-N arsenic tribromide Chemical compound Br[As](Br)Br JMBNQWNFNACVCB-UHFFFAOYSA-N 0.000 description 2
- OEYOHULQRFXULB-UHFFFAOYSA-N arsenic trichloride Chemical compound Cl[As](Cl)Cl OEYOHULQRFXULB-UHFFFAOYSA-N 0.000 description 2
- JCMGUODNZMETBM-UHFFFAOYSA-N arsenic trifluoride Chemical compound F[As](F)F JCMGUODNZMETBM-UHFFFAOYSA-N 0.000 description 2
- JHXKRIRFYBPWGE-UHFFFAOYSA-K bismuth chloride Chemical compound Cl[Bi](Cl)Cl JHXKRIRFYBPWGE-UHFFFAOYSA-K 0.000 description 2
- 229910000072 bismuth hydride Inorganic materials 0.000 description 2
- TXKAQZRUJUNDHI-UHFFFAOYSA-K bismuth tribromide Chemical compound Br[Bi](Br)Br TXKAQZRUJUNDHI-UHFFFAOYSA-K 0.000 description 2
- BPBOBPIKWGUSQG-UHFFFAOYSA-N bismuthane Chemical compound [BiH3] BPBOBPIKWGUSQG-UHFFFAOYSA-N 0.000 description 2
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012777 electrically insulating material Substances 0.000 description 2
- 238000000866 electrolytic etching Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000004437 phosphorous atom Chemical group 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- UHZYTMXLRWXGPK-UHFFFAOYSA-N phosphorus pentachloride Chemical compound ClP(Cl)(Cl)(Cl)Cl UHZYTMXLRWXGPK-UHFFFAOYSA-N 0.000 description 2
- OBCUTHMOOONNBS-UHFFFAOYSA-N phosphorus pentafluoride Chemical compound FP(F)(F)(F)F OBCUTHMOOONNBS-UHFFFAOYSA-N 0.000 description 2
- IPNPIHIZVLFAFP-UHFFFAOYSA-N phosphorus tribromide Chemical compound BrP(Br)Br IPNPIHIZVLFAFP-UHFFFAOYSA-N 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- WKFBZNUBXWCCHG-UHFFFAOYSA-N phosphorus trifluoride Chemical compound FP(F)F WKFBZNUBXWCCHG-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- OUULRIDHGPHMNQ-UHFFFAOYSA-N stibane Chemical compound [SbH3] OUULRIDHGPHMNQ-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- KTZHUTMWYRHVJB-UHFFFAOYSA-K thallium(3+);trichloride Chemical compound Cl[Tl](Cl)Cl KTZHUTMWYRHVJB-UHFFFAOYSA-K 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- BLBNEWYCYZMDEK-UHFFFAOYSA-N $l^{1}-indiganyloxyindium Chemical compound [In]O[In] BLBNEWYCYZMDEK-UHFFFAOYSA-N 0.000 description 1
- 229910014263 BrF3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229910020313 ClF Inorganic materials 0.000 description 1
- 229910020323 ClF3 Inorganic materials 0.000 description 1
- 101100441092 Danio rerio crlf3 gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229910020656 PBr5 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910007260 Si2F6 Inorganic materials 0.000 description 1
- 229910005096 Si3H8 Inorganic materials 0.000 description 1
- 229910003617 SiB Inorganic materials 0.000 description 1
- 229910003910 SiCl4 Inorganic materials 0.000 description 1
- 229910004014 SiF4 Inorganic materials 0.000 description 1
- 229910003816 SiH2F2 Inorganic materials 0.000 description 1
- 229910003822 SiHCl3 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- KBDJQNUZLNUGDS-UHFFFAOYSA-N dibromosilicon Chemical compound Br[Si]Br KBDJQNUZLNUGDS-UHFFFAOYSA-N 0.000 description 1
- RWRIWBAIICGTTQ-UHFFFAOYSA-N difluoromethane Chemical compound FCF RWRIWBAIICGTTQ-UHFFFAOYSA-N 0.000 description 1
- MGNHOGAVECORPT-UHFFFAOYSA-N difluorosilicon Chemical compound F[Si]F MGNHOGAVECORPT-UHFFFAOYSA-N 0.000 description 1
- RNRZLEZABHZRSX-UHFFFAOYSA-N diiodosilicon Chemical compound I[Si]I RNRZLEZABHZRSX-UHFFFAOYSA-N 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- UHCBBWUQDAVSMS-UHFFFAOYSA-N fluoroethane Chemical compound CCF UHCBBWUQDAVSMS-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- QHGSGZLLHBKSAH-UHFFFAOYSA-N hydridosilicon Chemical compound [SiH] QHGSGZLLHBKSAH-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000003017 phosphorus Chemical class 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 238000002128 reflection high energy electron diffraction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 229910052990 silicon hydride Inorganic materials 0.000 description 1
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 1
- ABTOQLMXBSRXSM-UHFFFAOYSA-N silicon tetrafluoride Chemical compound F[Si](F)(F)F ABTOQLMXBSRXSM-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- SDNBGJALFMSQER-UHFFFAOYSA-N trifluoro(trifluorosilyl)silane Chemical compound F[Si](F)(F)[Si](F)(F)F SDNBGJALFMSQER-UHFFFAOYSA-N 0.000 description 1
- FQFKTKUFHWNTBN-UHFFFAOYSA-N trifluoro-$l^{3}-bromane Chemical compound FBr(F)F FQFKTKUFHWNTBN-UHFFFAOYSA-N 0.000 description 1
- JOHWNGGYGAVMGU-UHFFFAOYSA-N trifluorochlorine Chemical compound FCl(F)F JOHWNGGYGAVMGU-UHFFFAOYSA-N 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
【0001】0001
【利用分野】本発明は、高効率太陽電池に関する。FIELD OF APPLICATION This invention relates to high efficiency solar cells.
【0002】0002
【従来技術】光反射性基板を用いた太陽電池において、
その光反射面を凹凸のある粗面として形成し、低吸収波
長の光の行路長を増大せしめることによりその効率を改
善する方法は、例えば、USP4126150号公報(
出願人、RCA)に示唆され、特開昭56−15227
6号公報(出願人、帝人)においても述べられている。
更に特開昭59−104185号公報(出願人、エクソ
ン・リサーチ・アンド・エンジニアリング・カンパニー
)において、粗面化基板の光学的効果が詳述されている
。[Prior art] In a solar cell using a light reflective substrate,
A method of improving the efficiency by forming the light reflecting surface as a rough surface with unevenness and increasing the path length of light with a low absorption wavelength is disclosed in, for example, US Pat. No. 4,126,150 (
Applicant, RCA), and disclosed in Japanese Patent Application Laid-Open No. 56-15227.
This is also stated in Publication No. 6 (applicant, Teijin). Further, in Japanese Patent Application Laid-Open No. 59-104185 (applicant: Exxon Research and Engineering Company), the optical effects of a roughened substrate are detailed.
【0003】凹凸の形成法としては、特開昭54−15
3588号公報(出願人、ナショナル・パテント・ディ
ベロップメント・コーポレーション)においてウエット
・エッチング法が、特開昭58−159383号公報(
出願人、エナジー・コンバージョン・デバイセス)にお
いてサンドブラスト法、共蒸着法が、特開昭59−14
682号公報(出願人、電解箔工業他)において、直流
電解エッチング法又は、化学エッチング法によるアルミ
ニウムの粗面化がそれぞれ開示されている。[0003] As a method for forming unevenness, Japanese Patent Application Laid-Open No. 54-15
3588 (applicant: National Patent Development Corporation), the wet etching method was disclosed in Japanese Patent Application Laid-open No. 159383/1983 (Applicant: National Patent Development Corporation).
The sandblasting method and co-evaporation method were published in Japanese Unexamined Patent Application Publication No. 59-14 (Applicant, Energy Conversion Devices).
No. 682 (assigned by Electrolytic Foil Industry Co., Ltd., et al.) discloses surface roughening of aluminum by direct current electrolytic etching or chemical etching.
【0004】また、特開昭63−169769号公報に
おいて、ダイヤモンド薄膜上に透明電極を形成し、該透
明電極上にp型層、i型層及びn型層を積層した太陽電
池を形成する例が示されている。[0004] Furthermore, in JP-A-63-169769, a solar cell is formed in which a transparent electrode is formed on a diamond thin film, and a p-type layer, an i-type layer, and an n-type layer are laminated on the transparent electrode. It is shown.
【0005】[0005]
【従来技術の問題点】前記従来技術による基板表面の凹
凸形成方法では、太陽電池を形成した場合に種々の問題
点があった。[Problems with the Prior Art] The conventional method for forming irregularities on the surface of a substrate has various problems when forming a solar cell.
【0006】たとえば、直流電解エッチング又は化学エ
ッチング等の溶液でのエッチングでは、基板のエッチン
グ残渣が基板表面に生じていた。そのためこのような基
板上に半導体層を堆積すると、エッチング残渣が半導体
層に拡散し、太陽電池の特性を低下させていた。また、
このようなエッチング残渣は基板との密着性が弱いため
に、その上に堆積した半導体層がはがれやすく、均一な
特性の太陽電池を堆積することが難しいという問題点が
あった。For example, when etching with a solution such as DC electrolytic etching or chemical etching, etching residue of the substrate is generated on the surface of the substrate. Therefore, when a semiconductor layer is deposited on such a substrate, etching residues diffuse into the semiconductor layer, degrading the characteristics of the solar cell. Also,
Since such etching residue has weak adhesion to the substrate, the semiconductor layer deposited thereon is likely to peel off, making it difficult to deposit a solar cell with uniform characteristics.
【0007】またサンドブラスト法では、微粒子を基板
に吹きつけて凹凸を形成するため、基板上に吹きつけた
微粒子が残り、微粒子が半導体層の異常成長の核となる
場合があった。また、微粒子は、基板との密着性が悪い
ために、その上に堆積した半導体層がはがれやすいとい
う問題点もあった。また更に、サンドブラスト法は、微
粒子を吹き付けて基板表面に凹凸を形成するため、基板
に歪が生じ、それが経時的に緩和していくために堆積し
た半導体層に、歪を生じさせる場合があり、半導体層の
はがれや、電気的特性の劣化をまねいていた。[0007] Furthermore, in the sandblasting method, fine particles are sprayed onto a substrate to form irregularities, so the sprayed fine particles remain on the substrate, and the fine particles may become the core of abnormal growth of the semiconductor layer. Further, since the fine particles have poor adhesion to the substrate, there is also the problem that the semiconductor layer deposited thereon tends to peel off. Furthermore, in the sandblasting method, fine particles are sprayed to form irregularities on the substrate surface, which may cause distortion in the substrate, which may relax over time and cause distortion in the deposited semiconductor layer. This led to peeling of the semiconductor layer and deterioration of electrical characteristics.
【0008】また共蒸着法によって、基板表面に凹凸を
形成する場合では、少なくとも2種の原料を同時に蒸着
するため、蒸着膜に不均一性が生じやすいという問題が
あり、その上に半導体層を堆積して形成した太陽電池に
特性むらができやすいという問題点があった。Furthermore, when forming irregularities on the surface of a substrate by co-evaporation, there is a problem that at least two types of raw materials are deposited at the same time, which tends to cause non-uniformity in the deposited film. There is a problem in that solar cells formed by deposition tend to have uneven characteristics.
【0009】また更に、前記特開昭63−169769
号公報に記載のダイヤモンド薄膜を太陽電池の基板に用
いる例においては、ダイヤモンド薄膜上に透明電極を形
成し、当該透明電極上に半導体層を積層して、太陽電池
を形成している。この様な層構成の場合、ダイヤモンド
はガラス基板のかわりの高抵抗な基板として使用されて
いる。そのためダイヤモンド薄膜の上に透明電極が設け
られていた。この従来例では、ダイヤモンド薄膜と、半
導体層との間の優れた密着性が生かされないものであっ
た。また、透明電極の構成元素が半導体層に拡散すると
いう問題があった。Furthermore, the above-mentioned Japanese Patent Application Laid-Open No. 63-169769
In the example described in the publication in which a diamond thin film is used as a substrate of a solar cell, a transparent electrode is formed on the diamond thin film, and a semiconductor layer is laminated on the transparent electrode to form a solar cell. In such a layered structure, diamond is used as a high-resistance substrate instead of a glass substrate. Therefore, a transparent electrode was provided on the diamond thin film. In this conventional example, the excellent adhesion between the diamond thin film and the semiconductor layer was not utilized. Further, there was a problem that constituent elements of the transparent electrode diffused into the semiconductor layer.
