JPH0421440B2 - - Google Patents
Info
- Publication number
- JPH0421440B2 JPH0421440B2 JP55180205A JP18020580A JPH0421440B2 JP H0421440 B2 JPH0421440 B2 JP H0421440B2 JP 55180205 A JP55180205 A JP 55180205A JP 18020580 A JP18020580 A JP 18020580A JP H0421440 B2 JPH0421440 B2 JP H0421440B2
- Authority
- JP
- Japan
- Prior art keywords
- generator
- signal
- transistor
- control means
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005284 excitation Effects 0.000 claims description 21
- 230000004913 activation Effects 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 230000001276 controlling effect Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/14—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
- H02J7/1446—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle in response to parameters of a vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/92—Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Charge By Means Of Generators (AREA)
- Control Of Eletrric Generators (AREA)
Description
【発明の詳細な説明】
本発明は、自動車、オートバイ等の車両に装備
されてエンジンより駆動される他励式発電機の出
力電圧調整装置に関し、特に、発電機の励磁コイ
ルとバツテリとの間を結ぶ通電回路に設けられた
スイツチ手段にと、前記バツテリの電圧が所定値
以上のとき前記通電回路を遮断するように前記ス
イツチ手段を制御するスイツチ制御手段とを備え
たものゝ改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output voltage adjustment device for a separately excited generator that is installed in a vehicle such as an automobile or motorcycle and is driven by an engine, and particularly relates to an output voltage adjustment device for a separately excited generator that is installed in a vehicle such as an automobile or a motorcycle and is driven by an engine. The present invention relates to an improvement in which a switch means provided in a connecting energizing circuit is provided, and a switch control means for controlling the switch means to cut off the energizing circuit when the voltage of the battery is higher than a predetermined value.
一般に他励式発電機の出力電流は、励磁コイル
の励磁電流を一定にした場合、第2図の線Aのよ
うにエンジン回転数が一定値に達するまでその上
昇に応じて増加し、それ以後は一定となる特性を
有する。ところで、従来の他励式発電機の出力電
圧調整装置は、バツテリ電圧が設定電圧以下のと
き励磁コイルに通電し、それ以上のとき励磁電流
を遮断するようにしているので、若しエンジンの
高速回転域でバツテリの充電量が半分以下に減つ
ていてその充電性が高くなつている場合には、発
電機は最大限に発電を行うため、自己加熱による
発電機の温度上昇が激しくなり、各部の耐久性に
好ましくない影響を与える。 In general, when the excitation current of the excitation coil is held constant, the output current of a separately excited generator increases as the engine speed increases until it reaches a certain value, as shown by line A in Figure 2, and then increases. It has a constant characteristic. By the way, conventional output voltage regulators for separately excited generators energize the excitation coil when the battery voltage is below the set voltage, and cut off the excitation current when the battery voltage is higher than the set voltage. If the amount of charge in the battery is reduced to less than half in the range, and its charging performance is high, the generator will generate electricity to its maximum potential, causing a rapid rise in temperature of the generator due to self-heating, causing damage to each part. have an unfavorable effect on the durability of
本発明は、エンジンの回転数が所定値以上のと
きは、バツテリ電圧が所定値以下に低下していて
も、発電機の出力電流を減少させて、発電機の自
己加熱による過度の昇温を防止し得る前記装置を
提供することを目的とする。そして、この目的を
達成するために、本発明は、発電機の励磁コイル
とバツテリとの間を結ぶ通電回路に設けられたス
イツチ手段にと、前記バツテリの電圧が所定値以
上のとき前記通電回路を遮断するように前記スイ
ツチ手段を制御するスイツチ制御手段とを備えた
車両用発電機の出力調整装置において、前記スイ
ツチ手段には、作動信号を受けると前記発電機の
出力電流を減少すべく前記通電回路を繰返し断続
させるように該スイツチ手段を制御する第2のス
イツチ制御手段をも接続し、この第2のスイツチ
制御手段には、前記発電機を駆動するエンジンの
回転数が所定値以上であることを検出して該第2
のスイツチ制御手段に作動信号を送る回転数検出
手段を接続したことを特徴とする。 The present invention reduces the output current of the generator when the engine speed is above a predetermined value, even if the battery voltage has fallen below a predetermined value, thereby preventing excessive temperature rise due to self-heating of the generator. It is an object of the present invention to provide a device capable of preventing the above-mentioned problems. In order to achieve this object, the present invention provides a switch means provided in an energizing circuit that connects an excitation coil of a generator and a battery. and a switch control means for controlling the switch means to cut off the output current of the generator, wherein the switch means includes the switch control means for reducing the output current of the generator when receiving an activation signal. A second switch control means for controlling the switch means so as to repeatedly connect and disconnect the energization circuit is also connected, and the second switch control means is connected to a second switch control means for controlling the switch means so as to repeatedly connect and disconnect the energization circuit, and to the second switch control means, when the rotation speed of the engine driving the generator is equal to or higher than a predetermined value, the second switch control means is connected to the second switch control means. Detecting a certain thing and detecting the second
The invention is characterized in that a rotation speed detection means is connected to the switch control means for sending an activation signal.
図面により本発明の一実施例について説明する
と、第1図において他励式発電機はステータコイ
ル1、励磁コイル2を持ちエンジンより駆動され
るロータ、および整流器3を有し、励磁コイル2
および整流器3は主スイツチ4を介してバツテリ
5に接続される。 An embodiment of the present invention will be described with reference to the drawings. In FIG. 1, a separately excited generator has a stator coil 1, a rotor having an excitation coil 2 and driven by an engine, and a rectifier 3.
The rectifier 3 is connected to a battery 5 via a main switch 4.
励磁コイル2の接地側にNPN型第1スイツチ
ングトランジスタ6が接続され、このトランジス
タ6のベースにはそれにバイアス電圧を与える抵
抗7が接続され、この抵抗7はNPN型第2スイ
ツチングトランジスタ8を介して接地される。 An NPN type first switching transistor 6 is connected to the ground side of the excitation coil 2, and a resistor 7 for applying a bias voltage is connected to the base of this transistor 6. This resistor 7 connects an NPN type second switching transistor 8. grounded through.
また第2スイツチングトランジスタ8のベース
には、それにバイアス電圧を与える分圧抵抗9,
10が接続され、その間にツエナーダイオード1
1が挿入される。而して、第1および第2スイツ
チングトランジスタ6,8は励磁コイル2の通電
回路を開閉制御するスイツチ手段Sを構成し、ま
た分圧抵抗9,10およびツエナーダイオード1
1は、バツテリ5の電圧が所定値以上のとき励磁
コイル2の通電回路を遮断するようにスイツチ手
段Sを制御するスイツチ制御手段C1を構成する。
12は上記バイアス電圧調整用抵抗である。 Further, the base of the second switching transistor 8 is connected to a voltage dividing resistor 9, which applies a bias voltage to the second switching transistor 8.
10 are connected, and a Zener diode 1 is connected between them.
1 is inserted. The first and second switching transistors 6 and 8 constitute a switching means S for controlling opening and closing of the energizing circuit of the excitation coil 2, and the voltage dividing resistors 9 and 10 and the Zener diode 1
Reference numeral 1 constitutes a switch control means C1 which controls the switch means S to cut off the energizing circuit of the excitation coil 2 when the voltage of the battery 5 is above a predetermined value.
12 is the bias voltage adjusting resistor.
上記構成において、主スイツチ4を閉じれば、
抵抗7を通して第1スイツチングトランジスタ6
のベースにバイアス電圧が加えられるので、該ト
ランジスタ6がオン状態となり、励磁コイル2は
通電されて励磁される。そして、エンジンの作動
により励磁コイル2を持つロータが回転すると、
ステータコイル1に交流電流が発生し、それは整
流器3で直流に整流されてバツテリ5に供給され
る。このバツテリ5への充電に伴いバツテリ電圧
が徐々に上がり、抵抗9,10により分圧された
電圧がツエナーダイオード11の設定電圧より上
がると、それを通して第2スイツチングトランジ
スタ8のベースにスイツチング電圧が加えられる
ので、該トランジスタ8はオン状態になる。これ
により第1スイツチングトランジスタ6のベース
電位が下がり、該トランジスタ6はオフ状態とな
つて励磁コイル2の通電を断つため、ステータコ
イル1は発電を中止する。したがつて、抵抗9,
10およびツエナーダイオード11により規定さ
れる設定電圧よりもバツテリ電圧が低い場合に発
電機は発電を行い、高い場合には発電を中止する
ので、バツテリの過充電を防止することができ
る。 In the above configuration, if the main switch 4 is closed,
the first switching transistor 6 through the resistor 7;
Since a bias voltage is applied to the base of the transistor 6, the transistor 6 is turned on, and the excitation coil 2 is energized and excited. Then, when the rotor with the excitation coil 2 rotates due to engine operation,
An alternating current is generated in the stator coil 1, which is rectified into direct current by a rectifier 3 and supplied to a battery 5. As the battery 5 is charged, the battery voltage gradually increases, and when the voltage divided by the resistors 9 and 10 rises above the set voltage of the Zener diode 11, a switching voltage is applied to the base of the second switching transistor 8 through it. is added, so the transistor 8 is turned on. As a result, the base potential of the first switching transistor 6 decreases, and the transistor 6 is turned off to cut off the current to the excitation coil 2, so that the stator coil 1 stops generating electricity. Therefore, resistance 9,
The generator generates power when the battery voltage is lower than the set voltage defined by 10 and the Zener diode 11, and stops power generation when the voltage is higher than the set voltage, so overcharging of the battery can be prevented.
前記第2スイツチングトランジスタ8のベース
には、発振器13および信号発生器14が順次接
続される。 An oscillator 13 and a signal generator 14 are sequentially connected to the base of the second switching transistor 8.
信号発生器14は、前記発電機またはそれとは
別個に前記エンジンのクランク軸に連動する信号
用発電機から出力信号を取出すピツクアツプ15
を有し、このピツクアツプ15から取出された信
号aは機関回転数に比例した周波数の正弦波形信
号である。この信号aは、ダイオード16により
整流された後、トランジスタ17により矩形波に
整形され、次いでコンデンサ18および抵抗19
よりなる微分回路20により微分波形とされ、最
後にその微分波形のうちからダイオード21によ
り負の波形bが取出され、これが信号発生器14
の出力信号となる。 The signal generator 14 includes a pickup 15 which extracts an output signal from the generator or a signal generator which is separately connected to the crankshaft of the engine.
The signal a taken out from this pickup 15 is a sine waveform signal with a frequency proportional to the engine speed. This signal a is rectified by a diode 16, then shaped into a rectangular wave by a transistor 17, and then connected by a capacitor 18 and a resistor 19.
A differentiating circuit 20 generates a differentiated waveform, and finally a negative waveform b is extracted from the differentiated waveform by a diode 21, and this is sent to the signal generator 14.
becomes the output signal.
発振器13は上記信号bを入力信号として受け
る単安定マルチバイブレータ22、そのマルチバ
イブレータ22の出力信号を反転させながら安定
させる第1信号反転回路23および、その回路2
3の出力信号を再度反転させる第2信号反転回路
24よりなつている。 The oscillator 13 includes a monostable multivibrator 22 that receives the signal b as an input signal, a first signal inversion circuit 23 that stabilizes the output signal of the multivibrator 22 while inverting it, and the circuit 2
The second signal inversion circuit 24 inverts the output signal of No. 3 again.
単安定マルチバイブレータ22において、入力
信号のない通常状態では、第1トランジスタ25
1はオン状態、第2トランジスタ252はオフ状態
を保つているが、信号発生器14の出力信号bを
第1トランジスタ251のベースに受けると第1
トランジスタ251はオフ状態に、また第2トラ
ンジスタ252はオン状態にそれぞれ反転し、コ
ンデンサ26および抵抗27の時定数により定め
られる一定時間t(例えば1.5msec)後、両トラ
ンジスタ251,252は最初の状態に復帰する。
その結果、第1トランジスタ251は、信号bを
入力されるたびに、そのコレクタより一定幅tの
パルス信号cを発生し、この信号cの周波数は、
勿論エンジン回転数に対応している。この出力信
号cは第1信号反転回路23により反転され、次
いで第2信号反転回路24により再度反転される
ので、結局信号cが発振器13の出力信号とな
る。 In the monostable multivibrator 22, in a normal state with no input signal, the first transistor 25
1 is in the on state, and the second transistor 252 is in the off state. However, when the output signal b of the signal generator 14 is received at the base of the first transistor 251 , the first transistor 252 remains in the off state.
The transistor 25 1 is turned off, and the second transistor 25 2 is turned on. After a certain time t (for example, 1.5 msec) determined by the time constants of the capacitor 26 and the resistor 27, both transistors 25 1 and 25 2 are turned off. returns to its initial state.
As a result, the first transistor 25 1 generates a pulse signal c with a constant width t from its collector every time the signal b is input, and the frequency of this signal c is as follows.
Of course, it corresponds to the engine speed. This output signal c is inverted by the first signal inversion circuit 23 and then inverted again by the second signal inversion circuit 24, so that the signal c becomes the output signal of the oscillator 13.
さらに、単安定マルチバイブレータ22の第2
トランジスタ252のコレクタには第3信号反転
回路28を介してF−V変換器29が接続され、
そのF−V変換器29にはシユミツト回路よりな
る比較器30、その比較器30にゲート回路31
が順次接続され、ゲート回路31は発振器13か
ら第2スイツチングトランジスタ8に至る信号回
路の途中に設けられる。前記信号発生器14は、
前記エンジンの回転数が所定値以上であることを
検出して作動信号を発する本発明の回転数検出手
段に対応し、また前記発振器13、F−V変換器
29、比較器30およびゲート回路31は、上記
作動信号を受けて前記励磁コイル2の通電回路を
繰返し断続するように前記スイツチ手段Sを制御
する第2のスイツチ制御手段C2を構成する。 Furthermore, the second of the monostable multivibrator 22
An F-V converter 29 is connected to the collector of the transistor 252 via a third signal inversion circuit 28,
The F-V converter 29 includes a comparator 30 made of a Schmitt circuit, and the comparator 30 includes a gate circuit 31.
are connected in sequence, and the gate circuit 31 is provided in the middle of the signal circuit from the oscillator 13 to the second switching transistor 8. The signal generator 14 is
The oscillator 13, the F-V converter 29, the comparator 30, and the gate circuit 31 correspond to the rotation speed detection means of the present invention that detects that the engine rotation speed is equal to or higher than a predetermined value and issues an activation signal. constitutes a second switch control means C2 which controls the switch means S so as to repeatedly turn on and off the energization circuit of the excitation coil 2 in response to the actuation signal.
而して、単安定マルチバイブレータ22におけ
る第1および第2トランジスタ251,252のオ
ン、オフ状態は常に反転関係にあるので、第2ト
ランジスタ252のコレクタから出る出力信号は
第1トランジスタ251のコレクタからの出力信
号を反転したものに相当し、その出力信号は第3
信号反転回路28で反転される。その結果信号反
転回路28からは第2トランジスタ251の出力
信号cと同波形、同周波数の出力信号dが発せら
れ、この信号dが発振器13の第2の出力信号と
なり、次段のF−V変換器29に入力信号として
送られる。 Since the on and off states of the first and second transistors 25 1 and 25 2 in the monostable multivibrator 22 are always in an inverted relationship, the output signal from the collector of the second transistor 25 2 is the same as that of the first transistor 25 2 . This corresponds to the inversion of the output signal from the collector of 1 , and the output signal is the
The signal is inverted by the signal inverting circuit 28. As a result, an output signal d having the same waveform and frequency as the output signal c of the second transistor 251 is generated from the signal inverting circuit 28, and this signal d becomes the second output signal of the oscillator 13, and the output signal d of the next stage F- It is sent to the V converter 29 as an input signal.
F−V変換器29は、コンデンサ32および抵
抗33よりなり、これらにより入力信号dをその
周波数に対応した電圧波形eに変換する。すなわ
ちF−V変換器29の出力電圧は、発振器13の
第2の出力信号dの周波数、換言すればエンジン
回転数に比例したものとなる。 The F-V converter 29 includes a capacitor 32 and a resistor 33, and converts the input signal d into a voltage waveform e corresponding to its frequency. That is, the output voltage of the F-V converter 29 is proportional to the frequency of the second output signal d of the oscillator 13, in other words, to the engine speed.
F−V変換器29の出力信号eは比較器30に
加えられる。比較器30において、入力信号eの
電圧が低いときは、第1トランジスタ341はオ
フ状態となつており、このため第2トランジスタ
342は抵抗351,352,353を介して通電さ
れてオン状態となり、それに伴い第3トランジス
タ343はベース電流が流れてオン状態となる。
このとき、第1トランジスタ341のエミツタに
は抵抗354,355により分圧された一定電圧が
加わつているので、入力信号eの電圧が上記エミ
ツタ電圧より高くならない限り第1トランジスタ
341のオフ状態は保持される。したがつて、第
2、3トランジスタ342,343のオン状態も保
持され、第3トランジスタ343のコレクタから
の出力によりゲート回路31のトランジスタはオ
ン状態となるから、発振器13の第1の出力信号
cはゲート回路31でシヨートされ、第2スイツ
チングトランジスタ8へは送られない。 The output signal e of the F-V converter 29 is applied to a comparator 30. In the comparator 30, when the voltage of the input signal e is low, the first transistor 34 1 is in an off state, and therefore the second transistor 34 2 is energized via the resistors 35 1 , 35 2 , 35 3 . Accordingly, a base current flows through the third transistor 34 3 and the third transistor 34 3 is turned on.
At this time, since a constant voltage divided by the resistors 35 4 and 35 5 is applied to the emitter of the first transistor 34 1 , as long as the voltage of the input signal e does not become higher than the emitter voltage, the first transistor 34 1 The off state is maintained. Therefore, the on state of the second and third transistors 34 2 and 34 3 is also maintained, and since the transistor of the gate circuit 31 is turned on by the output from the collector of the third transistor 34 3 , the first transistor of the oscillator 13 is turned on. The output signal c is switched off by the gate circuit 31 and is not sent to the second switching transistor 8.
そこで、いま機関回転数が設定値以上に上昇し
てF−V変換器29の出力信号eの電圧が比較器
30の第1トランジスタ341のエミツタ電圧を
上回れば、そのトランジスタ341はオン状態と
なり、それに伴い第2、第3トランジスタ342,
343はオフ状態となるので、ゲート回路31の
トランジスタはオフ状態になる。その結果、発振
器13の第1の出力信号cはゲート回路31でシ
ヨートされずに第2スイツチングトランジスタ8
のベースに印加される。すると、該トランジスタ
8はパルスcを印加されるたびにオン状態となつ
て第1スイツチングトランジスタ6をオフ状態に
し、励磁コイル2の通電を遮断する。 Therefore, if the engine speed rises above the set value and the voltage of the output signal e of the F-V converter 29 exceeds the emitter voltage of the first transistor 34 1 of the comparator 30, that transistor 34 1 is turned on. Accordingly, the second and third transistors 34 2 ,
Since the transistor 34 3 is in the off state, the transistor of the gate circuit 31 is in the off state. As a result, the first output signal c of the oscillator 13 is not switched off by the gate circuit 31 but is switched to the second switching transistor 8.
is applied to the base of Then, each time the pulse c is applied, the transistor 8 turns on, turns the first switching transistor 6 off, and cuts off the current to the excitation coil 2.
而して、発振器13が発生する第1のパルス信
号cの周波数、即ち単位時間当りのパルス数はエ
ンジン回転数に比例しているので、エンジン回転
数の上昇に伴い単位時間当りの第2スイツチング
トランジスタ8のオン時間、したがつて第1スイ
ツチングトランジスタ6のオフ時間が長くなり、
励磁コイル2の励磁電流を減少していき、この傾
向はエンジンの高速回転域で顕著に現われる。 Since the frequency of the first pulse signal c generated by the oscillator 13, that is, the number of pulses per unit time, is proportional to the engine speed, the second switch per unit time increases as the engine speed increases. The on-time of the switching transistor 8, and therefore the off-time of the first switching transistor 6, becomes longer;
The excitation current of the excitation coil 2 is decreased, and this tendency becomes noticeable in the high speed rotation range of the engine.
かくして、発電機の出力電流は、第2図の線B
のように、エンジン回転数が前記比較器30の第
1トランジスタ341のエミツタ電圧、即ちスレ
シヨルドレベルに対応した所定値Nxに達するま
では全く減少せず、その値Nxを超えてから、エ
ンジン回転数の上昇に応じて減少していく。 Thus, the output current of the generator is line B in Figure 2.
As in, the engine speed does not decrease at all until it reaches a predetermined value Nx corresponding to the emitter voltage of the first transistor 341 of the comparator 30, that is, the threshold level, and after exceeding that value Nx, It decreases as the engine speed increases.
以上のように本発明によれば、発電機の励磁コ
イルとバツテリとの間を結ぶ通電回路に設けられ
たスイツチ手段にと、前記バツテリの電圧が所定
値以上のとき前記通電回路を遮断するように前記
スイツチ手段を制御するスイツチ制御手段とを備
えた車両用発電機の出力調整装置において、前記
スイツチ手段には、作動信号を受けると前記発電
機の出力電流を減少すべく前記通電回路を繰返し
断続させるように該スイツチ手段を制御する第2
のスイツチ制御手段をも接続し、この第2のスイ
ツチ制御手段には、前記発電機を駆動するエンジ
ンの回転数が所定値以上であることを検出して該
第2のスイツチ制御手段に作動信号を送る回転数
検出手段を接続したので、バツテリ電圧が所定値
以下に低下している場合において、エンジン回転
数が所定値を下回るときは励磁コイルを通常の通
電状態にして発電機の発電能力を従来通り最大に
発揮させることができ、またエンジン回転数が所
定値以上のときは励磁コイルの通電量を規制して
発電機の出力電流を減少させることができ、これ
により発電機の自己加熱を抑制し、その過度の昇
温を回避することができる。 As described above, according to the present invention, the switch means provided in the energizing circuit connecting the excitation coil of the generator and the battery is configured to cut off the energizing circuit when the voltage of the battery exceeds a predetermined value. and switch control means for controlling the switch means, wherein the switch means is configured to repeatedly operate the energizing circuit in order to reduce the output current of the generator upon receiving an activation signal. a second controlling said switch means to on and off;
A switch control means is also connected to the second switch control means, and the second switch control means detects that the rotational speed of the engine that drives the generator is equal to or higher than a predetermined value and sends an activation signal to the second switch control means. Since a rotation speed detection means is connected, when the battery voltage has fallen below a predetermined value and the engine rotation speed is below a predetermined value, the excitation coil is brought into the normal energized state to reduce the power generation capacity of the generator. It is possible to maximize the power as before, and when the engine speed is above a predetermined value, the amount of current flowing through the excitation coil can be regulated to reduce the output current of the generator, thereby reducing the self-heating of the generator. It is possible to suppress and avoid excessive temperature rise.
第1図は本発明装置の一実施例を示す電気回路
図、第2図は発電機のエンジン回転数に対する出
力電流特性を示す線図、線Aは本来の特性を、ま
た線Bは本発明装置により補正した特性をそれぞ
れ示す。
C1……スイツチ制御手段、C2……第2のスイ
ツチ制御手段、S……スイツチ手段、2……励磁
コイル、5……バツテリ、14……回転数検出手
段としての信号発生器。
Fig. 1 is an electric circuit diagram showing an embodiment of the device of the present invention, Fig. 2 is a diagram showing the output current characteristics of the generator with respect to engine speed, line A shows the original characteristics, and line B shows the characteristics of the invention. The characteristics corrected by the device are shown. C1 ...Switch control means, C2 ...Second switch control means, S...Switch means, 2...Excitation coil, 5...Battery, 14...Signal generator as rotation speed detection means.
Claims (1)
結ぶ通電回路に設けられたスイツチ手段にSと、
前記バツテリ5の電圧が所定値以上のとき前記通
電回路を遮断するように前記スイツチ手段Sを制
御するスイツチ制御手段C1とを備えた車両用発
電機の出力調整装置において、 前記スイツチ手段Sには、作動信号を受けると
前記発電機の出力電流を減少すべく前記通電回路
を繰返し断続させるように該スイツチ手段Sを制
御する第2のスイツチ制御手段C2をも接続し、
この第2のスイツチ制御手段C2には、前記発電
機を駆動するエンジンの回転数が所定値以上であ
ることを検出して該第2のスイツチ制御手段C2
に作動信号を送る回転数検出手段14を接続した
ことを特徴とする、車両用発電機の出力調整装
置。[Scope of Claims] 1. S and a switch means provided in the energizing circuit connecting the excitation coil 2 and battery 5 of the generator,
An output adjustment device for a vehicle generator, comprising a switch control means C1 for controlling the switch means S to cut off the energizing circuit when the voltage of the battery 5 is equal to or higher than a predetermined value. is also connected to a second switch control means C2 for controlling the switch means S to repeatedly turn on and off the energizing circuit in order to reduce the output current of the generator when receiving an activation signal;
This second switch control means C2 detects that the rotational speed of the engine that drives the generator is equal to or higher than a predetermined value, and controls the second switch control means C2.
An output adjustment device for a vehicle generator, characterized in that a rotation speed detection means 14 is connected to send an operating signal to the generator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55180205A JPS57106400A (en) | 1980-12-19 | 1980-12-19 | Regulator for output of generator for vehicle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55180205A JPS57106400A (en) | 1980-12-19 | 1980-12-19 | Regulator for output of generator for vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57106400A JPS57106400A (en) | 1982-07-02 |
JPH0421440B2 true JPH0421440B2 (en) | 1992-04-10 |
Family
ID=16079229
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55180205A Granted JPS57106400A (en) | 1980-12-19 | 1980-12-19 | Regulator for output of generator for vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57106400A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57160335A (en) * | 1981-03-27 | 1982-10-02 | Shindengen Electric Mfg | Field controller for ac generator |
JPS6070936A (en) * | 1983-09-22 | 1985-04-22 | 株式会社デンソー | Controller for vehicle charging generator |
US5144220A (en) * | 1989-11-30 | 1992-09-01 | Mitsubishi Denki K.K. | Vehicle ac generator control system |
JPH06335298A (en) * | 1993-03-23 | 1994-12-02 | Mitsubishi Electric Corp | Method and apparatus for controlling output of alternator for vehicle |
JP3932067B2 (en) * | 1997-11-04 | 2007-06-20 | 株式会社デンソー | Control device for vehicle alternator |
JP5721008B2 (en) * | 2012-02-23 | 2015-05-20 | 株式会社デンソー | Vehicle power generation control device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54139014A (en) * | 1978-04-20 | 1979-10-29 | Nippon Denso Co Ltd | Voltage controller for automotive generator |
-
1980
- 1980-12-19 JP JP55180205A patent/JPS57106400A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54139014A (en) * | 1978-04-20 | 1979-10-29 | Nippon Denso Co Ltd | Voltage controller for automotive generator |
Also Published As
Publication number | Publication date |
---|---|
JPS57106400A (en) | 1982-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1270040A (en) | Vehicular power supply system having a plurality of power supply voltages | |
EP0430203B1 (en) | Vehicle AC generator control system | |
US4368417A (en) | Output voltage-adjusting device for vehicle-mounted generators | |
JP3519905B2 (en) | Control device for vehicle generator | |
EP0881739B1 (en) | Vehicle generator controller | |
US4727307A (en) | Control apparatus for vehicular generator | |
JPS635409Y2 (en) | ||
US4477766A (en) | Apparatus for controlling electric generation for vehicles | |
EP1050945B1 (en) | Controller of ac generator for vehicle | |
US6215284B1 (en) | Control device of A.C. generator for vehicle | |
JPH0528906Y2 (en) | ||
JPS6111535B2 (en) | ||
JP4193348B2 (en) | Vehicle power generation control device | |
US4754212A (en) | Voltage regulation system for automotive charging generator | |
US4293811A (en) | Voltage regulator system for vehicle generator | |
JPH0421440B2 (en) | ||
US6060866A (en) | Power control system for vehicle ac generator | |
JPH06284598A (en) | Charger/discharger for vehicle | |
US6603289B2 (en) | Vehicle alternator control device and method | |
JPH0133665B2 (en) | ||
JP2541224Y2 (en) | Control device for vehicle alternator | |
JPH089567A (en) | Output control and output controller of ac generator for vehicle | |
JPS581272B2 (en) | Non-contact ignition device for internal combustion engines | |
JPS6035926A (en) | Controller of automotive generator | |
JP2661613B2 (en) | Control device for vehicle generator |