JPH04212243A - Electron gun for color image pickup tube - Google Patents

Electron gun for color image pickup tube

Info

Publication number
JPH04212243A
JPH04212243A JP6597091A JP6597091A JPH04212243A JP H04212243 A JPH04212243 A JP H04212243A JP 6597091 A JP6597091 A JP 6597091A JP 6597091 A JP6597091 A JP 6597091A JP H04212243 A JPH04212243 A JP H04212243A
Authority
JP
Japan
Prior art keywords
electrode
diameter
electron gun
aperture
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6597091A
Other languages
Japanese (ja)
Other versions
JPH0734352B2 (en
Inventor
Masaji Shirai
正司 白井
Masaaki Yamauchi
山内 昌昭
Kazuo Majima
間島 和夫
Ko Takano
高野 洸
Masakazu Fukushima
正和 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6597091A priority Critical patent/JPH0734352B2/en
Publication of JPH04212243A publication Critical patent/JPH04212243A/en
Publication of JPH0734352B2 publication Critical patent/JPH0734352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase the diameter of opening part of an electron gun effectively to thereby increase a focus characteristic. CONSTITUTION:Only electrode plates opposite to G3 and G4 electrodes are mutually moved back and arranged inside a outer circumferential electrode. With the arrangement, proper selection of shape of opening hole formed at each electrode plate, therefore, provides the similar effect as the case where the diameter of the opening hole is increased substantially to thus weaken lens converging action, leading to improvement in a focus characteristic.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、カラー受像管用電子銃
に関し、特に主レンズを構成する電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron gun for a color picture tube, and more particularly to an electrode constituting a main lens.

【0002】0002

【従来の技術】図1は、従来の電子銃に備えたカラー受
像管の断面図である。ガラス外囲器1のフェーズプレー
ト部2の内壁に、3色の蛍光体を交互にストライプ状に
塗布した蛍光面3が支持されている。陰極6,7,8の
中心軸15,16,17はG1電極9,G2電極10、
主レンズを構成するG3の電極11、および遮蔽カップ
13のそれぞれの陰極に対応する開孔ならびに、G3電
極の開孔部と接続する内円筒20,21,22の中心軸
と一致し、共通平面上に、互いにほぼ平行に配置されて
いる。主レンズを構成するもう一方の電極であるG4電
極12の中央の開孔部ならびに、それと接続した内円筒
24の中心軸は、上記中心軸16と一致しているが、外
側の両開孔ならびに、それらと接続する内円筒23,2
5の中心軸18,19はそれぞれに対応する中心軸15
,17と一致せず外側にわずかに変位している。各内円
筒の内径は、対応する開孔の径と一致する。各陰極から
射出される3本の電子ビームは、中心軸15,16,1
7に沿って主レンズに入射する。G3電極11は、G4
電極12よりも低電位に設定され、高電位のG4電極1
2は、遮蔽カップ13、ガラス外囲器1の内壁に設けら
れた導電膜5と同電位になっている。G3,G4両電極
の中央部の開孔と内円筒21,24は同軸になっており
、また、内円筒が非軸対称の電極外周部からの影響を打
ち消すので、中央に形成される主レンズは軸対称となり
、中央ビームは主レンズによって集束された後、軸に沿
った軌道を直進する。一方、両電極の外側の開孔と、内
円筒20,22ならびに23,25は、互いに軸がずれ
ているので、外側には非軸対称の主レンズが形成される
。このため、外側ビームは、主レンズ領域のうち、G4
電極側に形成される発散レンズ領域で、レンズ中心軸か
ら中央ビーム方向に外れた部分を通過し、主レンズによ
る集束作用と同時に、中央ビーム方向への集中力をうけ
る。こうして、3本の電子ビームは、シャドウマスク4
上で、結像すると同時に、互いに重なり合うように集中
する。この様に、各ビームを集中させる操作を、静コン
ビーゼンス(以後STCと略す)と呼ぶ。さらに各電子
ビームは、シャドウマスク4により色選別をうけ、各ビ
ームに対応する色の蛍光体を励起発光させる成分だけが
、シャドウマスク4の開孔を通過し、蛍光面3に到る。 また、電子ビームを蛍光面上で走査するため、外部磁気
偏向ヨーク14が設けられている。
2. Description of the Related Art FIG. 1 is a sectional view of a color picture tube provided in a conventional electron gun. On the inner wall of the phase plate portion 2 of the glass envelope 1, a phosphor screen 3 is supported, in which phosphors of three colors are coated alternately in stripes. The central axes 15, 16, 17 of the cathodes 6, 7, 8 are the G1 electrode 9, the G2 electrode 10,
Coincides with the central axes of the G3 electrode 11 constituting the main lens, the apertures corresponding to the respective cathodes of the shielding cup 13, and the central axes of the inner cylinders 20, 21, 22 connected to the apertures of the G3 electrode, and has a common plane. are placed on top, approximately parallel to each other. The central aperture of the G4 electrode 12, which is the other electrode constituting the main lens, and the central axis of the inner cylinder 24 connected thereto coincide with the central axis 16, but both the outer apertures and , inner cylinder 23,2 connected to them
The central axes 18 and 19 of 5 are the respective central axes 15
, 17 and is slightly displaced outward. The inner diameter of each inner cylinder matches the diameter of the corresponding aperture. Three electron beams emitted from each cathode have central axes 15, 16, 1
7 and enters the main lens. G3 electrode 11 is G4
The G4 electrode 1 is set at a lower potential than the electrode 12 and has a higher potential.
2 is at the same potential as the shielding cup 13 and the conductive film 5 provided on the inner wall of the glass envelope 1. The opening in the center of both G3 and G4 electrodes and the inner cylinders 21 and 24 are coaxial, and since the inner cylinder cancels out the influence from the non-axisymmetric electrode outer periphery, the main lens formed in the center is axially symmetrical, and the central beam travels straight along a trajectory along the axis after being focused by the main lens. On the other hand, since the axes of the apertures on the outside of both electrodes and the inner cylinders 20, 22 and 23, 25 are shifted from each other, a non-axis-symmetric main lens is formed on the outside. Therefore, the outer beam is located in G4 of the main lens area.
In the diverging lens region formed on the electrode side, the light passes through a portion that is deviated from the lens center axis in the direction of the central beam, and is simultaneously subjected to the focusing action of the main lens and a concentrating force in the direction of the central beam. In this way, the three electron beams are transmitted to the shadow mask 4.
At the same time, the images are focused so that they overlap each other. The operation of concentrating each beam in this manner is called static convergence (hereinafter abbreviated as STC). Furthermore, each electron beam is color-selected by a shadow mask 4, and only the component that excites the phosphor of the color corresponding to each beam to emit light passes through the aperture of the shadow mask 4 and reaches the phosphor screen 3. Further, an external magnetic deflection yoke 14 is provided to scan the electron beam on the fluorescent screen.

【0003】0003

【発明が解決しようとする課題】受像管のフォーカス特
性に大きく影響を与える要因に、主レンズのレンズ倍率
、収差があり、これらは、レンズ集束作用の強度に強く
依存する。受像管では、電子ビームの走査面積と、最大
偏向角を定めると、主レンズから結像面までの距離が確
定する。結像面までの距離が一定であるという条件の下
で、レンズ集束作用を弱めることは、レンズ倍率の低下
をもたらし、さらに、偏向収差の増大を防ぐため、主レ
ンズ内でのビームの広がりを一定値に抑えるという条件
を加えると、主レンズへのビーム入射角度を低下させる
ことになる。ビーム入射角度をαiとすると、主レンズ
の収差の中で最も優勢な球面収差による最小錯乱円直径
δは、 δ=MCspαi3/2 と表され、ビーム入射角度を低下させると、球面収差を
低減させることができる。ここで、Mはレンズ倍率、C
spは球面収差係数である。
SUMMARY OF THE INVENTION Factors that greatly affect the focusing characteristics of a picture tube include the lens magnification and aberrations of the main lens, which strongly depend on the strength of the lens focusing action. In a picture tube, the distance from the main lens to the image plane is determined by determining the scanning area of the electron beam and the maximum deflection angle. Under the condition that the distance to the image plane is constant, weakening the lens focusing effect will result in a decrease in lens magnification, and in addition, to prevent an increase in deflection aberration, the beam spreading within the main lens will be reduced. Adding the condition of keeping it to a constant value will reduce the beam incidence angle to the main lens. When the beam incidence angle is αi, the minimum circle of confusion diameter δ due to the spherical aberration, which is the most dominant among the aberrations of the main lens, is expressed as δ=MCspαi3/2, and lowering the beam incidence angle reduces the spherical aberration. be able to. Here, M is the lens magnification, C
sp is a spherical aberration coefficient.

【0004】このように、受像管では、主レンズのレン
ズ集束作用を弱めると、レンズ倍率、球面収差が低減さ
れ、フォーカス特性が向上する。この集束作用を弱める
方法の1つは、主レンズを形成するG3,G4電極の開
孔部ならびに対応する内円筒に径を拡大することである
。(以後、説明を簡単にするため、開孔部径と述べると
きは、同時に対応する内円筒の径も含むこととする)。
As described above, in a picture tube, weakening the lens focusing effect of the main lens reduces lens magnification and spherical aberration, and improves focus characteristics. One way to weaken this focusing effect is to enlarge the diameter of the apertures of the G3 and G4 electrodes forming the main lens and the corresponding inner cylinder. (Hereinafter, in order to simplify the explanation, when we refer to the diameter of the opening, we also include the diameter of the corresponding inner cylinder).

【0005】しかし、図1に示したようなインライン型
電子銃では、赤,緑、青3色のそれぞれに対応する主レ
ンズを同一平面に一列に配列しているので、上記開孔部
径は、ガラス外囲器1のうち、電子銃を収容しているネ
ック部分の内径の1/3以下でなければならない。電極
の厚みを考慮し、さらに電極加工上の問題点をも配慮す
ると、限界値はさらに小さな値となる。この限界値を引
き上げるために、ネック部分の内径を拡大すると、偏向
電力が増大し、また、一般に上記開孔部径を拡大すると
、開孔部の離心距離が大きくなり、コンバーゼンス特性
が悪化するという問題が生ずる。これらの点を勘案し、
開孔部径は、通常、できるだけ大きくしてあるので、こ
れ以上の拡大は極めて困難である。
However, in the in-line electron gun shown in FIG. 1, the main lenses corresponding to each of the three colors red, green, and blue are arranged in a row on the same plane, so the diameter of the aperture is , the inner diameter of the neck portion of the glass envelope 1 housing the electron gun must be 1/3 or less. If the thickness of the electrode is taken into consideration, as well as problems in electrode processing, the limit value becomes even smaller. In order to raise this limit value, increasing the inner diameter of the neck portion increases the deflection power, and generally speaking, increasing the aperture diameter increases the eccentric distance of the aperture and worsens the convergence characteristics. A problem arises. Considering these points,
Since the opening diameter is usually made as large as possible, further enlargement is extremely difficult.

【0006】特開昭55−17963号公報に、上記開
孔部径を、上記限界値以上に拡大する一方法が開示され
ている。この方法では、開孔部径を、隣り合う開孔部の
離心距離よりも大きくとったことにより生ずる、開孔部
の重なり部分を連通させ、さらに連通部には、電位補正
のための仕切り板を設けてある。
[0006] Japanese Patent Application Laid-open No. 17963/1983 discloses a method for enlarging the diameter of the aperture beyond the limit value. In this method, the overlapping part of the apertures, which is caused by making the aperture diameter larger than the eccentric distance between adjacent apertures, communicates with each other, and the communicating part is also provided with a partition plate for potential correction. is provided.

【0007】しかし、この方法でも、開孔部径には、一
定の限界がある。G3電極の、外周部の水平方向(電子
ビームを通過する3個の開孔の配列方向)の径をh、開
孔部の離心距離をSとすると、開孔部径の限界値Lは、
L=h−2×S        ……(1)となる。実
際には電極加工上の問題から、この限界値はさらに小さ
な値となる。本発明は、電子銃の径形がネック管内径に
よって制約をうけている場合にも、前記開孔部径を、(
1)式で制約される値よりもさらに実効的に増大させる
ことができ、もってフォーカス特性をさらに向上させる
ことのできるカラー受像管用電子銃を提供することを目
的とする。
However, even with this method, there is a certain limit to the diameter of the opening. Assuming that the diameter of the outer periphery of the G3 electrode in the horizontal direction (the direction in which the three apertures passing through the electron beam are arranged) is h, and the eccentric distance of the aperture is S, the limit value L of the aperture diameter is:
L=h-2×S...(1). In reality, this limit value becomes even smaller due to problems in electrode processing. In the present invention, even when the diameter of the electron gun is restricted by the inner diameter of the neck tube, the diameter of the opening can be set to (
1) It is an object of the present invention to provide an electron gun for a color picture tube, which can effectively increase the focus characteristic even more than the value restricted by the formula (1), thereby further improving the focus characteristic.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
、本発明はG3電極とG4電極の対向面を構成している
極板だけを、互いに後退させ、この極板を外周電極の内
部に配置することを特徴とする。この様にすると、G3
電極内部にはG4電極側の高電位が、G4電極内部には
、G3電極側の低電位がより深く侵入する。さらに、従
来例の如き内円筒20〜25を取り除き、電位の侵入を
一層深くさせる。このような電位の侵入は、対向面上の
開孔部径を拡大したのと実質的に同じ効果をもつ。即ち
、実効径が増大する。しかし、G3電極と、G4電極の
対向面を除いた外周電極の断面は非円形であり、水平方
向の径が、垂直方向の径よりも大きい。したがって、電
位の侵入は水平方向で著しく、水平方向の実効径が、垂
直方向の実効径よりも大きくなる。このため、水平方向
のレンズ集束作用が垂直方向よりも弱くなるので、電子
ビームを集束する際、非点収差があらわれる。そこで、
本発明では、対向電極板に形成される開孔部の形状を非
円形とし、水平方向の径を、垂直方向の径よりも小さく
する。この様にして、水平方向の電位の侵入を抑えると
、水平垂直方向のレンズ集束作用を等しくでき、非点収
差を取り除くことができる。
[Means for Solving the Problems] In order to achieve the above object, the present invention involves retracting only the electrode plates constituting the opposing surfaces of the G3 electrode and the G4 electrode from each other, and placing these electrode plates inside the outer peripheral electrode. It is characterized by placement. If you do this, G3
The high potential of the G4 electrode penetrates deeper into the electrode, and the low potential of the G3 electrode penetrates deeper into the G4 electrode. Furthermore, the inner cylinders 20 to 25 as in the conventional example are removed, allowing the potential to penetrate deeper. Such potential penetration has substantially the same effect as enlarging the diameter of the aperture on the opposing surface. That is, the effective diameter increases. However, the cross section of the outer peripheral electrode excluding the facing surfaces of the G3 electrode and the G4 electrode is non-circular, and the diameter in the horizontal direction is larger than the diameter in the vertical direction. Therefore, potential penetration is significant in the horizontal direction, and the effective diameter in the horizontal direction becomes larger than the effective diameter in the vertical direction. For this reason, the lens focusing effect in the horizontal direction is weaker than in the vertical direction, so astigmatism appears when focusing the electron beam. Therefore,
In the present invention, the shape of the opening formed in the counter electrode plate is non-circular, and the diameter in the horizontal direction is smaller than the diameter in the vertical direction. By suppressing the penetration of horizontal potential in this manner, the lens focusing action in the horizontal and vertical directions can be made equal, and astigmatism can be eliminated.

【0009】[0009]

【作用】本発明によれば、対向電極板の後退量と、該対
向電極板に形成される開孔の形状を適正に選ぶことによ
り、実質的に開孔部の径を増大させたと同じ効果が生じ
、レンズ集束作用が弱くなり、フォーカス特性が改善さ
れる。
[Operation] According to the present invention, by appropriately selecting the amount of retraction of the counter electrode plate and the shape of the aperture formed in the counter electrode plate, the effect is substantially the same as that of increasing the diameter of the aperture. occurs, the lens focusing effect is weakened, and the focus characteristics are improved.

【0010】さらに、副次的な効果として、外側の電子
ビームに内側方向への集中力が生じ、G3電極側開孔の
中心軸とG4電極側開孔の中心軸を偏位させることなく
一致させても、STCをとることができる。これは、G
3電極の内部の電位が、外周部付近では低く、G4側高
電位の深く侵入する中央部では高くなるため、外周部か
ら内側に向う電界が生じるためである。
Furthermore, as a secondary effect, a concentration force is generated inward in the outer electron beam, and the central axis of the G3 electrode side aperture and the central axis of the G4 electrode side aperture are aligned without deviation. Even if it is allowed, STC can be taken. This is G
This is because the potential inside the three electrodes is low near the outer periphery and high at the center where the high potential on the G4 side penetrates deeply, and an electric field is generated inward from the outer periphery.

【0011】また、本発明電子銃は、電子ビームを通過
する開孔に連通部分が無く、また、電位補正のための仕
切り板も必要としないので、前記の特開昭55−179
63に示された電極構造とは全く異なる。
Furthermore, the electron gun of the present invention has no communicating part in the aperture through which the electron beam passes, and also does not require a partition plate for potential correction.
This is completely different from the electrode structure shown in No. 63.

【0012】0012

【実施例】以下、本発明の実施例を、図面により説明す
る。図2は、本発明電子銃の一実施例の要部断面図であ
り、バイポテンシャル型主レンズを構成するG3,G4
電極の水平方向、および垂直方向の断面図である。図に
おいて、111はG3電極の外周部、121はG4電極
の外周部、13はカップ電極である。112はG3電極
の外周部111の内部に設けられた、非点収差修正用の
極板、122はG4電極の外周部121の内部に設けら
れた非点収差修正用の極板である。極板112には中央
ビームの通過する開孔114と、外側ビームの通過する
開孔113,113′が、極板122には中央ビームの
通過する開孔124と、外側ビームの通過する開孔12
3,123′が一列に設けられている。本実施例では、
開孔113,113′,114,123,123′,1
24は楕円形であり、また、G3側とG4側の互いに対
応する開孔の形状と寸法は同一である。外側の開孔11
3,113′,123,123′と中央の開孔114,
124とを同一形状、同一寸法にすると、外側に形成さ
れる主レンズの水平方向に対するレンズ集束作用が強く
なるので、外側開孔の水平方向径を、中央開孔の水平方
向径よりも大きくし、水平、垂直両方向の集束作用の強
度を等しくする。
Embodiments Hereinafter, embodiments of the present invention will be explained with reference to the drawings. FIG. 2 is a sectional view of a main part of an embodiment of the electron gun of the present invention, in which G3 and G4 forming a bipotential main lens are shown.
FIG. 3 is a cross-sectional view of an electrode in a horizontal direction and a vertical direction. In the figure, 111 is the outer periphery of the G3 electrode, 121 is the outer periphery of the G4 electrode, and 13 is the cup electrode. Reference numeral 112 denotes a polar plate for astigmatism correction provided inside the outer peripheral part 111 of the G3 electrode, and 122 represents a polar plate for astigmatism correction provided inside the outer peripheral part 121 of the G4 electrode. The electrode plate 112 has an aperture 114 through which the center beam passes, and apertures 113, 113' through which the outer beams pass, and the electrode plate 122 has an aperture 124 through which the center beam passes, and apertures through which the outer beams pass. 12
3,123' are provided in a row. In this example,
Opening holes 113, 113', 114, 123, 123', 1
Reference numeral 24 has an elliptical shape, and the corresponding openings on the G3 side and G4 side have the same shape and size. Outer opening 11
3,113', 123, 123' and the central opening 114,
124, the horizontal diameter of the outer aperture is made larger than the horizontal diameter of the central aperture. , equalizing the strength of the focusing action in both the horizontal and vertical directions.

【0013】図3は、図2に示した実施例において、外
周部111,121の水平方向径h=20.0mm,そ
の垂直方向v=9.4mm、中央開孔114,124の
垂直方向径a1=外側開孔113,113′、123,
123′の垂直方向径a2=8.4mm、極板112の
後退量d1=極板122の後退量d2=1.5mm,離
心距離S=6.6mmとしたとき、中央開孔114,1
24の水平方向径b1に対する水平、垂直両方向のフォ
ーカス距離の比を計算機シミュレーションによって求め
たものである。
FIG. 3 shows that in the embodiment shown in FIG. 2, the horizontal diameter h of the outer peripheral portions 111 and 121 is 20.0 mm, the vertical diameter v of the outer peripheral portions 111 and 121 is 9.4 mm, and the vertical diameter of the central openings 114 and 124. a1 = outer opening 113, 113', 123,
123' vertical diameter a2 = 8.4 mm, retraction amount d1 of the electrode plate 112 = retraction amount d2 of the electrode plate 122 = 1.5 mm, eccentric distance S = 6.6 mm, the central opening 114,1
The ratio of the focus distance in both the horizontal and vertical directions to the horizontal diameter b1 of No. 24 was determined by computer simulation.

【0014】ここで、水平、あるいは垂直方向フォーカ
ス距離とは、中心軸上の一点からある出射角度をもって
出射し、中央開孔の水平あるいは垂直方向の対称軸を通
過する電子ビームが主レンズにより集束され、再び中心
軸を横切るまでの距離を、G3電極のG4電極側端面か
ら測ったものである。同端面から蛍光スクリーンまでの
距離を3.40mmとし、出射角を一定値に定め、水平
、垂直の各フォーカス距離が、この340mmという値
に一致する出射点をそれぞれ求め、さらに、これらの出
射点の中間から、同一出射角で電子ビームを出射させる
。図3は、このときの水平、垂直両方向のフォーカス距
離の比を示したものである。図から分かるように、中央
開孔の水平方向径b1〜5.5mmとすれば、垂直方向
と水平方向のフォーカス距離が一致し、両方向の集束作
用の強度が等しくなるので非点収差を取り除くことがで
きる。
[0014] Here, the horizontal or vertical focus distance means that an electron beam that is emitted from one point on the central axis at a certain emission angle and passes through the horizontal or vertical axis of symmetry of the central aperture is focused by the main lens. The distance from the G3 electrode to the G4 electrode side end face is measured from the G3 electrode to the point where the G4 electrode crosses the central axis again. The distance from the same end face to the fluorescent screen is 3.40 mm, the emission angle is set to a constant value, the emission points whose horizontal and vertical focus distances match this value of 340 mm are determined, and these emission points are The electron beam is emitted from the middle with the same emission angle. FIG. 3 shows the ratio of the focus distances in both the horizontal and vertical directions at this time. As can be seen from the figure, if the horizontal diameter of the central aperture is set to b1 to 5.5 mm, the vertical and horizontal focus distances will match, and the strength of the focusing action in both directions will be equal, so astigmatism can be eliminated. I can do it.

【0015】また、このときレンズ集束作用は、1mm
の間隔でつき合わされた、直径8mmの円筒のバイポテ
ンシャルレンズと同等の強度をもつ。これは、h=20
.0mm,S=6.6mmとしたとき、(1)式で制約
される電極開孔部に対する限界値6.8mmよりも大き
な値になっている。
[0015] Also, at this time, the lens focusing effect is 1 mm.
It has the same strength as a cylindrical bipotential lens with a diameter of 8 mm, which are placed together at an interval of . This is h=20
.. 0 mm and S=6.6 mm, this value is larger than the limit value of 6.8 mm for the electrode opening, which is restricted by equation (1).

【0016】図4は、図2に示した実施例において、上
記寸法としたとき、外側開孔113,113′,123
,123′の水平方向径b2の値と、外側電子ビームの
蛍光面上での水平方向スポット移動距離の関係を計算機
シミュレーションによって求めたものである。G3電極
には7kV,G4電極には25kVを印加し、G3電極
のG4電極側端部から蛍光面までの距離を340mmと
した。外側電子ビームと、中央電子ビームとは、水平方
向に6.6mm離れているので、STCをとるために必
要な、スポット移動距離は6.6mmであるが、実際に
は、色純度調整の自由度を残すため、6.1mm程度に
設計する場合が多い。この移動距離を確保するためには
、b2の値は、5.8mmとなる。
FIG. 4 shows the outer openings 113, 113', 123 when the above dimensions are used in the embodiment shown in FIG.
, 123' and the horizontal spot movement distance of the outer electron beam on the phosphor screen were determined by computer simulation. 7 kV was applied to the G3 electrode, and 25 kV was applied to the G4 electrode, and the distance from the end of the G3 electrode on the G4 electrode side to the phosphor screen was 340 mm. The outer electron beam and the center electron beam are separated by 6.6 mm in the horizontal direction, so the spot movement distance required to obtain STC is 6.6 mm, but in reality, the color purity can be adjusted freely. In order to preserve the degree of strength, it is often designed to be around 6.1 mm. In order to secure this moving distance, the value of b2 is 5.8 mm.

【0017】図5は、本発明電子銃の他の実施例の要部
断面図であり、G3電極の垂直方向の断面を示す図であ
る。極板112に設けられた開孔41,41′,42は
、2つの円弧の端点を平行な二直線で結んだ形状をして
いる。開孔が楕円であるものよりも蛍光面でのスポット
形状は悪化するが、開孔が円弧と直線より成るため、容
易に、また、精度良く工作できるという長所をもつ。 本実施例においても、開孔の水平方向径は垂直方向径よ
りも小さい。
FIG. 5 is a sectional view of a main part of another embodiment of the electron gun of the present invention, showing a vertical cross section of the G3 electrode. The openings 41, 41', and 42 provided in the electrode plate 112 have a shape in which the end points of two circular arcs are connected by two parallel straight lines. Although the spot shape on the phosphor screen is worse than one with an elliptical aperture, it has the advantage that it can be easily and precisely machined because the aperture consists of circular arcs and straight lines. Also in this embodiment, the horizontal diameter of the opening is smaller than the vertical diameter.

【0018】図6及び図7は、本発明電子銃のさらに他
の実施例の要部断面図であり、それぞれG3電極、G4
電極の垂直方向の断面を示す図である。中央の開孔52
,62は垂直方向の対称軸をもつが外側の開孔51,5
1′,61,61′は垂直方向の対称軸をもたない。 外側開孔51,51′,52,52′は長径が同一で、
短径の異なる2つの楕円を組み合わせたものであり、G
3電極の外側開孔51,51′は外側に組み合わされた
楕円の短径が、内側に組み合わされた楕円の短径よりも
小さくなっている。G3電極の外側開孔をこの様な形状
にすると、第2図の113,113′の様に開孔が、1
つの楕円の場合よりも、電子ビーム中央方向へ集させる
力が強くなるので、水平方向の径をより小さくしても、
STCをとることができる。
FIGS. 6 and 7 are sectional views of main parts of still another embodiment of the electron gun of the present invention, and show the G3 electrode and G4 electrode, respectively.
FIG. 3 is a diagram showing a vertical cross section of an electrode. central opening 52
, 62 have vertical symmetry axes, but the outer openings 51, 5
1', 61, 61' do not have a vertical axis of symmetry. The outer openings 51, 51', 52, and 52' have the same major axis,
It is a combination of two ellipses with different minor axes, and G
In the outer openings 51 and 51' of the three electrodes, the short axis of the ellipse combined on the outside is smaller than the short axis of the ellipse combined on the inside. If the outer aperture of the G3 electrode is shaped like this, the aperture will become 1
The force that focuses the electron beam toward the center is stronger than in the case of two ellipses, so even if the horizontal diameter is made smaller,
You can take STC.

【0019】逆に、G4電極では、第7図の61,61
′の様に、外側開孔を内側の楕円の短径が外側の楕円の
短径よりも小さい2つの楕円を組み合わせて構成すると
、電子ビームを中央方向へ集中させる力が強くなる。
On the contrary, in the G4 electrode, 61, 61 in FIG.
If the outer aperture is constructed by combining two ellipses in which the minor axis of the inner ellipse is smaller than the minor axis of the outer ellipse as shown in ', the force for concentrating the electron beam toward the center becomes stronger.

【0020】この様に、外側の開孔を垂直方向に対し非
対称にすると、電子ビームに対する集力が増し、STC
がとり易くなる。また、集中力が強過ぎる場合は、図6
の開孔をG4電極側に、図7の開孔をG3電極側に用い
れば、集中力を弱めることもできる。
[0020] In this way, by making the outer aperture asymmetrical with respect to the vertical direction, the concentration of the electron beam increases and the STC
becomes easier to remove. Also, if your concentration is too strong,
If the aperture shown in FIG. 7 is used on the G4 electrode side and the aperture shown in FIG. 7 is used on the G3 electrode side, the concentration force can be weakened.

【0021】図8は本発明のさらに他の実施例の要部断
面図であり、極板112,122を後退させず、電極外
囲部の対向面と同一平面に配置した実施例である。楕円
形の開孔113,113′,114,123,123′
,124により、非点収差を補正する。
FIG. 8 is a sectional view of a main part of still another embodiment of the present invention, and is an embodiment in which the electrode plates 112 and 122 are not retracted but are arranged on the same plane as the facing surface of the electrode outer enclosure. Oval openings 113, 113', 114, 123, 123'
, 124 to correct astigmatism.

【0022】本実施例では、極板が後退していないため
、第2,5,6,7図に示した実施例ほどには電極内部
への対向電極電位の侵入は深くならない。しかし、従来
例の如き内円筒が取り除かれているため、第1図に示し
た従来の電極構造よりは、対向電極電位が深く侵入する
ため、開孔径を増加させたのと同一の効果がある程度得
られ、フォーカス特性は向上する。
In this embodiment, since the electrode plate is not retracted, the counter electrode potential does not penetrate as deeply into the electrode as in the embodiments shown in FIGS. 2, 5, 6, and 7. However, since the inner cylinder as in the conventional example is removed, the counter electrode potential penetrates deeper than in the conventional electrode structure shown in Figure 1, so the same effect as increasing the aperture diameter can be obtained to some extent. The focus characteristics are improved.

【0023】第8図の実施例は、プレス加工により、電
極外周部と極板とを同時に成形でき、製作が容易である
という長所がある。
The embodiment shown in FIG. 8 has the advantage that the outer circumferential portion of the electrode and the electrode plate can be simultaneously molded by press working, making it easy to manufacture.

【0024】[0024]

【発明の効果】本発明によれば、電子銃外形を制約され
た中で、同一水平面に赤,緑,青3色に対応する主レン
ズを並列させる際に可能な、最大の径をもつ円筒電極を
つき合わせた場合よりも、集束作用の弱い主レンズを構
成することができるので、カラーブラウン管のフォーカ
ス特性を格段に改善できる効果がある。
Effects of the Invention According to the present invention, a cylinder with the maximum diameter that is possible when the main lenses corresponding to the three colors of red, green, and blue are arranged in parallel on the same horizontal plane while the outer shape of the electron gun is restricted. Since it is possible to construct a main lens with a weaker focusing effect than when the electrodes are butted together, this has the effect of significantly improving the focusing characteristics of the color cathode ray tube.

【0025】さらに、主レンズを構成するG3電極とG
4電極に形成される外側開孔の中心軸を偏位させること
なく、極板の後退量、及び該極板に形成される開孔形状
を適正に選ぶことにより、STCをとることができるの
で、組立時に、G3電極、G4電極に対し、同径、同軸
の治具を用いることができ、組立精度を向上させること
ができる。
Furthermore, the G3 electrode and the G3 electrode constituting the main lens
STC can be achieved by appropriately selecting the amount of retraction of the electrode plate and the shape of the hole formed in the electrode plate without deviating the central axis of the outer hole formed in the four electrodes. During assembly, jigs with the same diameter and coaxiality can be used for the G3 electrode and the G4 electrode, and assembly accuracy can be improved.

【0026】なお、本発明は、上述の説明で例示したバ
イポテンシャル型主レンズのみならず、ユニポテンシャ
ル型、またはその他の主レンズにも適用できることは勿
論である。また、上述の説明では、主レンズを構成する
1対の電極の双方に、本発明を適用した例を述べたが、
いずれか一方の電極にのみ適用しても同様の効果が得ら
れる。
The present invention is of course applicable not only to the bipotential type main lens exemplified in the above explanation, but also to a unipotential type or other main lens. Further, in the above explanation, an example was described in which the present invention was applied to both of a pair of electrodes that constitute the main lens.
A similar effect can be obtained even if it is applied to only one of the electrodes.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】従来のインライン型カラー受像管の概略を示す
断面図。
FIG. 1 is a cross-sectional view schematically showing a conventional in-line color picture tube.

【図2】本発明電子銃の一実施例の要部断面図。FIG. 2 is a sectional view of essential parts of an embodiment of the electron gun of the present invention.

【図3】本発明電子銃の中央部主レンズの水平、垂直方
向のフォーカス距離と開孔部短径との関係の一例を示す
図。
FIG. 3 is a diagram showing an example of the relationship between the horizontal and vertical focus distances of the central main lens of the electron gun of the present invention and the short diameter of the aperture.

【図4】その外側の主レンズの開孔部短径と、蛍光面上
での水平方向スポット移動距離の関係の一例を示す図。
FIG. 4 is a diagram showing an example of the relationship between the short diameter of the aperture of the outer main lens and the horizontal spot movement distance on the phosphor screen.

【図5】本発明電子銃の他の実施例の要部断面図。FIG. 5 is a sectional view of a main part of another embodiment of the electron gun of the present invention.

【図6】本発明電子銃の他の実施例の要部断面図。FIG. 6 is a sectional view of a main part of another embodiment of the electron gun of the present invention.

【図7】本発明電子銃の他の実施例の要部断面図。FIG. 7 is a sectional view of a main part of another embodiment of the electron gun of the present invention.

【図8】本発明電子銃の他の実施例の要部断面図。FIG. 8 is a sectional view of a main part of another embodiment of the electron gun of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス外囲器、2…フェースプレート、3…蛍光面
、4…シャドウマスク、5…導電膜、6,7,8…陰極
、9…G1電極、10…G2電極、11…G3電極、1
2…G4電極、13…遮蔽カップ、14…外部磁気偏向
ヨーク、121…G3側非点収差修正用極板、122…
G4側非点収差修正用極板、113,114,123,
124,41,42,51,52,61,62…ビーム
通過用開孔。
DESCRIPTION OF SYMBOLS 1... Glass envelope, 2... Face plate, 3... Fluorescent screen, 4... Shadow mask, 5... Conductive film, 6, 7, 8... Cathode, 9... G1 electrode, 10... G2 electrode, 11... G3 electrode, 1
2... G4 electrode, 13... Shielding cup, 14... External magnetic deflection yoke, 121... G3 side astigmatism correction polar plate, 122...
G4 side astigmatism correction polar plate, 113, 114, 123,
124, 41, 42, 51, 52, 61, 62...Apertures for beam passage.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蛍光面に向けて3本の電子ビームを発生す
る電子ビーム発生手段と、上記3本の電子ビームを上記
蛍光面に集束させる主レンズを構成する、互いに隔てて
設けられた、上記3本の電子ビームを取り囲む2個の外
周電極と、上記外周電極のそれぞれの対向端部に配置さ
れ、上記3本の電子ビームの通過する3個の開孔が一方
向に沿って形成されてなる2個の電極板とを有するカラ
ー受像管用電子銃において、上記2個の電極板の少なく
とも一方の電極板が後退されて上記外周電極の内部に配
置されるとともに、上記後退された電極板の開孔のうち
、中央の開孔の上記一方向の径が、その垂直方向の径よ
りも小さく形成されていることを特徴とするカラー受像
管用電子銃。
1. An electron beam generating means for generating three electron beams toward a phosphor screen, and a main lens for focusing the three electron beams on the phosphor screen, provided at a distance from each other; two outer circumferential electrodes surrounding the three electron beams, and three openings arranged in one direction, arranged at opposing ends of the outer circumferential electrodes, through which the three electron beams pass. In a color picture tube electron gun having two electrode plates, at least one of the two electrode plates is retracted and disposed inside the outer peripheral electrode, and the retracted electrode plate An electron gun for a color picture tube, characterized in that the diameter of the central opening in the one direction among the openings is smaller than the diameter in the vertical direction.
【請求項2】上記外側の開孔の上記一方向の径は、上記
中央の開孔の上記一方向の径よりも大きく形成されてい
ることを特徴とする、特許請求の範囲第1項記載のカラ
ー受像管用電子銃。
2. The diameter of the outer opening in the one direction is larger than the diameter of the central opening in the one direction. electron gun for color picture tubes.
JP6597091A 1991-03-29 1991-03-29 Electron gun for color picture tube Expired - Lifetime JPH0734352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6597091A JPH0734352B2 (en) 1991-03-29 1991-03-29 Electron gun for color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6597091A JPH0734352B2 (en) 1991-03-29 1991-03-29 Electron gun for color picture tube

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20161781A Division JPS58103752A (en) 1981-12-16 1981-12-16 Electron gun for color picture tube

Publications (2)

Publication Number Publication Date
JPH04212243A true JPH04212243A (en) 1992-08-03
JPH0734352B2 JPH0734352B2 (en) 1995-04-12

Family

ID=13302366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6597091A Expired - Lifetime JPH0734352B2 (en) 1991-03-29 1991-03-29 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JPH0734352B2 (en)

Also Published As

Publication number Publication date
JPH0734352B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
KR0173722B1 (en) Color ray tube
KR890003825B1 (en) Electron gun for crt
US5066887A (en) Color picture tube having an inline electron gun with an astigmatic prefocusing lens
JPS62172635A (en) Color display tube
JPH0218540B2 (en)
KR880001014B1 (en) A electron-gun for a color t.v.
JPH07134953A (en) Color picture tube
JPH04312745A (en) In-line type electron gun for color cathode-ray tube
KR900008202B1 (en) Electron gun of color crt
JPH05251014A (en) