JPH04214639A - Method and apparatus for manufacture of chalcogen compound - Google Patents

Method and apparatus for manufacture of chalcogen compound

Info

Publication number
JPH04214639A
JPH04214639A JP40994490A JP40994490A JPH04214639A JP H04214639 A JPH04214639 A JP H04214639A JP 40994490 A JP40994490 A JP 40994490A JP 40994490 A JP40994490 A JP 40994490A JP H04214639 A JPH04214639 A JP H04214639A
Authority
JP
Japan
Prior art keywords
substrate
organometallic
group
gas
chalcogen compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40994490A
Other languages
Japanese (ja)
Inventor
Hitoshi Wakai
若井 仁資
Yukio Ichinose
一ノ瀬 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP40994490A priority Critical patent/JPH04214639A/en
Publication of JPH04214639A publication Critical patent/JPH04214639A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a chalcogen compound on a substrate at a low temperature by using a group II organometallic gas and a group VI organometallic gas by an organometallic vapor growth method. CONSTITUTION:Pipes 2, 3 which introduce a group II organometallic gas and a group VI organometallic gas individually into a reaction furnace 1 are installed. A substrate 5 on which a chalcogen compound is deposited by an organometallic vapor growth method by a reaction on the substrate is installed on the downstream side of the air current of the organometallic gases which are introduced from the pipes 2, 3. A thermofilament 6 which heats and decomposes the organometallic gases is installed between the substrate 5 and the pipes 2, 3.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、有機金属気相成長(M
OCVD)法でカルコゲン化合物、例えば硫化亜鉛(Z
nS)を製造する方法及び装置に関するものである。
[Industrial Application Field] The present invention relates to metal organic vapor phase epitaxy (M
chalcogen compounds, such as zinc sulfide (Z
The present invention relates to a method and apparatus for manufacturing nS).

【0002】0002

【従来技術】カルコゲン化合物は、広いバンドギャップ
を持ち、発光素子や光導電素子等の光電子材料として有
望である。
BACKGROUND OF THE INVENTION Chalcogen compounds have a wide band gap and are promising as optoelectronic materials such as light emitting devices and photoconductive devices.

【0003】カルコゲン化合物を製造するにあたっては
、蒸着法,スパッタ法,分子線エピタキシ法が用いられ
てきたが、最近では大面積で均一な薄膜を安価に得られ
ることからMOCVD法が注目され、応用物理第55巻
第11号(1986年)第1027(5) 〜1028
(6)頁にZnSを製造することが報告されている。
[0003] Vapor deposition, sputtering, and molecular beam epitaxy have been used to produce chalcogen compounds, but in recent years, MOCVD has attracted attention because it can produce uniform thin films over a large area at low cost. Physics Vol. 55 No. 11 (1986) No. 1027 (5) - 1028
The production of ZnS is reported on page (6).

【0004】0004

【発明が解決しようとする課題】しかしながら、従来の
MOCVD法では、基板温度を高温( 500℃以上)
にする必要があると前記報告中に述べられており、その
ため基板として利用できる材料に制約を受け、また、堆
積の際の最適温度( 300℃付近)から外れてしまう
のでZnS薄膜の結晶性が低下する問題があった。
[Problems to be Solved by the Invention] However, in the conventional MOCVD method, the substrate temperature is set to a high temperature (over 500°C).
It is stated in the above report that the material that can be used as a substrate is limited, and the crystallinity of the ZnS thin film is affected by the fact that the optimum temperature for deposition (nearly 300°C) is not reached. There was a problem with the decline.

【0005】本発明は、II族とVI族の有機金属ガス
を基板上反応によるMOCVD法で基板上に堆積させて
カルコゲン化合物を製造するにあたり、基板温度を従来
よりも低温で製造できるようにしたカルコゲン化合物の
製造方法及び製造装置を提供するものである。
[0005] The present invention makes it possible to produce a chalcogen compound at a lower substrate temperature than before when producing a chalcogen compound by depositing Group II and VI organometallic gases on a substrate by MOCVD using an on-substrate reaction. The present invention provides a method and apparatus for producing a chalcogen compound.

【0006】[0006]

【課題を解決するための手段】前記問題を解決するため
、本発明は、反応炉内において、II族とVI族の有機
金属ガスを基板上反応による有機金属気相成長法で前記
基板上に堆積させてカルコゲン化合物を製造するにあた
り、前記反応炉内で前記有機金属ガスを前記基板上に堆
積する直前に加熱分解させてから前記基板上に堆積させ
ることを特徴とし、これを実現するため、反応炉内へI
I族とVI族の有機金属ガスを個別に導入する管を設け
、前記管から導入される前記有機金属ガスの気流の下流
側に前記有機金属ガスを基板上反応による有機金属気相
成長法でカルコゲン化合物を堆積させる基板を設け、前
記基板と前記管との間に前記有機金属ガスを加熱分解す
る熱フィラメントを設けたことを特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method for depositing group II and group VI organometallic gases onto a substrate using an organometallic vapor phase epitaxy method based on an on-substrate reaction in a reactor. In producing a chalcogen compound by deposition, the organometallic gas is thermally decomposed in the reaction furnace immediately before being deposited on the substrate, and then deposited on the substrate, and in order to realize this, Into the reactor I
A tube is provided for introducing group I and group VI organometallic gases individually, and the organometallic gas is applied to the downstream side of the airflow of the organometallic gas introduced from the tube by an organometallic vapor phase growth method using an on-substrate reaction. The present invention is characterized in that a substrate for depositing a chalcogen compound is provided, and a hot filament for thermally decomposing the organometallic gas is provided between the substrate and the tube.

【0007】[0007]

【作用】本発明によれば、II族とVI族の有機金属ガ
スが基板上に堆積する直前に加熱分解することにより、
基板温度にだけ頼る必要がなくなり、その分基板温度を
従来よりも低温でカルコゲン化合物を製造することがで
きる。
[Operation] According to the present invention, by thermally decomposing the group II and group VI organometallic gases immediately before they are deposited on the substrate,
It is no longer necessary to rely solely on the substrate temperature, and chalcogen compounds can be produced at lower substrate temperatures than in the past.

【0008】[0008]

【実施例】以下に、図面を参照しながら本発明の実施例
を説明する。図1は、本発明の実施例としてZnSを製
造するに使用したMOCVD法による成膜装置の構造を
示しており、1は石英管の反応炉、2はDMZガス(I
I族の有機金属ガス)を反応炉1へ導入するステンレス
の管、3はDMSガス(VI族の有機金属ガス)を反応
炉1へ導入するステンレスの管、4は反応炉1内であっ
て管2,3から導入されるガスの気流の下流側に前記気
流に対して垂直に設けたステンレスのホルダ、5はホル
ダ4に装着した基板、6は基板5と管2,3との間で基
板5から10mm離して設けた赤熱タングステンフィラ
メントで、以上はチャンバ7内に収容されている。なお
、8はフィラメント6の駆動用電源である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 1 shows the structure of a film forming apparatus by the MOCVD method used to produce ZnS as an example of the present invention, in which 1 is a quartz tube reactor, 2 is a DMZ gas (I
3 is a stainless steel tube for introducing DMS gas (group VI organometallic gas) into the reactor 1; 4 is inside the reactor 1; A stainless steel holder is provided perpendicularly to the gas flow downstream of the gas flow introduced from the tubes 2 and 3, 5 is a substrate attached to the holder 4, and 6 is a stainless steel holder installed between the substrate 5 and the tubes 2 and 3. A red-hot tungsten filament is provided 10 mm apart from the substrate 5 and is housed in the chamber 7 . Note that 8 is a power source for driving the filament 6.

【0009】具体的なZnSの製造条件は以下の通りに
定めた。即ち、管2のDMZガス流量16.4μmol
 /分、管3のDMSガス流量33.4μmol /分
、基板5を(100)ガリウムヒ素(GaAs)、フィ
ラメント6の温度(Tf) 880℃、フィラメント6
の輻射熱による基板5の温度 340℃、チャンバ7内
の真空度 0.1Torr、成膜時間2時間とした。
[0009] Specific conditions for producing ZnS were determined as follows. That is, the DMZ gas flow rate in tube 2 was 16.4 μmol.
/min, DMS gas flow rate of tube 3: 33.4 μmol/min, substrate 5: (100) gallium arsenide (GaAs), temperature of filament 6 (Tf): 880°C, filament 6
The temperature of the substrate 5 due to radiant heat was 340° C., the degree of vacuum in the chamber 7 was 0.1 Torr, and the film forming time was 2 hours.

【0010】このようにして製造したZnSの結晶構造
及び形態を評価するため、X線回折及びRHEEDを行
った。なお、比較のため、フィラメント6の温度 82
0℃(基板5の温度 310℃)及び同 930℃(同
 370℃)とし、他は同条件にて製造した場合のZn
Sについても同時に調べた。
[0010] In order to evaluate the crystal structure and morphology of ZnS produced in this manner, X-ray diffraction and RHEED were performed. For comparison, the temperature of filament 6 is 82
Zn when manufactured at 0°C (substrate 5 temperature 310°C) and 930°C (370°C) under the same conditions.
At the same time, we also investigated S.

【0011】図2は、X線回折スペクトルの変化を示す
図である。フィラメント6の温度が前記何れかであって
も、主なピークはGaAsと立方晶ZnSと同定される
。また、ZnSの反射はh00反射のみであることから
、ZnSは(100)GaAsの基板5上に(100)
面優先配向成長することが分かった。なお、フィラメン
ト6の温度の上昇にともなってこれらのピークが増大し
ているが、これは主に膜厚の効果によるものと思われる
FIG. 2 is a diagram showing changes in the X-ray diffraction spectrum. Regardless of the temperature of the filament 6, the main peaks are identified as GaAs and cubic ZnS. In addition, since the reflection of ZnS is only the h00 reflection, ZnS has a (100)
It was found that plane-preferential orientation growth occurs. It should be noted that these peaks increase as the temperature of the filament 6 increases, but this seems to be mainly due to the effect of the film thickness.

【0012】図3は、フィラメント6の温度変化に対応
するRHEEDパターンの変化を示す写真である。フィ
ラメント6の温度が 880℃以下ではスポット状であ
り、ZnSの表面が荒れてはいるものの結晶性が高いこ
とが分かる。これに対してフィラメント6の温度が 9
30℃ではウルツ鉱型ZnSと同定されるリング状の回
折反射と立方晶のスポット状の反射が確認された。
FIG. 3 is a photograph showing changes in the RHEED pattern corresponding to changes in the temperature of the filament 6. It can be seen that when the temperature of the filament 6 is 880° C. or lower, it is spot-like, and although the ZnS surface is rough, it has high crystallinity. On the other hand, the temperature of filament 6 is 9
At 30° C., ring-shaped diffraction reflections and cubic crystal spot-shaped reflections identified as wurtzite ZnS were confirmed.

【0013】以上のことから、前記実施例によれば、基
板5の温度が 400℃以下でも立方晶のZnSを得ら
れることが分かった。但し、フィラメント6の温度 9
30℃(基板5の温度 370℃)ではスペクトルのピ
ークは高いものの結晶性が若干劣り、逆にフィラメント
6の温度 820℃(基板5の温度 310℃)では結
晶性は良好なもののスペクトルのピークが若干低くなる
。前者は従来のMOCVD法で問題とした基板5の温度
が高いことに、後者は基板5の温度が低いことにより膜
厚が十分に得られないことに、夫々起因して生じると思
われる。従って、ZnSを製造するに際しては、フィラ
メント6の温度 880℃(基板5の温度 340℃)
付近が結晶構造及び形態から見て好適であることが分か
った。
From the above, it was found that according to the above embodiment, cubic ZnS could be obtained even when the temperature of the substrate 5 was 400° C. or lower. However, the temperature of filament 6 9
At 30°C (temperature of substrate 5: 370°C), the peak of the spectrum is high, but the crystallinity is slightly poor; conversely, at the temperature of filament 6, 820°C (temperature of substrate 5: 310°C), although the peak of the spectrum is good, the peak of the spectrum is low. It will be slightly lower. The former is thought to be caused by the high temperature of the substrate 5, which is a problem in the conventional MOCVD method, and the latter is caused by the fact that a sufficient film thickness cannot be obtained due to the low temperature of the substrate 5. Therefore, when manufacturing ZnS, the temperature of the filament 6 is 880°C (the temperature of the substrate 5 is 340°C).
It was found that the vicinity is suitable from the viewpoint of crystal structure and morphology.

【0014】なお、前記実施例では、熱フィラメント6
の輻射熱により基板5を加熱する装置を示したが、基板
5の熱フィラメント6とは反対側に他の加熱手段を設け
、熱フィラメント6と共に基板5を加熱するようにして
も良い。
In the above embodiment, the hot filament 6
Although a device for heating the substrate 5 using radiant heat has been shown, other heating means may be provided on the opposite side of the substrate 5 from the hot filament 6 to heat the substrate 5 together with the hot filament 6.

【0015】また、前記ZnS以外にも、DMZガスと
ジメチルセレン(DMSe)ガスとを用いることにより
セレン化亜鉛、ジメチルカドミュウム(DMCd)ガス
とDMSeガスを用いることによりセレン化カドミュウ
ム等、II族とVI族の有機金属ガスを用いた他のカル
コゲン化合物の製造にも適用することができる。
In addition to ZnS, DMZ gas and dimethyl selenium (DMSe) gas can be used to produce zinc selenide, dimethyl cadmium (DMCd) gas and DMSe gas can be used to produce cadmium selenide, etc. It can also be applied to the production of other chalcogen compounds using Group and VI organometallic gases.

【0016】[0016]

【発明の効果】以上のように、本発明によれば、MOC
VD法によりII族とVI族の有機金属ガスを用いたカ
ルコゲン化合物を従来よりも低温で、しかも、良好に製
造することができる。
[Effects of the Invention] As described above, according to the present invention, MOC
By the VD method, chalcogen compounds using Group II and Group VI organometallic gases can be produced at lower temperatures and more favorably than conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明を実施するのに使用した成膜装置の反応
炉の構造を示す構成図。
FIG. 1 is a configuration diagram showing the structure of a reactor of a film forming apparatus used to carry out the present invention.

【図2】本発明で製造したZnSのX線回折スペクトル
を示す特性図。
FIG. 2 is a characteristic diagram showing the X-ray diffraction spectrum of ZnS produced according to the present invention.

【図3】同上ZnSのRHEEDパターンを示す写真。FIG. 3 is a photograph showing the RHEED pattern of ZnS as above.

【符号の説明】[Explanation of symbols]

1  反応炉 2  管(DMZガス用) 3  管(DMSガス用) 5  基板 6  熱フィラメント 1 Reactor 2 Pipe (for DMZ gas) 3 Tube (for DMS gas) 5 Substrate 6 Heat filament

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  反応炉内において、II族とVI族の
有機金属ガスを基板上反応による有機金属気相成長法で
前記基板上に堆積させてカルコゲン化合物を製造するに
あたり、前記反応炉内で前記有機金属ガスを前記基板上
に堆積する直前に加熱分解させてから前記基板上に堆積
させることを特徴とするカルコゲン化合物の製造方法。
1. In producing a chalcogen compound by depositing group II and group VI organometallic gases on the substrate by an organometallic vapor phase epitaxy method based on an on-substrate reaction in the reactor, A method for producing a chalcogen compound, characterized in that the organometallic gas is thermally decomposed immediately before being deposited on the substrate, and then deposited on the substrate.
【請求項2】  反応炉内へII族とVI族の有機金属
ガスを個別に導入する管を設け、前記管から導入される
前記有機金属ガスの気流の下流側に前記有機金属ガスを
基板上反応による有機金属気相成長法でカルコゲン化合
物を堆積させる基板を設け、前記基板と前記管との間に
前記有機金属ガスを加熱分解する熱フィラメントを設け
たことを特徴とするカルコゲン化合物の製造装置。
2. A tube for individually introducing group II and group VI organometallic gases into the reactor is provided, and the organometallic gas is placed on the substrate on the downstream side of the flow of the organometallic gas introduced from the tube. An apparatus for producing a chalcogen compound, characterized in that a substrate is provided on which a chalcogen compound is deposited by an organometallic vapor phase growth method using a reaction, and a hot filament is provided between the substrate and the tube to thermally decompose the organometallic gas. .
JP40994490A 1990-12-12 1990-12-12 Method and apparatus for manufacture of chalcogen compound Pending JPH04214639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40994490A JPH04214639A (en) 1990-12-12 1990-12-12 Method and apparatus for manufacture of chalcogen compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40994490A JPH04214639A (en) 1990-12-12 1990-12-12 Method and apparatus for manufacture of chalcogen compound

Publications (1)

Publication Number Publication Date
JPH04214639A true JPH04214639A (en) 1992-08-05

Family

ID=18519194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40994490A Pending JPH04214639A (en) 1990-12-12 1990-12-12 Method and apparatus for manufacture of chalcogen compound

Country Status (1)

Country Link
JP (1) JPH04214639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254929A (en) * 1985-09-04 1987-03-10 Fujitsu Ltd Vapor-phase growth device
JPH02232371A (en) * 1989-03-03 1990-09-14 Nec Corp Thin-film forming device
JPH03233943A (en) * 1990-02-08 1991-10-17 Fujitsu Ltd Vapor epitaxial growth apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254929A (en) * 1985-09-04 1987-03-10 Fujitsu Ltd Vapor-phase growth device
JPH02232371A (en) * 1989-03-03 1990-09-14 Nec Corp Thin-film forming device
JPH03233943A (en) * 1990-02-08 1991-10-17 Fujitsu Ltd Vapor epitaxial growth apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007027485A (en) * 2005-07-19 2007-02-01 Ulvac Japan Ltd Method and device for deposition

Similar Documents

Publication Publication Date Title
US6562702B2 (en) Semiconductor device and method and apparatus for manufacturing semiconductor device
JP2822536B2 (en) Method for forming cubic boron nitride thin film
US4421592A (en) Plasma enhanced deposition of semiconductors
Ando et al. Photoenhanced metalorganic chemical vapor deposition of ZnSe films using diethylzinc and dimethylselenide
US20100136770A1 (en) Group-iii metal nitride and preparation thereof
JPS6065798A (en) Growing of gallium nitride single crystal
US5976398A (en) Process for manufacturing semiconductor, apparatus for manufacturing semiconductor, and amorphous material
JP3399642B2 (en) Method for forming semiconductor light emitting element layer
US5382542A (en) Method of growth of II-VI materials on silicon using As passivation
JPH04214639A (en) Method and apparatus for manufacture of chalcogen compound
JP3753811B2 (en) Amorphous optical semiconductor, method for producing the same, and optical semiconductor element
JP2704223B2 (en) Semiconductor element
JPH07226380A (en) Atomic layer crystal growth method
JPH09153456A (en) Polycrystalline silicon laminate, thin-film silicon solar cell, and thin-film transistor
JPH04320038A (en) Method for crystal growing n-type ii-vi compound semiconductor
JPS63188933A (en) Method for vapor growth of gallium nitride compound semiconductor
JP2577543B2 (en) Single crystal thin film growth equipment
JP2004084001A (en) Method for growing zinc oxide crystalline film
JPH04187597A (en) Production of thin film of gallium nitride
Nishizawa et al. On the reaction mechanism of GaAs MOCVD
JPH0878728A (en) Growth of heteroepitaxial blue light-emitting gallium nitride
JPS61260622A (en) Growth for gaas single crystal thin film
JPH1098000A (en) Epitaxial growth system for semiconductor crystal
Shastry et al. Interface reactions and grain growth processes in poly-GaAs deposited on molybdenum substrates by the organometallic process
JPS61111137A (en) Production of zns film