【0010】0010
【発明の目的】本発明は前記従来技術の問題点を解決す
ることを目的としている。OBJECTS OF THE INVENTION It is an object of the present invention to solve the problems of the prior art.
【0011】すなわち本発明の目的は、エッチング残渣
による太陽電池特性の低下のない太陽電池を提供するこ
とである。[0011] That is, an object of the present invention is to provide a solar cell in which the solar cell characteristics are not deteriorated by etching residue.
【0012】また本発明の目的は、サンドブラスト法等
で基板上に生じる残留微粒子の影響のない太陽電池を提
供することである。更に、微粒子の衝突による基板の歪
の経時的緩和による特性の低下のない太陽電池を提供す
ることである。Another object of the present invention is to provide a solar cell that is free from the effects of residual fine particles produced on a substrate by sandblasting or the like. Furthermore, it is an object of the present invention to provide a solar cell in which characteristics do not deteriorate due to relaxation of substrate strain over time due to collisions of fine particles.
【0013】また更に本発明の目的は、電極材料の半導
体層への拡散の影響のない太陽電池を提供することであ
る。A further object of the present invention is to provide a solar cell that is free from the effects of diffusion of electrode material into the semiconductor layer.
【0014】また本発明の目的は、変換効率の高い太陽
電池を提供することにある。Another object of the present invention is to provide a solar cell with high conversion efficiency.
【0015】また更に本発明の目的は、基体の歪による
太陽電池の経時的な劣化の問題のない太陽電池を提供す
ることにある。A further object of the present invention is to provide a solar cell that is free from the problem of deterioration over time due to distortion of the substrate.
【0016】[0016]
【問題点を解決するための手段】本発明の太陽電池は、
前記問題点を解決し、目的を達成するために、導電性基
板上に、非単結晶Siから成るp層、活性層としてのi
層、n層の各半導体層を積層して構成される太陽電池に
おいて、前記導電性基板と、前記半導体層との間に、表
面に凹凸を有し、価電子制御剤を含有するダイヤモンド
層を介在させたことを特徴としている。[Means for solving the problems] The solar cell of the present invention is
In order to solve the above problems and achieve the objective, a p layer made of non-single crystal Si and an i layer as an active layer are formed on a conductive substrate.
In a solar cell configured by laminating semiconductor layers of a layer and an n layer, a diamond layer having an uneven surface and containing a valence electron control agent is provided between the conductive substrate and the semiconductor layer. It is characterized by intervening.
【0017】図1は、本発明の太陽電池の1例の模式的
説明図である。FIG. 1 is a schematic illustration of an example of the solar cell of the present invention.
【0018】図1において、本発明の太陽電池は導電性
基板101、ダイヤモンド層102、n型層103、i
型層104、p型層105、透明電極106から構成さ
れている。In FIG. 1, the solar cell of the present invention includes a conductive substrate 101, a diamond layer 102, an n-type layer 103, an i
It is composed of a type layer 104, a p-type layer 105, and a transparent electrode 106.
【0019】以下本発明の太陽電池を構成する各層につ
いて詳細に述べる。Each layer constituting the solar cell of the present invention will be described in detail below.
【0020】(導電性基体)本発明において、導電性の
基体は、導電性の材料または、導電処理された絶縁性材
料で形成される。導電性の材料としては、例えばNiC
r、ステンレス、Al、Cr、Mo、Au、Nb、Ta
、V、Ti、Pt、Pb等の金属またはこれ等の合金が
挙げられる。(Conductive Substrate) In the present invention, the conductive substrate is formed of an electrically conductive material or an insulating material that has been subjected to conductive treatment. As a conductive material, for example, NiC
r, stainless steel, Al, Cr, Mo, Au, Nb, Ta
, V, Ti, Pt, Pb, or alloys thereof.
【0021】電気絶縁性材料としては、ポリエステル、
ポリエチレン、ポリカーボネート、セルロースアセテー
ト、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリ
デン、ポリスチレン、ポリアミド等の合成樹脂のフィル
ム又はシート、ガラス、セラミックス、紙などが通常使
用される。これ等の電気絶縁性材料は、少なくともその
一方の表面を導電処理し、該導電処理した表面側に他の
層を設けるのが望ましい。[0021] As the electrically insulating material, polyester,
Films or sheets of synthetic resins such as polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramics, paper, etc. are usually used. It is desirable that at least one surface of these electrically insulating materials be subjected to conductive treatment, and that another layer be provided on the conductive treated surface side.
【0022】例えば、ガラスであれば、その表面に、N
iCr、Al、Cr、Mo、Au、Ir、Nb、Ta、
V、Ti、Pt、Pd、In2O3、SnO2、ITO
(In2O3+SnO2)等から成る薄膜を設けること
によって導電性が付与され、或いはポリエステルフィル
ム等の合成樹脂フィルムであれば、NiCr、Al、A
g、Pb、Zn、Ni、Au、Cr、Mo、Ir、Nb
、Ta、V、Ti、Pt等の金属の薄膜を真空蒸着、電
子ビーム蒸着、スパッタリング等でその表面に設け、又
は前記金属でその表面をラミネート処理して、その表面
に導電性が付与される。For example, in the case of glass, N is applied to the surface of the glass.
iCr, Al, Cr, Mo, Au, Ir, Nb, Ta,
V, Ti, Pt, Pd, In2O3, SnO2, ITO
Conductivity is imparted by providing a thin film made of (In2O3+SnO2), etc., or if it is a synthetic resin film such as polyester film, NiCr, Al, A
g, Pb, Zn, Ni, Au, Cr, Mo, Ir, Nb
, Ta, V, Ti, Pt, etc. are provided on the surface by vacuum evaporation, electron beam evaporation, sputtering, etc., or the surface is laminated with the above metal to impart conductivity to the surface. .
【0023】基板の厚さは、所望通りの太陽電池が形成
される様に適宜決定されるが、製造上及び取り扱い上、
機械的強度等の点から、通常は10μm以上とされる。[0023] The thickness of the substrate is appropriately determined so that the desired solar cell can be formed, but due to manufacturing and handling considerations,
From the viewpoint of mechanical strength, etc., the thickness is usually 10 μm or more.
【0024】(ダイヤモンド層)本発明において、ダイ
ヤモンド層は、太陽電池の変換効率を向上させ、かつ経
時的劣化を減少させる働きをする重要な層である。(Diamond Layer) In the present invention, the diamond layer is an important layer that serves to improve the conversion efficiency of the solar cell and reduce deterioration over time.
【0025】本発明において、ダイヤモンド層は、多結
晶のダイヤモンドで形成される。多結晶のダイヤモンド
には平滑多面体形状、骸晶形状、針状結晶集合体形状等
があるが、本発明においては、平滑多面体形状の多結晶
ダイヤモンドが適している。In the present invention, the diamond layer is formed of polycrystalline diamond. Polycrystalline diamonds include smooth polyhedral shapes, skeleton shapes, acicular crystal aggregate shapes, etc., but smooth polyhedral polycrystalline diamonds are suitable for the present invention.
【0026】この様に平滑多面体形状の多結晶ダイヤモ
ンドで形成したダイヤモンド層は、該層表面に凹凸を有
している。The diamond layer formed of smooth polyhedral polycrystalline diamond as described above has irregularities on its surface.
【0027】この凹凸により、前記ダイヤモンド層上に
設けられる半導体層は、前記ダイヤモンド層と同様の形
状で形成されるため、太陽電池表面も前記ダイヤモンド
層と同様の凹凸を有する平滑多面体形状となる。[0027] Due to this unevenness, the semiconductor layer provided on the diamond layer is formed in the same shape as the diamond layer, so that the surface of the solar cell also has a smooth polyhedral shape having the same unevenness as the diamond layer.
【0028】そのため、本発明の太陽電池に入射する光
が平滑多面体表面に対して臨界角より大きな角度で入射
し、全反射を起こす場合であっても、全反射した光を他
の平滑多面体表面より太陽電池内へ導入することができ
るので、入射光を有効に利用することができる。Therefore, even if the light incident on the solar cell of the present invention is incident on the surface of a smooth polyhedron at an angle larger than the critical angle and causes total internal reflection, the totally reflected light is transferred to the surface of other smooth polyhedrons. Since it can be introduced into the solar cell more effectively, the incident light can be used effectively.
【0029】又、太陽電池内に導入された光は、太陽電
池内を厚さ方向に対して、ななめ方向に進行するので、
光エネルギーを吸収しキャリアを発生させるための半導
体層の実効長を前記半導体層の層厚以上に取ることがで
きる。[0029] Furthermore, since the light introduced into the solar cell travels in the diagonal direction with respect to the thickness direction within the solar cell,
The effective length of the semiconductor layer for absorbing light energy and generating carriers can be set to be greater than the layer thickness of the semiconductor layer.
【0030】その結果、太陽電池内で吸収される光量が
増加し、太陽電池の変換効率が増加する。特に、平滑多
面体形状の多結晶ダイヤモンドは、平滑多面体の多面体
表面がほぼ鏡面であり、従来技術による凹凸の各微小表
面より表面性が良い。その結果、太陽電池内での光閉じ
込め効果が、従来よりも良くなり、太陽電池の変換効率
が向上する。As a result, the amount of light absorbed within the solar cell increases, and the conversion efficiency of the solar cell increases. In particular, polycrystalline diamond in the shape of a smooth polyhedron has a polyhedral surface that is almost a mirror surface, and has better surface properties than the uneven microscopic surfaces of the prior art. As a result, the light confinement effect within the solar cell becomes better than before, and the conversion efficiency of the solar cell improves.
【0031】又、更に平滑多面体形状の多結晶ダイヤモ
ンド層は、多結晶ダイヤモンドの構造が非常にち密であ
るため、導電性基板からの金属の半導体層への拡散を防
止することができる。また多結晶ダイヤモンドは、構造
的に結晶界面が柔軟であるため、太陽電池作製時の歪を
緩和することができる。その結果、前記基板からの不純
物の拡散または歪による太陽電池の経時的劣化を防止す
ることができる。Furthermore, since the smooth polyhedral polycrystalline diamond layer has a very dense structure, it is possible to prevent metal from diffusing from the conductive substrate into the semiconductor layer. In addition, since polycrystalline diamond has a flexible crystal interface structurally, it can alleviate strain during solar cell production. As a result, it is possible to prevent the solar cell from deteriorating over time due to diffusion of impurities from the substrate or distortion.
【0032】本発明に適したダイヤモンド層は、導電性
基体との良好な電気的接触を成し、経時的な特性の劣化
を防ぐためには、層厚が0.1μm以上5μm以下であ
り、表面の凹凸は、入射光を有効に利用するためには0
.05S〜1Sであることが望ましい。A diamond layer suitable for the present invention has a layer thickness of 0.1 μm or more and 5 μm or less, and a surface area of In order to effectively utilize the incident light, the unevenness of
.. It is desirable that it is between 05S and 1S.
【0033】又、平滑多面体結晶の大きさは、平均半径
で0.05μm〜5μmであることが望ましい。The size of the smooth polyhedral crystal is preferably 0.05 μm to 5 μm in average radius.
【0034】また更にダイヤモンド層内、特に多結晶の
界面に水素が含有される。含有水素量は歪の緩和のため
には1〜5at%が適している。Furthermore, hydrogen is contained within the diamond layer, particularly at the polycrystalline interface. A suitable amount of hydrogen content is 1 to 5 at% for alleviating strain.
【0035】加えて本発明のダイヤモンド層は、導電性
基板と半導体層の間に設けられるため、ダイヤモンド層
は低抵抗であることが必要である。ダイヤモンド層の好
ましい暗導電率としては、0.1S/cm以上である。
この様な暗導電率にするために必要な不純物のドーピン
グ量は、1at%〜10at%である。不純物のドーピ
ング量が10at%より多くなると、ダイヤモンド層が
平滑多面体形状の結晶で構成することができなくなる場
合がある。In addition, since the diamond layer of the present invention is provided between the conductive substrate and the semiconductor layer, it is necessary that the diamond layer has low resistance. A preferable dark conductivity of the diamond layer is 0.1 S/cm or more. The amount of impurity doping required to achieve such dark conductivity is 1 at % to 10 at %. If the amount of impurity doping is more than 10 at %, the diamond layer may not be composed of smooth polyhedral crystals.
【0036】本発明において、ダイヤモンド層内に含有
される不純物としては、n型である場合には、周期表5
族の元素、特に、N、P、As、Sb、Biが適してい
る。またp型である場合には、周期表3族の元素、特に
、B、Al、Ga、In、Tlが適している。In the present invention, when the impurity contained in the diamond layer is n-type,
Group elements are suitable, in particular N, P, As, Sb, Bi. Further, in the case of p-type, elements of Group 3 of the periodic table, particularly B, Al, Ga, In, and Tl are suitable.
【0037】本発明において第3族原子導入用の出発物
質として有効に使用されるものとしては、具体的には硼
素原子導入用として、B2H6、B4H10、B5H9
、B5H11、B6H10、B6H12、B6H14等
の水素化硼素、BF3、BCl3、BBr3等のハロゲ
ン化硼素等を挙げることができるが、この他、AlCl
3、GaCl3、InCl3、TlCl3等も挙げる事
ができる。[0037] In the present invention, starting materials that can be effectively used for introducing group 3 atoms include B2H6, B4H10, and B5H9, specifically for introducing boron atoms.
, B5H11, B6H10, B6H12, B6H14, etc., boron halides such as BF3, BCl3, BBr3, etc.;
3, GaCl3, InCl3, TlCl3, etc. can also be mentioned.
【0038】本発明において、第5族原子導入用の出発
物質として有効に使用されるのは、具体的には燐原子導
入用としては、PH3、P2H4等の水素化燐、PH4
I、PF3、PF5、PCl3、PCl5、PBr3、
PBr5、PI3等のハロゲン化燐が挙げられる。この
他、AsH3、AsF3、AsCl3、AsBr3、A
sF5、SbH3、SbF3、SbF5、SbCl3、
SbCl5、BiH3、BiCl3、BiBr3等も挙
げることができる。In the present invention, the starting materials that are effectively used for introducing Group 5 atoms are, specifically for introducing phosphorus atoms, hydrogenated phosphorus such as PH3 and P2H4, PH4
I, PF3, PF5, PCl3, PCl5, PBr3,
Examples include phosphorus halides such as PBr5 and PI3. In addition, AsH3, AsF3, AsCl3, AsBr3, A
sF5, SbH3, SbF3, SbF5, SbCl3,
Mention may also be made of SbCl5, BiH3, BiCl3, BiBr3, etc.
【0039】本発明におけるダイヤモンド層は、熱フィ
ラメントCVD法、高周波プラズマCVD法、マイクロ
波プラズマCVD法、直流プラズマCVD法、イオンビ
ーム法、等で堆積される。The diamond layer in the present invention is deposited by a hot filament CVD method, a high frequency plasma CVD method, a microwave plasma CVD method, a direct current plasma CVD method, an ion beam method, or the like.
【0040】その中で堆積速度の速さ、原料ガスの利用
効率の高さの点で特にマイクロ波プラズマCVD法が適
している。Among these methods, the microwave plasma CVD method is particularly suitable in terms of high deposition rate and high raw material gas utilization efficiency.
【0041】本発明におけるダイヤモンド層を、前記プ
ラズマCVD法で堆積する場合、適した原料ガスとして
は、次の様な原料ガスが挙げられる。When the diamond layer of the present invention is deposited by the plasma CVD method, suitable source gases include the following source gases.
【0042】原料ガスとなる炭素原子含有化合物として
は、例えば炭素数1〜4の飽和炭化水素、炭素数2〜4
のエチレン系炭化水素、炭素数2〜3のアセチレン系炭
化水素等が挙げられる。Examples of the carbon atom-containing compound serving as the raw material gas include saturated hydrocarbons having 1 to 4 carbon atoms, and saturated hydrocarbons having 2 to 4 carbon atoms.
Examples include ethylene hydrocarbons, acetylene hydrocarbons having 2 to 3 carbon atoms, and the like.
【0043】具体的には、飽和炭化水素としては、メタ
ン(CH4)、エタン(C2H6)、プロパン(C3H
8)、n−ブタン(n−C4H10)、ペンタン(C5
H12)、エチレン系炭化水素としては、エチレン(C
2H4)、プロピレン(C3H6)、ブテン−1(C4
H8)、ブテン−2(C4H8)、イソブチレン(C4
H8)、ペンテン(C5H10)、アセチレン系炭化水
素としては、アセチレン(C2H2)、メチルアセチレ
ン(C3H4)、ブチン(C4H6)等が挙げられる。Specifically, examples of saturated hydrocarbons include methane (CH4), ethane (C2H6), and propane (C3H6).
8), n-butane (n-C4H10), pentane (C5
H12), ethylene hydrocarbons include ethylene (C
2H4), propylene (C3H6), butene-1 (C4
H8), butene-2 (C4H8), isobutylene (C4
Examples of the acetylene hydrocarbons include acetylene (C2H2), methylacetylene (C3H4), and butyne (C4H6).
【0044】又、ハロゲン原子含有の炭化水素も挙げら
れる。例えば、CH3F、CH2F2、CH3Cl、C
H2Cl2、CF4、C2H5F、C2H4F2、C2
H4FCl、C2H2F2、C2H2FCl等が挙げら
れる。[0044] Also included are hydrocarbons containing halogen atoms. For example, CH3F, CH2F2, CH3Cl, C
H2Cl2, CF4, C2H5F, C2H4F2, C2
Examples include H4FCl, C2H2F2, C2H2FCl, and the like.
【0045】また更に、本発明のダイヤモンド層形成に
は、前記炭素原子導入用の原料ガスに加えて、水素ガス
を添加してもよい。Furthermore, in forming the diamond layer of the present invention, hydrogen gas may be added in addition to the raw material gas for introducing carbon atoms.
【0046】本発明のダイヤモンド層形成に適した、炭
素原子導入用原料ガスの水素ガスに対する混合比は、1
〜10%である。The mixing ratio of the raw material gas for introducing carbon atoms to the hydrogen gas, which is suitable for forming the diamond layer of the present invention, is 1.
~10%.
【0047】加えて本発明のダイヤモンド層をプラズマ
CVD法で堆積する場合、以下の様な条件で堆積するこ
とが望ましい。In addition, when the diamond layer of the present invention is deposited by plasma CVD, it is desirable to deposit it under the following conditions.
【0048】本発明のダイヤモンド層を堆積する場合、
プラズマ内で分解された炭素原子導入用ガス同志の気相
反応を防止することが必要である。そのためプラズマ発
生時の内圧は、1mTorr〜50mTorrにするこ
とが望ましい。When depositing the diamond layer of the present invention,
It is necessary to prevent gas phase reactions between the carbon atom introduction gases decomposed in the plasma. Therefore, it is desirable that the internal pressure at the time of plasma generation be 1 mTorr to 50 mTorr.
【0049】また、プラズマ内で炭素原子導入用ガスと
水素ガスは、十分に分解または活性化されなければなら
ない。そのために反応空間内に投入されるパワーは、炭
素原子導入用ガスの流量及び反応空間の体積に対して0
.01〜1W/sccm・cm3にすることが望ましい
。Furthermore, the carbon atom introduction gas and the hydrogen gas must be sufficiently decomposed or activated within the plasma. For this purpose, the power input into the reaction space is 0 relative to the flow rate of the gas for introducing carbon atoms and the volume of the reaction space.
.. It is desirable to set it to 01-1W/sccm*cm3.
【0050】加えて、反応空間内のプラズマで分解され
た炭素原子導入用ガスと水素ガスが基板上で反応し、本
発明のダイヤモンド層を形成する上で基板温度は重要な
因子であり、本発明においては、200℃〜800℃と
することが望ましい。In addition, the substrate temperature is an important factor when the carbon atom introduction gas decomposed by the plasma in the reaction space and the hydrogen gas react on the substrate to form the diamond layer of the present invention. In the invention, the temperature is preferably 200°C to 800°C.
【0051】(n型層)本発明において、n型層は、太
陽電池の起電力や光電流を支配する重要な層である。(N-type layer) In the present invention, the n-type layer is an important layer that controls the electromotive force and photocurrent of the solar cell.
【0052】n型層の材料としては、シリコン含有の非
単結晶半導体が適し、特に水素化又は/及びハロゲン化
アモルファスシリコン(マイクロクリスタルを含む)が
適するものである。また更に限定すればアモルファスシ
リコンの中のマイクロクリスタルシリコンが最適である
。As the material for the n-type layer, a silicon-containing non-single crystal semiconductor is suitable, particularly hydrogenated and/or halogenated amorphous silicon (including microcrystals). Furthermore, if the material is more limited, microcrystalline silicon among amorphous silicones is most suitable.
【0053】マイクロクリスタルシリコンの結晶の粒径
は、好ましくは50Å〜500Åであり、最適には10
0Å〜300Åである。The grain size of microcrystalline silicon crystals is preferably 50 Å to 500 Å, and optimally 10 Å to 500 Å.
It is 0 Å to 300 Å.
【0054】又、水素又は/及びハロゲン原子の含有量
は、マイクロクリスタルシリコンの場合には、好ましく
は1〜10at%であり、最適には、1〜7at%であ
る。In the case of microcrystalline silicon, the content of hydrogen and/or halogen atoms is preferably 1 to 10 at%, most preferably 1 to 7 at%.
【0055】アモルファスシリコンの場合には、水素又
は/及びハロゲン原子の含有量は、好ましくは1〜40
at%であり、最適には5〜20at%である。In the case of amorphous silicon, the content of hydrogen and/or halogen atoms is preferably 1 to 40
at%, optimally from 5 to 20 at%.
【0056】また更に、n型層に含有される添加物とし
ては、周期表第5A族元素が適している。その中で特に
、P、N、As、Sbが最適である。Furthermore, as the additive contained in the n-type layer, elements of group 5A of the periodic table are suitable. Among them, P, N, As, and Sb are particularly suitable.
【0057】加えて、n型層に含有される添加物の含有
量は、好ましくは1at%〜20at%であり、最適に
は5at%〜10at%である。In addition, the content of the additive contained in the n-type layer is preferably 1 at% to 20 at%, most preferably 5 at% to 10 at%.
【0058】n型層の電気的特性としては、前記各条件
内で活性化エネルギーが0.2eV以下のものが好まし
く、0.1eV以下のものが最適である。また比抵抗と
しては、10Ωcm以下が好ましく、1Ωcm以下が最
適である。Regarding the electrical characteristics of the n-type layer, it is preferable that the activation energy be 0.2 eV or less, and optimally 0.1 eV or less within the above-mentioned conditions. Further, the specific resistance is preferably 10 Ωcm or less, and optimally 1 Ωcm or less.
【0059】(i型層)本発明において、i型層は、照
射光に対してキャリアを発生、輸送する重要な層である
。i型層に適したシリコン原子を含有する非単結晶材料
としてはアモルファスシリコン(微結晶シリコン)が挙
げられる。アモルファスシリコンの中でも特に水素化ア
モルファスシリコン、水素化又は/及びハロゲン化アモ
ルファスシリコンが適している。(I-type layer) In the present invention, the i-type layer is an important layer that generates and transports carriers in response to irradiated light. A non-single crystal material containing silicon atoms suitable for the i-type layer includes amorphous silicon (microcrystalline silicon). Among amorphous silicones, hydrogenated amorphous silicon and hydrogenated and/or halogenated amorphous silicon are particularly suitable.
【0060】又、アモルファスシリコン中に含有される
水素またはハロゲンの含有量は、局在準位を減少させ電
気的特性を高品質に保つために非常に重要である。水素
原子とシリコン原子の結合状態は、シリコン原子に水素
原子が1ケ結合した状態が好ましいものである。ハロゲ
ン原子とシリコン原子の結合状態についても同様である
。Further, the content of hydrogen or halogen contained in amorphous silicon is very important in order to reduce localized levels and maintain high quality electrical characteristics. The bonding state between the hydrogen atom and the silicon atom is preferably such that one hydrogen atom is bonded to the silicon atom. The same applies to the bonding state between halogen atoms and silicon atoms.
【0061】又、水素原子とハロゲン原子との含有量の
和は、好ましくは1at%〜40at%であり、最適に
は5at%〜20at%である。[0061] The sum of the contents of hydrogen atoms and halogen atoms is preferably 1 at% to 40 at%, most preferably 5 at% to 20 at%.
【0062】また更に、i型層の層厚は、本発明の光起
電力素子の特性を左右する重要なパラメーターである。
i型層の好ましい層厚は、0.1μm〜1μmであり、
最適な層厚は、0.2μm〜0.6μmである。Furthermore, the thickness of the i-type layer is an important parameter that influences the characteristics of the photovoltaic device of the present invention. The preferred layer thickness of the i-type layer is 0.1 μm to 1 μm,
The optimum layer thickness is between 0.2 μm and 0.6 μm.
【0063】この層厚は、i型層の吸光係数や太陽光等
の入射光のスペクトルを考慮し、上記範囲内で設計する
ことが望ましいものである。This layer thickness is desirably designed within the above range, taking into account the absorption coefficient of the i-type layer and the spectrum of incident light such as sunlight.
【0064】(p型層)本発明において、p型層は、光
起電力素子の起電力や光電流を支配する重要な層である
。(P-type layer) In the present invention, the p-type layer is an important layer that controls the electromotive force and photocurrent of the photovoltaic element.
【0065】p型層の材料としては、シリコン含有の非
単結晶半導体が適し、特に、水素化又は/及びハロゲン
化アモルファスシリコン(微結晶シリコンを含む)が適
するものである。また更に限定すれば、アモルファスシ
リコンの中のマイクロクリスタルシリコンが最適である
。As the material for the p-type layer, a silicon-containing non-single crystal semiconductor is suitable, and hydrogenated and/or halogenated amorphous silicon (including microcrystalline silicon) is particularly suitable. Furthermore, if the material is more limited, microcrystalline silicon among amorphous silicones is most suitable.
【0066】マイクロクリスタルシリコンの粒径は、好
ましくは30Å〜200Åであり、最適には30Å〜1
00Åである。The grain size of the microcrystalline silicon is preferably 30 Å to 200 Å, optimally 30 Å to 1
00 Å.
【0067】又、水素又は/及びハロゲン原子の含有量
は、マイクロクリスタルシリコンの場合には、好ましく
は1〜10at%であり、最適には1〜7at%である
。水素又は/及びハロゲン原子の含有量は、アモルファ
スシリコンの場合には、好ましくは1〜40at%、最
適には5〜20at%である。Further, the content of hydrogen and/or halogen atoms is preferably 1 to 10 at %, and optimally 1 to 7 at % in the case of microcrystalline silicon. In the case of amorphous silicon, the content of hydrogen and/or halogen atoms is preferably 1 to 40 at%, optimally 5 to 20 at%.
【0068】また更に、p型層に含有される添加物とし
ては、周期表第3A族元素が適している。その中で特に
ほう素(B)、アルミニウム(Al)、ガリウム(Ga
)が最適である。Furthermore, as the additive contained in the p-type layer, elements of Group 3A of the periodic table are suitable. Among them, boron (B), aluminum (Al), gallium (Ga)
) is optimal.
【0069】加えて、p型層に含有される添加物の含有
量は、好ましくは1at%〜20at%であり、最適に
は5at%〜10at%である。In addition, the content of the additive contained in the p-type layer is preferably 1 at% to 20 at%, most preferably 5 at% to 10 at%.
【0070】p型層の電気的特性としては、前記各条件
内で、活性化エネルギーが0.2eV以下のものが好ま
しく、0.1eV以下のものが最適である。また比抵抗
としては、10Ωcm以下が好ましく、1Ωcm以下が
最適である。Regarding the electrical characteristics of the p-type layer, within each of the above conditions, activation energy is preferably 0.2 eV or less, and optimally 0.1 eV or less. Further, the specific resistance is preferably 10 Ωcm or less, and optimally 1 Ωcm or less.
【0071】p型層の層厚は、好ましくは10Å〜50
0Å、最適には、50Å〜300Åである。The thickness of the p-type layer is preferably 10 Å to 50 Å.
0 Å, optimally between 50 Å and 300 Å.
【0072】(透明電極)本発明において用いられる透
明電極としては例えば太陽や白色蛍光灯等の光源からの
光を半導体層内に効率良く吸収させるために光の透過率
が85%以上であることが望ましく、さらに、電気的に
は太陽電池の出力に対して抵抗成分とならぬようにシー
ト抵抗値は100Ω以下であることが望ましい。このよ
うな特性を備えた材料として例えばSnO2、In2O
3、ZnO、CdO、Cd2SnO4、ITO(In2
O3+SnO2)などの金属酸化物や、Au、Al、C
u等の金属を極めて薄く半透明状に成膜した金属薄膜等
が挙げられる。(Transparent electrode) The transparent electrode used in the present invention must have a light transmittance of 85% or more in order to efficiently absorb light from a light source such as the sun or a white fluorescent lamp into the semiconductor layer. Further, it is desirable that the sheet resistance value is 100Ω or less so as not to become a resistance component electrically with respect to the output of the solar cell. Materials with such characteristics include, for example, SnO2 and In2O.
3. ZnO, CdO, Cd2SnO4, ITO (In2
metal oxides such as O3+SnO2), Au, Al, C
Examples include metal thin films formed by forming extremely thin, translucent metals such as u.
【0073】これらの作製方法としては、例えば抵抗加
熱蒸着法、電子ビーム加熱蒸着法、スパッタリング法、
スプレー法等を用いることができ所望に応じて適宜選択
される。Examples of manufacturing methods include resistance heating evaporation, electron beam heating evaporation, sputtering,
A spray method or the like can be used, and the method is appropriately selected as desired.
【0074】本発明において、p型層、n型層、i型層
は、例えば直流プラズマCVD法、高周波プラズマCV
D法、マイクロ波プラズマCVD法等で形成することが
適している。In the present invention, the p-type layer, n-type layer, and i-type layer are formed by, for example, direct current plasma CVD, high frequency plasma CVD, etc.
It is suitable to form by the D method, microwave plasma CVD method, or the like.
【0075】前記プラズマCVD法に適した原料ガスと
して次のガスが挙げられる。[0075] The following gases may be mentioned as raw material gases suitable for the plasma CVD method.
【0076】本発明において使用されるSi供給用の原
料ガスとしては、SiH4、Si2H6、Si3H8、
Si4H10等のガス状態の又はガス化し得る水素化硅
素(シラン類)が有効に使用されるものとして挙げられ
、殊に、層作成作業の扱い易さ、Si供給効率の良さ等
の点でSiH4、Si2H6が好ましいものとして挙げ
られる。The raw material gas for supplying Si used in the present invention includes SiH4, Si2H6, Si3H8,
Silicon hydride (silanes) in a gaseous state or that can be gasified, such as Si4H10, can be effectively used. In particular, SiH4, Si2H6 is preferred.
【0077】本発明において使用されるハロゲン原子導
入用の原料ガスとして有効なのは、多くのハロゲン化合
物が挙げられ、例えばハロゲンガス、ハロゲン化物、ハ
ロゲン間化合物、ハロゲンで置換されたシラン誘導体等
のガス状態の又はガス化し得るハロゲン化合物が好まし
く挙げられる。Many halogen compounds are effective as the raw material gas for introducing halogen atoms used in the present invention, such as halogen gases, halides, interhalogen compounds, halogen-substituted silane derivatives, and other gases. Preferred examples include halogen compounds that can be converted into gas or gasified.
【0078】又、さらには、シリコン原子とハロゲン原
子とを構成要素とするガス状態の又はガス化し得る、ハ
ロゲン原子を含む硅素化合物も有効なものとして本発明
においては挙げることができる。Furthermore, silicon compounds containing halogen atoms, which are in a gaseous state or can be gasified and which have silicon atoms and halogen atoms as constituent elements, can also be mentioned as effective in the present invention.
【0079】本発明において好適に使用し得るハロゲン
化合物としては、具体的にはフッ素、塩素、臭素、ヨウ
素のハロゲンガス、BrF、ClF、ClF3、BrF
5、BrF3、IF3、IF7、ICl、IBr等のハ
ロゲン間化合物を挙げることができる。[0079] Specific examples of halogen compounds that can be suitably used in the present invention include halogen gases such as fluorine, chlorine, bromine, and iodine, BrF, ClF, ClF3, and BrF.
5, BrF3, IF3, IF7, ICl, IBr, and other interhalogen compounds.
【0080】ハロゲン原子を含む硅素化合物、所謂、ハ
ロゲン原子で置換されたシラン誘導体としては、具体的
には例えばSiF4,Si2F6,SiCl4,SiB
r4等のハロゲン化硅素が好ましいものとして挙げるこ
とができる。[0080] Examples of silicon compounds containing halogen atoms, so-called silane derivatives substituted with halogen atoms include, for example, SiF4, Si2F6, SiCl4, SiB
Preferred examples include silicon halides such as r4.
【0081】このようなハロゲン原子を含む硅素化合物
を採用してプラズマCVD法によって本発明の特徴的な
積室中に導入して該ガスのプラズマ雰囲気を形成してや
れば良い。[0081] Such a silicon compound containing a halogen atom may be employed and introduced into the characteristic chamber of the present invention by the plasma CVD method to form a plasma atmosphere of the gas.
【0082】本発明においては、ハロゲン原子導入用の
原料ガスとして上記されたハロゲン化合物或いはハロゲ
ンを含む硅素化合物が有効なものとして使用されるもの
であるが、その他に、HF、HCl、HBr、HI等の
ハロゲン化水素、SiH2F2、SiH2I2、SiH
2Cl2、SiHCl3、SiH2Br2、SiHBr
3等のハロゲン置換水素化硅素、等々のガス状態の或い
はガス化し得る、水素原子を構成要素の1つとするハロ
ゲン化物も有効な出発物質として挙げることができる。In the present invention, the above-mentioned halogen compounds or halogen-containing silicon compounds are effectively used as raw material gases for introducing halogen atoms, but in addition, HF, HCl, HBr, HI Hydrogen halides such as SiH2F2, SiH2I2, SiH
2Cl2, SiHCl3, SiH2Br2, SiHBr
Gaseous or gasifiable halides having a hydrogen atom as one of their constituents, such as halogen-substituted silicon hydrides such as No. 3, can also be mentioned as effective starting materials.
【0083】これ等の水素原子を含むハロゲン化物は、
層形成の際に形成される層中にハロゲン原子の導入と同
時に電気的或いは光電的特性の制御に極めて有効な水素
原子も導入されるので、本発明においては好適なハロゲ
ン導入用の原料として使用される。These halides containing hydrogen atoms are
Hydrogen atoms, which are extremely effective in controlling electrical or photoelectric properties, are also introduced into the layer formed during layer formation, so hydrogen atoms are preferably used as raw materials for halogen introduction in the present invention. be done.
【0084】第3族原子又は第5族原子の含有される層
を形成するのにグロー放電法を用いる場合、該層形成用
の原料ガスとなる出発物質は、前記したSi用の出発物
質の中から適宜選択したものに、第3族原子又は第5族
原子導入用の出発物質が加えられたものである。そのよ
うな第3族原子又は第5族原子導入用の出発物質として
は第3族原子又は第5族原子を構成原子とするガス状態
の物質又はガス化しうる物質をガス化したものであれば
、いずれのものであってもよい。When the glow discharge method is used to form a layer containing Group 3 atoms or Group 5 atoms, the starting material that becomes the raw material gas for forming the layer is one of the above-mentioned starting materials for Si. A starting material for introducing Group 3 atoms or Group 5 atoms is added to those appropriately selected from among them. The starting material for introducing such Group 3 atoms or Group 5 atoms may be a gaseous substance or a gasified substance containing Group 3 atoms or Group 5 atoms as constituent atoms. , any one may be used.
【0085】本発明において第3族原子導入用の出発物
質として有効に使用されるものとしては、具体的には硼
素原子導入用として、B2H6、B4H10、B5H9
、B5H11、B6H10、B6H12、B6H14等
の水素化硼素、BF3、BCl3、BBr3等のハロゲ
ン化硼素等を挙げることができるが、この他、AlCl
3、GaCl3、InCl3、TlCl3等も挙げるこ
とができる。[0085] In the present invention, starting materials that can be effectively used for introducing a group 3 atom include B2H6, B4H10, and B5H9, specifically for introducing boron atoms.
, B5H11, B6H10, B6H12, B6H14, etc., boron halides such as BF3, BCl3, BBr3, etc.;
3, GaCl3, InCl3, TlCl3, etc. can also be mentioned.
【0086】本発明において第5族原子導入用の出発物
質として有効に使用されるのは、具体的には燐原子導入
用としては、PH3、P2H4等の水素化燐、PH4I
、PF3、PF5、PCl3、PCl5、PBr3、P
Br5、PI3等のハロゲン化燐が挙げられる。この他
、AsH3、AsF3、AsCl3、AsBr3、As
F5、SbH3、SbF3、SbF5、SbCl3、S
bCl5、BiH3、BiCl3、BiBr3等も挙げ
ることができる。In the present invention, the starting materials effectively used for introducing Group 5 atoms include phosphorus hydrides such as PH3 and P2H4, and PH4I for introducing phosphorus atoms.
, PF3, PF5, PCl3, PCl5, PBr3, P
Examples include phosphorus halides such as Br5 and PI3. In addition, AsH3, AsF3, AsCl3, AsBr3, As
F5, SbH3, SbF3, SbF5, SbCl3, S
Mention may also be made of bCl5, BiH3, BiCl3, BiBr3, etc.
【0087】(実験例)
以下実験例により本発明をさらに詳細に説明するが、本
発明はこれらによって限定されるものではない。(Experimental Examples) The present invention will be explained in more detail using experimental examples below, but the present invention is not limited thereto.
【0088】(実験例1)
マイクロ波(以下「μW」と略記する)グロー放電分解
法によって本発明の太陽電池を形成した。(Experimental Example 1) A solar cell of the present invention was formed by a microwave (hereinafter abbreviated as "μW") glow discharge decomposition method.
【0089】図3に原料ガス供給装置1020と堆積装
置1000からなるμWグロー放電分解法による太陽電
池の製造装置を示す。FIG. 3 shows an apparatus for producing solar cells by the μW glow discharge decomposition method, which includes a raw material gas supply device 1020 and a deposition device 1000.
【0090】図中の1071〜1075のガスボンベに
は、本発明の各々の層を形成するための原料ガスが密封
されており、1071はSiH4ガス(純度99.99
%)ボンベ、1072はH2ガス(純度99.9999
%)ボンベ、1073はCH4ガス(純度99.999
%)ボンベ、1074はH2ガスで10%に希釈された
B2H6ガス(純度99.999%、以下「B2H6/
H2」と略記する)ボンベ、1075はH2ガスで10
%に希釈されたPH3ガス(純度99.999%、以下
「PH3/H2」と略記する)ボンベである。また、あ
らかじめ、ガスボンベ1071〜1075を取り付ける
際に、各々のガスを、バルブ1051〜1055から流
入バルブ1031〜1035のガス配管内に導入してあ
る。Gas cylinders 1071 to 1075 in the figure are sealed with raw material gas for forming each layer of the present invention, and 1071 is SiH4 gas (purity 99.99).
%) cylinder, 1072 is H2 gas (purity 99.9999
%) cylinder, 1073 is CH4 gas (purity 99.999
%) cylinder, 1074 is B2H6 gas diluted to 10% with H2 gas (purity 99.999%, hereinafter referred to as "B2H6/
(abbreviated as "H2") cylinder, 1075 is H2 gas.
% diluted PH3 gas (purity 99.999%, hereinafter abbreviated as "PH3/H2") cylinder. Moreover, when attaching the gas cylinders 1071 to 1075, each gas is introduced into the gas piping of the inflow valves 1031 to 1035 from the valves 1051 to 1055 in advance.
【0091】図中1004は基板であり、100mm角
、厚さ0.25mmのステンレス(SUS430BA)
製で、表面に鏡面加工を施してある。In the figure, 1004 is a substrate made of stainless steel (SUS430BA), 100 mm square and 0.25 mm thick.
It is made of aluminum and has a mirror finish on its surface.
【0092】まず、ガスボンベ1071よりSiH4ガ
ス、ガスボンベ1072よりH2ガス、ガスボンベ10
73よりCH4ガス、ガスボンベ1074よりB2H6
/H2ガス、ガスボンベ1075よりPH3/H2ガス
を、バルブ1051〜1055を開けて導入し、圧力調
整器1061〜1065により各ガス圧力を2Kg/c
m2に調整した。First, SiH4 gas is supplied from the gas cylinder 1071, H2 gas is supplied from the gas cylinder 1072, and the gas cylinder 10
CH4 gas from 73, B2H6 from gas cylinder 1074
/H2 gas, PH3/H2 gas from gas cylinder 1075 is introduced by opening valves 1051 to 1055, and each gas pressure is adjusted to 2Kg/c by pressure regulators 1061 to 1065.
Adjusted to m2.
【0093】次に、流入バルブ1031〜1035、堆
積室1001のリークバルブ1009が閉じられている
ことを確認し、又、流出バルブ1041〜1045、補
助バルブ1008が開かれていることを確認して、コン
ダクタンス(バタフライ型)バルブ1007を全開にし
て、不図示の真空ポンプにより堆積室1001及びガス
配管内を排気し、真空計1006の読みが約1×10−
4Torrになった時点で補助バルブ1008、流出バ
ルブ1041〜1045を閉じた。Next, confirm that the inflow valves 1031 to 1035 and the leak valve 1009 of the deposition chamber 1001 are closed, and also confirm that the outflow valves 1041 to 1045 and the auxiliary valve 1008 are opened. , the conductance (butterfly type) valve 1007 is fully opened, the deposition chamber 1001 and the gas piping are evacuated by a vacuum pump (not shown), and the vacuum gauge 1006 reads approximately 1×10 −
When the temperature reached 4 Torr, the auxiliary valve 1008 and the outflow valves 1041 to 1045 were closed.
【0094】次に、流入バルブ1031〜1035を徐
々に開けて、各々のガスをマスフローコントローラー1
021〜1025内に導入した。Next, the inflow valves 1031 to 1035 are gradually opened to supply each gas to the mass flow controller 1.
It was introduced between 021 and 1025.
【0095】以上のようにして成膜の準備が完了した後
、基板1004上に、ダイヤモンド層、n型層、i型層
、p型層の成膜を行なった。After the preparation for film formation was completed as described above, a diamond layer, an n-type layer, an i-type layer, and a p-type layer were formed on the substrate 1004.
【0096】ダイヤモンド層を形成するには、基板10
04を加熱ヒーター1005により400℃に加熱し、
流出バルブ1042、1043、1045及び補助バル
ブ1008を徐々に開いて、H2ガス、CH4ガス、P
H3/H2ガスをガス導入管1003を通じて堆積室1
001内に流入させた。この時、H2ガス流量が500
sccm、CH4ガス流量が5sccm、PH3/H2
ガス流量が2.5sccmとなるように各々のマスフロ
ーコントローラー1022、1023、1025で調整
した。
堆積室1001内の圧力は、20mTorrとなるよう
に真空計1006を見ながらコンダクタンスバルブ10
07の開口を調整した。次に、基板1004に直流電源
1011により、堆積室1001に対して−100vの
直流バイアスを印加した。その後、不図示のμW電源の
電力を0.5W/cm3に設定し、不図示の導波管、導
波部1010及び誘電体窓1002を通じて堆積室10
01内にμW電力を導入し、μWグロー放電を生起させ
、基板1004上にダイヤモンド層の形成を開始し、層
厚1μmのダイヤモンド層を形成したところでμWグロ
ー放電を止め、直流電源1011の出力を切り、又、流
出バルブ1042、1043、1045及び補助バルブ
1008を閉じて、堆積室1001内へのガス流入を止
め、ダイヤモンド層の形成を終えた。To form the diamond layer, the substrate 10
04 is heated to 400°C by a heating heater 1005,
By gradually opening the outflow valves 1042, 1043, 1045 and the auxiliary valve 1008, H2 gas, CH4 gas, P
H3/H2 gas is introduced into the deposition chamber 1 through the gas introduction pipe 1003.
001. At this time, the H2 gas flow rate is 500
sccm, CH4 gas flow rate is 5 sccm, PH3/H2
Each mass flow controller 1022, 1023, and 1025 was adjusted so that the gas flow rate was 2.5 sccm. The pressure inside the deposition chamber 1001 is set to 20 mTorr by adjusting the conductance valve 10 while watching the vacuum gauge 1006.
Adjusted the aperture of 07. Next, a DC bias of -100 V was applied to the substrate 1004 with respect to the deposition chamber 1001 by a DC power supply 1011. Thereafter, the power of a μW power source (not shown) is set to 0.5 W/cm3, and the deposition chamber 100 is
μW power is introduced into 01 to generate μW glow discharge, and formation of a diamond layer is started on the substrate 1004. When a diamond layer with a thickness of 1 μm is formed, the μW glow discharge is stopped, and the output of the DC power source 1011 is turned off. Then, the outflow valves 1042, 1043, 1045 and the auxiliary valve 1008 were closed to stop the gas from flowing into the deposition chamber 1001, and the formation of the diamond layer was completed.
【0097】次に、n型層を形成するには、基板100
4を加熱ヒーター1005により280℃に加熱し、流
出バルブ1041、1042、1045及び補助バルブ
1008を徐々に開いて、SiH4ガス、H2ガス、P
H3/H2ガスをガス導入管1003を通じて堆積室1
001内に流入させた。この時、SiH4ガス流量が5
sccm、H2ガス流量が5sccm、PH3/H2ガ
ス流量が5sccmとなるように各々のマスフローコン
トローラー1021、1022、1025で調整した。
堆積室1001内の圧力は、10mTorrとなるよう
に真空計1006を見ながらコンダクタンスバルブ10
07の開口を調整した。次に、基板1004に直流電源
1011により、堆積室1001に対して−50vの直
流バイアスを印加した。その後、不図示のμW電源の電
力を0.02W/cm3に設定し、不図示の導波管、導
波部1010及び誘電体窓1002を通じて堆積室10
01内にμW電力を導入し、μWグロー放電を生起させ
、ダイヤモンド層上にn型層の形成を開始し、層厚0.
01μmのn型層を形成したところでμWグロー放電を
止め、直流電源1011の出力を切り、又、流出バルブ
1041、1042、1045及び補助バルブ1008
を閉じて、堆積室1001内へのガス流入を止め、n型
層の形成を終えた。Next, to form the n-type layer, the substrate 100 is
4 is heated to 280°C by a heating heater 1005, and the outflow valves 1041, 1042, 1045 and the auxiliary valve 1008 are gradually opened, and SiH4 gas, H2 gas, P
H3/H2 gas is introduced into the deposition chamber 1 through the gas introduction pipe 1003.
001. At this time, the SiH4 gas flow rate was 5
The mass flow controllers 1021, 1022, and 1025 were adjusted so that the H2 gas flow rate was 5 sccm, the PH3/H2 gas flow rate was 5 sccm, and the PH3/H2 gas flow rate was 5 sccm. The pressure inside the deposition chamber 1001 is set to 10 mTorr by adjusting the conductance valve 10 while watching the vacuum gauge 1006.
Adjusted the aperture of 07. Next, a DC bias of -50 V was applied to the deposition chamber 1001 by the DC power supply 1011 to the substrate 1004 . After that, the power of a μW power supply (not shown) is set to 0.02 W/cm3, and the deposition chamber 100 is
A μW power is introduced into the diamond layer to generate a μW glow discharge, and the formation of an n-type layer on the diamond layer is started until the layer thickness is 0.0.
After forming an n-type layer of 0.01 μm, the μW glow discharge is stopped, the output of the DC power supply 1011 is cut off, and the outflow valves 1041, 1042, 1045 and the auxiliary valve 1008 are turned off.
was closed to stop the gas from flowing into the deposition chamber 1001, and the formation of the n-type layer was completed.
【0098】次に、i型層を形成するには、基板100
4を加熱ヒーター1005により280℃に加熱し、流
出バルブ1041、1042及び補助バルブ1008を
徐々に開いて、SiH4ガス、H2ガスをガス導入管1
003を通じて堆積室1001内に流入させた。この時
、SiH4ガス流量が50sccm、H2ガス流量が1
00sccmとなるように各々のマスフローコントロー
ラー1021、1022で調整した。堆積室1001内
の圧力は、10mTorrとなるように真空計1006
を見ながらコンダクタンスバルブ1007の開口を調整
した。次に、基板1004に直流電源1011により、
堆積室1001に対して−50vの直流バイアスを印加
した。その後、不図示のμW電源の電力を0.15W/
cm3に設定し、不図示の導波管、導波部1010及び
誘電体窓1002を通じて堆積室1001内にμW電力
を導入し、μWグロー放電を生起させ、n型層上にi型
層の形成を開始し、層厚0.4μmのi型層を形成した
ところでμWグロー放電を止め、直流電源1011の出
力を切り、i型層の形成を終えた。Next, to form the i-type layer, the substrate 100 is
4 is heated to 280° C. by a heating heater 1005, and the outflow valves 1041, 1042 and the auxiliary valve 1008 are gradually opened to introduce SiH4 gas and H2 gas into the gas inlet pipe 1.
003 into the deposition chamber 1001. At this time, the SiH4 gas flow rate is 50 sccm, and the H2 gas flow rate is 1
The mass flow controllers 1021 and 1022 were adjusted so that the flow rate was 00 sccm. The pressure inside the deposition chamber 1001 was set to 10 mTorr using a vacuum gauge 1006.
The opening of the conductance valve 1007 was adjusted while watching. Next, the board 1004 is connected to the DC power supply 1011.
A DC bias of -50 V was applied to the deposition chamber 1001. After that, the power of the μW power supply (not shown) is increased to 0.15W/
cm3, and introduce μW power into the deposition chamber 1001 through a waveguide (not shown), waveguide portion 1010, and dielectric window 1002 to generate μW glow discharge and form an i-type layer on the n-type layer. After forming an i-type layer with a thickness of 0.4 μm, the μW glow discharge was stopped and the output of the DC power supply 1011 was turned off, thereby completing the formation of the i-type layer.
【0099】次に、p型層を形成するには、基板100
4を加熱ヒーター1005により280℃に加熱し、流
出バルブ1044を徐々に開いて、SiH4ガス、H2
ガス、B2H6/H2ガスをガス導入管1003を通じ
て堆積室1001内に流入さ5A族せた。この時、Si
H4ガス流量が5sccm、H2ガス流量が500sc
cm、B2H6/H2ガス流量が5sccmとなるよう
に各々のマスフローコントローラー1021、1022
、1024で調整した。堆積室1001内の圧力は、2
0mTorrとなるように真空計1006を見ながらコ
ンダクタンスバルブ1007の開口を調整した。次に、
基板1004に直流電源1011により、堆積室100
1に対して−70vの直流バイアスを印加した。その後
、不図示のμW電源の電力を0.5W/cm3に設定し
、不図示の導波管、導波部1010及び誘電体窓100
2を通じて堆積室1001内にμW電力を導入し、μW
グロー放電を生起させ、i型層上にp型層の形成を開始
し、層厚0.005μmのp型層を形成したところでμ
Wグロー放電を止め、直流電源1011の出力を切り、
又、流出バルブ1041、1042、1044及び補助
バルブ1008を閉じて、堆積室1001内へのガス流
入を止めp型層の形成を終えた。Next, in order to form a p-type layer, the substrate 100 is
4 was heated to 280°C by the heating heater 1005, and the outflow valve 1044 was gradually opened to release SiH4 gas and H2 gas.
Gas, B2H6/H2 gas, was introduced into the deposition chamber 1001 through the gas introduction pipe 1003 to form a 5A group gas. At this time, Si
H4 gas flow rate is 5sccm, H2 gas flow rate is 500sc
cm, and each mass flow controller 1021, 1022 so that the B2H6/H2 gas flow rate is 5 sccm.
, 1024. The pressure inside the deposition chamber 1001 is 2
The opening of the conductance valve 1007 was adjusted while watching the vacuum gauge 1006 so that the pressure was 0 mTorr. next,
A substrate 1004 is connected to a deposition chamber 100 by a DC power supply 1011.
A DC bias of -70v was applied to the voltage. Thereafter, the power of a μW power source (not shown) is set to 0.5 W/cm3, and the waveguide, waveguide section 1010, and dielectric window 100 (not shown) are
2, μW power is introduced into the deposition chamber 1001 through μW
A glow discharge is generated and the formation of a p-type layer is started on the i-type layer, and when the p-type layer with a layer thickness of 0.005 μm is formed, μ
Stop the W glow discharge, turn off the output of the DC power supply 1011,
Further, the outflow valves 1041, 1042, 1044 and the auxiliary valve 1008 were closed to stop the gas from flowing into the deposition chamber 1001, and the formation of the p-type layer was completed.
【0100】以上の、太陽電池の作成条件を表1、表2
、表3に示す。[0100] The above solar cell production conditions are shown in Tables 1 and 2.
, shown in Table 3.
【0101】それぞれの層を形成する際に、必要なガス
以外の流出バルブ1041〜1045は完全に閉じられ
ていることは云うまでもなく、また、それぞれのガスが
堆積室1001内、流出バルブ1041〜1045から
堆積室1001に至る配管内に残留することを避けるた
めに、流出バルブ1041〜1045を閉じ、補助バル
ブ1008を開き、さらにコンダクタンスバルブ100
7を全開にして、系内を一旦高真空に排気する操作を必
要に応じて行なう。[0101] Needless to say, when forming each layer, the outflow valves 1041 to 1045 for gases other than the necessary gases are completely closed. 1045 to the deposition chamber 1001, the outflow valves 1041 to 1045 are closed, the auxiliary valve 1008 is opened, and the conductance valve 100 is closed.
7 is fully opened and the system is evacuated to a high vacuum as necessary.
【0102】作成した太陽電池のp型層上に、透明電極
として、ITO(In2O3+SnO2)を公知の方法
にて0.085μm蒸着し、さらに集電電極として、A
lを公知の方法にて2μm蒸着し、太陽電池を作成した
。
同様の操作を行なうことにより2枚の太陽電池を作成し
た(電池No.実−1)。[0102] ITO (In2O3+SnO2) was evaporated to a thickness of 0.085 μm as a transparent electrode on the p-type layer of the solar cell prepared by a known method, and A as a current collector electrode.
1 was deposited to a thickness of 2 μm using a known method to create a solar cell. Two solar cells were created by performing the same operation (Battery No. Real-1).
【0103】(比較実験例1)
基板1004を350℃に加熱し、基板1004表面上
に、スパッタリング法により、銀薄膜を0.45μm、
さらにZnO薄膜を2μm蒸着して下部電極を形成した
後に、ダイヤモンド層を形成しない以外は、実験例1と
同じ作成条件で、下部電極上に、n型層、i型層、p型
層、透明電極、集電電極を形成して2枚の太陽電池を作
成した(電池No.比−1)。(Comparative Experiment Example 1) The substrate 1004 was heated to 350° C., and a thin silver film of 0.45 μm was deposited on the surface of the substrate 1004 by sputtering.
After further depositing a ZnO thin film of 2 μm to form a lower electrode, an n-type layer, an i-type layer, a p-type layer, and a transparent layer were formed on the lower electrode under the same conditions as in Experimental Example 1, except that no diamond layer was formed. Electrodes and current collecting electrodes were formed to create two solar cells (Battery No. Ratio -1).
【0104】実験例1(電池No.実1)及び比較実験
例1(電池No.比1)で作成した太陽電池の初期特性
、熱劣化特性及び応力劣化特性の評価を行なった。The initial characteristics, thermal deterioration characteristics, and stress deterioration characteristics of the solar cells prepared in Experimental Example 1 (Battery No. Actual 1) and Comparative Experimental Example 1 (Battery No. Ratio 1) were evaluated.
【0105】初期特性は、実験例1(電池No.実1)
及び比較実験例1(電池No.比1)で作成した各々2
枚の太陽電池を、AM−1.5(100mW/cm2)
光照射下に設置し、光電変換効率を測定して評価した。
特性評価の結果、比較実験例(電池No.比1)に対し
て、実験例1(電池No.実1)の太陽電池は、光電変
換効率が平均して1.2倍優れていた。[0105] The initial characteristics are those of Experimental Example 1 (Battery No. 1)
and each 2 created in Comparative Experiment Example 1 (Battery No. Ratio 1)
AM-1.5 (100mW/cm2)
It was installed under light irradiation and evaluated by measuring the photoelectric conversion efficiency. As a result of the characteristic evaluation, the photoelectric conversion efficiency of the solar cell of Experimental Example 1 (Battery No. Actual 1) was 1.2 times better on average than that of Comparative Experimental Example (Battery No. Ratio 1).
【0106】熱劣化特性は、実験例1(電池No.実1
)及び比較実験例1(電池No.比1)で作成した各々
1枚の太陽電池を、100℃に設定した定温乾燥器(ヤ
マト科学(株)製 DV−41)中に1時間放置し、
次に5℃に設定した冷蔵庫(日立製作所(株)製 R
−107W)中に1時間放置する操作を10回繰返した
のちに、初期特性の評価と同様に、AM−1.5(10
0mW/cm2)光照射下に設置し、光電変換効率を測
定して評価した。特性評価の結果、比較実験例(電池N
o.比1)に対して実験例1(電池No.実1)の太陽
電池は、光電変換効率が1.4倍優れていた。[0106] Thermal deterioration characteristics were determined using Experimental Example 1 (Battery No. 1).
) and Comparative Experiment Example 1 (Battery No. Ratio 1), one solar cell each was left in a constant temperature dryer (DV-41 manufactured by Yamato Scientific Co., Ltd.) set at 100 ° C. for 1 hour,
Next, a refrigerator (manufactured by Hitachi, Ltd. R) set at 5℃
-107W) for 1 hour was repeated 10 times.
0 mW/cm2) was installed under light irradiation, and the photoelectric conversion efficiency was measured and evaluated. As a result of characteristic evaluation, comparative experiment example (Battery N
o. Compared to Ratio 1), the solar cell of Experimental Example 1 (Battery No. 1) had a photoelectric conversion efficiency that was 1.4 times better.
【0107】応力劣化特性は、実験例1(電池No.実
1)及び比較実験例1(電池No.比1)で作成し、熱
劣化特性の評価を行なっていないほうの各々1枚の太陽
電池を、ステンレス製基板を内側にして、曲率半径54
mmに曲げ、次に、平面に戻す操作を50回繰返したの
ちに、初期特性の評価と同様に、該太陽電池をAM−1
.5(100mW/cm2)光照射下に設置し、光電変
換効率を測定して評価した。特性評価の結果、比較実験
例(電池No.比1)に対して、実験例1(電池No.
実1)の太陽電池は、光電変換効率が1.3倍優れてい
た。[0107] Stress deterioration characteristics were prepared using Experimental Example 1 (Battery No. Actual 1) and Comparative Experiment Example 1 (Battery No. Ratio 1). With the battery facing the stainless steel substrate inside, the radius of curvature is 54.
After repeating the operation 50 times to bend the solar cell to 50 mm and then return it to a flat surface, the solar cell was
.. 5 (100 mW/cm2) light irradiation, and the photoelectric conversion efficiency was measured and evaluated. As a result of the characteristic evaluation, experimental example 1 (battery No. ratio 1) was compared to comparative experimental example (battery No. 1).
The solar cell of Example 1) had a photoelectric conversion efficiency that was 1.3 times better.
【0108】又、ステンレス製基板上に、実験例1と同
じ作成条件でダイヤモンド層を1μm成膜して、結晶性
分析用サンプルを作成し、X線回折装置(理学電機製
RAD−3b型)によりダイヤモンド層の結晶性を評
価したところ、立方晶ダイヤモンドの(111)、(2
20)面の回折線に相当する位置、43.9°、75.
4°に鋭い回折線が観察され、ダイヤモンドの結晶が生
成していることが判った。又、該結晶性分析用サンプル
の表面性を表面粗さ測定計((株)小坂研究所製SE−
30D)により測定したところ、Rz(十点平均粗さ)
は0.2μmであった。[0108] In addition, a 1 μm diamond layer was formed on a stainless steel substrate under the same conditions as in Experimental Example 1 to prepare a sample for crystallinity analysis.
When the crystallinity of the diamond layer was evaluated by RAD-3b type), it was found that (111) and (2
20) Position corresponding to the diffraction line of the plane, 43.9°, 75.
A sharp diffraction line was observed at 4°, indicating that diamond crystals were formed. In addition, the surface properties of the sample for crystallinity analysis were measured using a surface roughness meter (SE-
30D), Rz (10-point average roughness)
was 0.2 μm.
【0109】又、ステンレス製基板上に、実験例1と同
じ作成条件で、i型層を0.1μm、さらにp型層を0
.005μm成膜して、結晶性分析用サンプルを作成し
、RHEED(日本電子製 JEM−100SX)に
より、p型層の結晶性を評価したところ、リング状で、
アモルファス(マイクロクリスタルを含む)であること
が判った。[0109] Also, on a stainless steel substrate, under the same conditions as in Experimental Example 1, an i-type layer was formed with a thickness of 0.1 μm, and a p-type layer was formed with a thickness of 0.1 μm.
.. A sample for crystallinity analysis was prepared by forming a film with a thickness of 0.005 μm, and the crystallinity of the p-type layer was evaluated using RHEED (JEM-100SX manufactured by JEOL Ltd.).
It was found to be amorphous (including microcrystals).
【0110】(実験例2及び比較実験例2)ダイヤモン
ド層を形成するに際して、CH4ガスの流量を表4に示
した値に変えた以外は、実験例1と同じ作成条件で、各
々2枚の太陽電池を作成した(電池No.実2−1〜3
及び電池No.比2−1〜2)。又、実験例1と同様に
、ステンレス製基板上に、第2表に示した作成条件でダ
イヤモンド層を1μm成膜して、結晶性分析用サンプル
を作成した。(Experimental Example 2 and Comparative Experimental Example 2) Two diamond layers were prepared under the same conditions as in Experimental Example 1, except that the flow rate of CH4 gas was changed to the value shown in Table 4. Solar cells were created (Battery No. 2-1 to 3)
and battery no. ratio 2-1 to 2). Similarly to Experimental Example 1, a 1 μm diamond layer was formed on a stainless steel substrate under the conditions shown in Table 2 to prepare a sample for crystallinity analysis.
【0111】実験例2(電池No.実2−1〜3)及び
比較実験例2(電池No.比2−1〜2)で作成した太
陽電池、結晶性分析用サンプルを、実験例1と同様な方
法で、特性評価を行なった。[0111] The solar cells and samples for crystallinity analysis prepared in Experimental Example 2 (Battery No. 2-1 to 3) and Comparative Experimental Example 2 (Battery No. Ratio 2-1 to 2-2) were compared with Experimental Example 1. Characteristics were evaluated in a similar manner.
【0112】太陽電池の初期特性、熱劣化特性及び応力
劣化特性と、ダイヤモンド層の結晶性及び表面性を図4
に示す。尚、結晶性は、X線回折において、立方晶ダイ
ヤモンドの(111)面の回折線に相当する43.9°
の位置での回折線の半値巾により求めた。図4から判る
とおり、本発明の太陽電池(電池No.実1、実2−1
〜3)が比較実験例の太陽電池(電池No.比2−1〜
2)に対して、優れた特性を有することが判明し、本発
明の効果が実証された。FIG. 4 shows the initial characteristics, thermal deterioration characteristics, stress deterioration characteristics of the solar cell, and the crystallinity and surface properties of the diamond layer.
Shown below. In addition, the crystallinity is 43.9° in X-ray diffraction, which corresponds to the diffraction line of the (111) plane of cubic diamond.
It was determined by the half-width of the diffraction line at the position. As can be seen from FIG. 4, the solar cells of the present invention (Battery No. 1, No. 2-1)
~3) is the solar cell of the comparative experiment example (battery No. ratio 2-1~
2), it was found that it had excellent properties, and the effect of the present invention was verified.
【0113】(実験例3及び比較実験例3)ダイヤモン
ド層を形成するに際して、PH3/H2ガスの流量を表
5に示した値に変えた以外は、実験例1と同じ作成条件
で、各々2枚の太陽電池を作成した(電池No.実3−
1〜3及び電池No.比3−1〜2)。又、実験例1と
同様に、ステンレス製基板上に、表4に示した作成条件
でダイヤモンド層を1μm成膜して、導電率測定用サン
プルを作成した。(Experimental Example 3 and Comparative Experimental Example 3) When forming the diamond layer, each of Two solar cells were created (Battery No. Real 3-
1 to 3 and battery no. Ratio 3-1 to 2). Further, in the same manner as in Experimental Example 1, a 1 μm diamond layer was formed on a stainless steel substrate under the formation conditions shown in Table 4 to prepare a sample for conductivity measurement.
【0114】実験例3(電池No.実3−1〜3)及び
比較実験例3(電池No.比3−1〜2)で作成した太
陽電池を、実験例1と同様な方法で、特性評価を行なっ
た。[0114] The solar cells produced in Experimental Example 3 (Battery No. Ratio 3-1 to 3) and Comparative Experiment Example 3 (Battery No. Ratio 3-1 to 3-2) were tested in the same manner as in Experimental Example 1 to determine their characteristics. We conducted an evaluation.
【0115】実験例3(電池No.実3−1〜3)及び
比較実験例3(電池No.比3−1〜2)で作成した導
電率測定用サンプルは、ダイヤモンド層の表面にクロム
(Cr)を直径2mm、厚さ0.1μmの大きさで蒸着
してクロム電極を形成したのちに、該導電率測定用サン
プルを暗所に設置し、pAメーター(横河ヒューレット
パッカード(株)製 4140B)を用いて、クロム
電極とステンレス基板の間に電圧Vを印加し、両電極間
に流れる電流Iを測定し、ダイヤモンド層の層厚Dを用
いて、下記式により、暗導電率σdを求めた。[0115] The conductivity measurement samples prepared in Experimental Example 3 (Battery No. Ratio 3-1 to 3) and Comparative Experiment Example 3 (Battery No. Ratio 3-1 to 3-2) had chromium ( After forming a chromium electrode by vapor-depositing Cr) with a diameter of 2 mm and a thickness of 0.1 μm, the sample for conductivity measurement was placed in a dark place, and a pA meter (manufactured by Yokogawa Hewlett-Packard Co., Ltd.) was used. 4140B), apply a voltage V between the chrome electrode and the stainless steel substrate, measure the current I flowing between both electrodes, and calculate the dark conductivity σd using the following formula using the layer thickness D of the diamond layer. I asked for it.
【0116】[0116]
【0117】又、実験例1で作成した結晶性分析用サン
プル(電池No.実1)も、同様な手順により暗導電率
σdを求めた。The dark conductivity σd of the sample for crystallinity analysis (Battery No. 1) prepared in Experimental Example 1 was also determined in the same manner.
【0118】太陽電池の初期特性、熱劣化特性及び応力
劣化特性と、ダイヤモンド層の暗導電率を図5に示す。
図5から判るとおり、本発明の太陽電池(電池No.実
1、実3−1〜3)が比較実験例の太陽電池(電池No
.比3−1〜2)に対して、優れた特性を有することが
判明し、本発明の効果が実証された。FIG. 5 shows the initial characteristics, thermal deterioration characteristics, stress deterioration characteristics of the solar cell, and the dark conductivity of the diamond layer. As shown in FIG.
.. It was found that it had excellent properties compared to ratios 3-1 to 3-2), demonstrating the effect of the present invention.
【0119】(実験例4及び比較実験例4)ダイヤモン
ド層を形成するに際して、PH3/H2ガスの代りにB
2H6/H2ガスを用い、B2H6/H2ガスの流量を
表6に示した値に変えた以外は、実験例1と同じ作成条
件で、各々2枚の太陽電池を作成した(電池No.実4
−1〜3及び電池No.比4−1〜2)。又、実験例3
と同様に、ステンレス製基板上に、表6に示した作成条
件でダイヤモンド層を1μm成膜して、導電率測定用サ
ンプルを作成した。(Experimental Example 4 and Comparative Experimental Example 4) When forming a diamond layer, B was used instead of PH3/H2 gas.
Two solar cells were each produced under the same production conditions as in Experimental Example 1, except that 2H6/H2 gas was used and the flow rate of B2H6/H2 gas was changed to the values shown in Table 6 (Battery No. 4).
-1 to 3 and battery No. Ratio 4-1 to 2). Also, Experimental Example 3
Similarly, a 1 μm diamond layer was formed on a stainless steel substrate under the formation conditions shown in Table 6 to prepare a sample for conductivity measurement.
【0120】実験例4(電池No.実4−1〜3)及び
比較実験例4(電池No.比4−1〜2)で作成した太
陽電池を、実験例1と同様な方法で、特性評価を行ない
、実験例4(電池No.実4−1〜3)及び比較実験例
4(電池No.比4−1〜2)で作成した導電率測定用
サンプルを、実験例3と同様な方法で、暗導電率σdを
求めた。The solar cells prepared in Experimental Example 4 (Battery No. 4-1 to 4-3) and Comparative Experimental Example 4 (Battery No. Ratio 4-1 to 4-2) were tested in the same manner as in Experimental Example 1 to determine their characteristics. Conductivity measurement samples prepared in Experimental Example 4 (Battery No. Ratio 4-1 to 4-3) and Comparative Experiment Example 4 (Battery No. Ratio 4-1 to 2) were evaluated in the same manner as in Experimental Example 3. The dark conductivity σd was determined by the method.
【0121】太陽電池の初期特性、熱劣化特性及び応力
劣化特性と、ダイヤモンド層の暗導電率σdを図6に示
す。図6から判るとおり、本発明の太陽電池(電池No
.実4−1〜3)が比較実験例の太陽電池(電池No.
比4−1〜2)に対して、優れた特性を有することが判
明し、本発明の効果が実証された。FIG. 6 shows the initial characteristics, thermal deterioration characteristics, stress deterioration characteristics of the solar cell, and the dark conductivity σd of the diamond layer. As can be seen from FIG. 6, the solar cell of the present invention (Battery No.
.. Examples 4-1 to 3) are the solar cells of comparative experiment examples (Battery No. 4-3).
It was found that the composition had excellent properties compared to ratios 4-1 to 4-2), and the effect of the present invention was verified.
【0122】(実験例5及び比較実験例5)ダイヤモン
ド層を形成するに際して、ダイヤモンド層の層厚を表7
に示した値に変えた以外は、実験例1と同じ作成条件で
、各々2枚の太陽電池を作成し(電池No.実5−1〜
3及び電池No.比5−1〜2)、実験例1と同様な方
法で、特性評価を行なった。(Experimental Example 5 and Comparative Experimental Example 5) When forming the diamond layer, the layer thickness of the diamond layer was determined as shown in Table 7.
Two solar cells were each manufactured under the same conditions as in Experimental Example 1, except that the values were changed to the values shown in (Battery Nos. 5-1 to 5-1).
3 and battery no. Ratios 5-1 and 5-2), the characteristics were evaluated in the same manner as in Experimental Example 1.
【0123】太陽電池の初期特性、熱劣化特性及び応力
劣化特性と、ダイヤモンド層の層厚を図7に示す。図7
から判るとおり、本発明の太陽電池(電池No.実1、
実5−1〜3)が比較実験例の太陽電池(電池No.比
5−1〜2)に対して、優れた特性を有することが判明
し、本発明の効果が実証された。FIG. 7 shows the initial characteristics, thermal deterioration characteristics, stress deterioration characteristics of the solar cell, and the layer thickness of the diamond layer. Figure 7
As can be seen, the solar cells of the present invention (Battery No. 1,
It was found that Examples 5-1 to 5-3) had superior characteristics to the solar cells of comparative experimental examples (cell No. ratios 5-1 to 5-2), and the effect of the present invention was verified.
【0124】以下実施例により本発明を更に詳細に説明
するが、本発明はこれらによって限定されるものではな
い。[0124] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited thereto.
【0125】[0125]
【実施例】(実施例1)
実験例1と同じ作成条件で、2枚の太陽電池を作成し、
これらを用いて、太陽電池モジュールを作製し、図8に
示すような回路構成の充電器を作った。図8において、
太陽電池モジュール801で発生した電力は、逆流防止
ダイオード803を経て、2次電池((株)東芝製
TN−1U)804に充電される。802は過充電防止
用ダイオードである。[Example] (Example 1) Two solar cells were created under the same creation conditions as Experimental Example 1,
Using these, a solar cell module was manufactured, and a charger having a circuit configuration as shown in FIG. 8 was manufactured. In Figure 8,
Electric power generated by the solar cell module 801 passes through a backflow prevention diode 803 and is then connected to a secondary battery (manufactured by Toshiba Corporation).
TN-1U) 804 is charged. 802 is an overcharge prevention diode.
【0126】(比較例1)
比較実験例1と同じ作成条件で、2枚の太陽電池を作成
し、これらを用いて、実施例1と同様な充電器を作った
。(Comparative Example 1) Two solar cells were fabricated under the same fabrication conditions as Comparative Experimental Example 1, and a charger similar to that in Example 1 was fabricated using these.
【0127】実施例1と比較例1で作製した充電器を昼
間の晴天時に屋外に設置し、太陽電池モジュール801
で発生した電力を2次電池804に充電し、次に、実施
例1と比較例1の充電器で充電した各々の2次電池80
4を、懐中電灯((株)東芝製 K−67)に入れて
ライトを点灯させ、2次電池804の電力を使い切った
ところで、再び実施例1と比較例1の充電器を用いて2
次電池804を充電する操作を繰返したところ、実施例
1の充電器のほうが、比較例1の充電器よりも約1.3
倍長く、懐中電灯を点灯させることが出来、本発明によ
る太陽電池の効果が実証された。[0127] The chargers manufactured in Example 1 and Comparative Example 1 were installed outdoors during the daytime on a sunny day, and the solar cell module 801
The secondary battery 804 was charged with the power generated in the above, and then each secondary battery 80 charged with the charger of Example 1 and Comparative Example 1 was charged.
4 into a flashlight (K-67 manufactured by Toshiba Corporation), turn on the light, and when the power of the secondary battery 804 is used up, use the charger of Example 1 and Comparative Example 1 again to
When the operation of charging the next battery 804 was repeated, the charger of Example 1 was approximately 1.3 times larger than the charger of Comparative Example 1.
The flashlight could be turned on for twice as long, demonstrating the effectiveness of the solar cell according to the present invention.
【0128】(実施例2)
ダイヤモンド層、n型層、i型層、p型層を、表8、表
9に示す作製条件とした以外は、実験例1と同様な方法
で太陽電池2枚を作製し、これらを用いて実施例1と同
様な充電器を作り、実施例1と同様に使用したところ、
実施例1とほぼ同じ時間、懐中電灯を点灯させることが
でき、本発明による太陽電池の効果が実証された。(Example 2) Two solar cells were fabricated in the same manner as in Experimental Example 1, except that the diamond layer, n-type layer, i-type layer, and p-type layer were fabricated under the conditions shown in Tables 8 and 9. were used to make a charger similar to that in Example 1, and used in the same manner as in Example 1.
The flashlight could be turned on for approximately the same time as in Example 1, demonstrating the effectiveness of the solar cell according to the present invention.
【0129】又、ステンレス製基板上に、表6に示す作
成条件で、ダイヤモンド層を1μm、更にn型層を0.
01μm成膜して、結晶性分析用サンプルを作成し、実
験例1と同様に、n型層の結晶性を評価したところ、リ
ング状で、アモルファス(マイクロクリスタルを含む)
であることが判った。Further, on a stainless steel substrate, under the conditions shown in Table 6, a diamond layer was formed with a thickness of 1 μm, and an n-type layer was formed with a thickness of 0.0 μm.
A sample for crystallinity analysis was prepared by depositing a film with a thickness of 0.1 μm, and the crystallinity of the n-type layer was evaluated in the same manner as in Experimental Example 1. It was found to be ring-shaped and amorphous (including microcrystals).
It turned out to be.
【0130】更に、ステンレス製基板上に、表8、表9
に示す作成条件で、i型層を0.1μm、更にp型層を
0.005μm成膜して、結晶性分析用サンプルを作成
し、実験例1と同様に、p型層の結晶性を評価したとこ
ろ、リング状で、アモルファス(マイクロクリスタルを
含む)であることが判った。[0130] Furthermore, Tables 8 and 9 were placed on the stainless steel substrate.
A sample for crystallinity analysis was prepared by forming an i-type layer of 0.1 μm and a p-type layer of 0.005 μm under the conditions shown in Figure 1. Similar to Experimental Example 1, the crystallinity of the p-type layer was measured. Upon evaluation, it was found to be ring-shaped and amorphous (including microcrystals).
【0131】(実施例3)
ダイヤモンド層、n型層、i型層、p型層を、表10、
表11に示す作製条件とした以外は、実験例1と同様な
方法で太陽電池2枚を作製し、これらを用いて実施例1
と同様な充電器を作り、実施例1と同様に使用したとこ
ろ、実施例1とほぼ同じ時間、懐中電灯を点灯させるこ
とができ、本発明による太陽電池の効果が実証された。(Example 3) The diamond layer, n-type layer, i-type layer, and p-type layer were as shown in Table 10.
Two solar cells were manufactured in the same manner as in Experimental Example 1, except that the manufacturing conditions shown in Table 11 were used, and these were used in Example 1.
When a similar charger was made and used in the same manner as in Example 1, the flashlight could be turned on for approximately the same amount of time as in Example 1, demonstrating the effectiveness of the solar cell according to the present invention.
【0132】又、ステンレス製基板上に、第10、表1
1に示す作成条件で、i型層を0.1μm、更にn型層
を0.005μm成膜して、結晶性分析用サンプルを作
成し、実験例1と同様に、n型層の結晶性を評価したと
ころ、リング状で、アモルファス(マイクロクリスタル
を含む)であることが判った。[0132] Also, on the stainless steel substrate, No. 10, Table 1
A sample for crystallinity analysis was prepared by forming an i-type layer of 0.1 μm and an n-type layer of 0.005 μm under the preparation conditions shown in Example 1. When evaluated, it was found to be ring-shaped and amorphous (including microcrystals).
【0133】[0133]
【0134】[0134]
【0135】[0135]
【0136】[0136]
【0137】[0137]
【0138】[0138]
【0139】[0139]
【0140】[0140]
【0141】[0141]
【0142】[0142]
【0143】[0143]
【0144】[0144]
【発明の効果】本発明のダイヤモンド層を有する太陽電
池においては、変換効率が向上し、経時的特性劣化が減
少した。その結果、著しく太陽電池の特性が改善された
。[Effects of the Invention] In the solar cell having the diamond layer of the present invention, the conversion efficiency was improved and the deterioration of characteristics over time was reduced. As a result, the characteristics of the solar cell were significantly improved.
【0145】また、本発明のダイヤモンド層を有する太
陽電池は、従来の技術による太陽電池よりも製造上の歩
留りが著しく改善された。[0145] Furthermore, the solar cell having the diamond layer of the present invention has a significantly improved manufacturing yield as compared to the conventional solar cell.
【図1】本発明の太陽電池の層構成を説明するための模
式的構成図。FIG. 1 is a schematic diagram for explaining the layer structure of a solar cell of the present invention.
【図2】従来の太陽電池の層構成を説明するための模式
的構成図。FIG. 2 is a schematic configuration diagram for explaining the layer configuration of a conventional solar cell.
【図3】本発明の太陽電池を作成するための装置の一例
でμWを用いたグロー放電法による製造装置の模式的説
明図。FIG. 3 is a schematic explanatory diagram of a manufacturing device using a glow discharge method using μW, which is an example of the device for manufacturing the solar cell of the present invention.
【図4】本発明のダイヤモンド層の結晶性及び表面性と
太陽電池の初期特性、熱劣化特性及び応力劣化特性との
関係を示す説明図。FIG. 4 is an explanatory diagram showing the relationship between the crystallinity and surface properties of the diamond layer of the present invention and the initial characteristics, thermal deterioration characteristics, and stress deterioration characteristics of a solar cell.
【図5】本発明のダイヤモンド層の暗導電率と初期特性
、熱劣化特性及び応力劣化特性との関係を示す説明図。FIG. 5 is an explanatory diagram showing the relationship between the dark conductivity and initial characteristics, thermal deterioration characteristics, and stress deterioration characteristics of the diamond layer of the present invention.
【図6】本発明のダイヤモンド層の暗導電率と初期特性
、熱劣化特性及び応力劣化特性との関係を示す説明図。FIG. 6 is an explanatory diagram showing the relationship between the dark conductivity and initial characteristics, thermal deterioration characteristics, and stress deterioration characteristics of the diamond layer of the present invention.
【図7】本発明のダイヤモンド層の層厚と太陽電池の初
期特性、熱劣化特性及び応力劣化特性との関係を示す説
明図。FIG. 7 is an explanatory diagram showing the relationship between the layer thickness of the diamond layer and the initial characteristics, thermal deterioration characteristics, and stress deterioration characteristics of the solar cell of the present invention.
【図8】本発明の太陽電池を用いた充電器の電気回路図
。FIG. 8 is an electrical circuit diagram of a charger using the solar cell of the present invention.
101 導電性基板
102 ダイヤモンド層
103 n型層(またはp型層)
104 i型層
105 p型層(またはn型層)
106 透明電極
201 導電性基板
202 下部電極
203 n型層(またはp型層)
204 i型層
205 p型層(またはn型層)
206 透明電極
1000 μWグロー放電分解法による成膜装置10
01 堆積室
1002 誘電体窓
1003 ガス導入管
1004 基板
1005 加熱ヒーター
1006 真空計
1007 コンダクタンスバルブ
1008 補助バルブ
1009 リークバルブ
1010 導波部
1011 直流電源、
1020 原料ガス供給装置
1021〜1025 マスフローコントローラー10
31〜1035 ガス流入バルブ1041〜1045
ガス流出バルブ1051〜1055 原料ガスボ
ンベのバルブ1061〜1065 圧力調整器
1071〜1075 原料ガスボンベ801 太陽
電池モジュール
802 過充電防止用ダイオード
803 逆流防止ダイオード
804 2次電池101 Conductive substrate 102 Diamond layer 103 N-type layer (or p-type layer) 104 I-type layer 105 P-type layer (or n-type layer) 106 Transparent electrode 201 Conductive substrate 202 Lower electrode 203 N-type layer (or p-type layer) ) 204 I-type layer 205 P-type layer (or n-type layer) 206 Transparent electrode 1000 μW Film forming apparatus 10 using glow discharge decomposition method
01 Deposition chamber 1002 Dielectric window 1003 Gas introduction tube 1004 Substrate 1005 Heater 1006 Vacuum gauge 1007 Conductance valve 1008 Auxiliary valve 1009 Leak valve 1010 Waveguide 1011 DC power supply, 1020 Source gas supply device 1021 to 1025 Mass flow controller 10
31-1035 Gas inflow valve 1041-1045
Gas outflow valves 1051 to 1055 Raw material gas cylinder valves 1061 to 1065 Pressure regulators 1071 to 1075 Raw material gas cylinder 801 Solar cell module 802 Overcharge prevention diode 803 Backflow prevention diode 804 Secondary battery
Claims (1)
るp層、活性層としてのi層、n層の各半導体層を積層
して構成される太陽電池において、前記導電性基板と、
前記半導体層との間に、表面に凹凸を有し、価電子制御
剤を含有するダイヤモンド層を介在させたことを特徴と
する太陽電池。1. A solar cell configured by laminating semiconductor layers including a p-layer made of non-single crystal Si, an i-layer as an active layer, and an n-layer on a conductive substrate, the conductive substrate;
A solar cell characterized in that a diamond layer having an uneven surface and containing a valence electron control agent is interposed between the semiconductor layer and the semiconductor layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2401931A JP2733382B2 (en) | 1990-12-13 | 1990-12-13 | Solar cell |
US07/806,347 US5284525A (en) | 1990-12-13 | 1991-12-13 | Solar cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2401931A JP2733382B2 (en) | 1990-12-13 | 1990-12-13 | Solar cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04214678A true JPH04214678A (en) | 1992-08-05 |
JP2733382B2 JP2733382B2 (en) | 1998-03-30 |
Family
ID=18511748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2401931A Expired - Fee Related JP2733382B2 (en) | 1990-12-13 | 1990-12-13 | Solar cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2733382B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477973A (en) * | 1987-09-19 | 1989-03-23 | Mitsubishi Electric Corp | Photovoltaic device |
JPH0296382A (en) * | 1988-09-30 | 1990-04-09 | Kanegafuchi Chem Ind Co Ltd | Semiconductor device |
-
1990
- 1990-12-13 JP JP2401931A patent/JP2733382B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477973A (en) * | 1987-09-19 | 1989-03-23 | Mitsubishi Electric Corp | Photovoltaic device |
JPH0296382A (en) * | 1988-09-30 | 1990-04-09 | Kanegafuchi Chem Ind Co Ltd | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2733382B2 (en) | 1998-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5604133A (en) | Method of making photovoltaic device | |
JP2008153646A (en) | Manufacturing method of semiconductor device | |
US5284525A (en) | Solar cell | |
US6215061B1 (en) | Photoconductive thin film, and photovoltaic device making use of the same | |
JP2933177B2 (en) | Non-single-crystal silicon carbide semiconductor, method for manufacturing the same, and semiconductor device using the same | |
JPH11261102A (en) | Photovoltaic device | |
JP2855300B2 (en) | Non-single-crystal germanium semiconductor | |
JP2733381B2 (en) | Solar cell | |
JPH04214681A (en) | Solar battery | |
JP2733383B2 (en) | Solar cell | |
JP2733380B2 (en) | Solar cell | |
JPH04214678A (en) | Solar battery | |
JP2835798B2 (en) | Non-single-crystal silicon semiconductor | |
JP2733384B2 (en) | Solar cell | |
JP2784820B2 (en) | Photovoltaic element | |
JP3037466B2 (en) | Photovoltaic element | |
JP2784821B2 (en) | Photovoltaic element | |
JP2911659B2 (en) | Photovoltaic element | |
JP2788798B2 (en) | Photovoltaic element | |
JP3025122B2 (en) | Photovoltaic element and power generation system | |
JP2784819B2 (en) | Photovoltaic element | |
JP2915628B2 (en) | Photovoltaic element | |
JP2984430B2 (en) | Photovoltaic element | |
JPH04329627A (en) | Method for depositing amorphous semiconductor layer | |
JP2836716B2 (en) | Photovoltaic element and power generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |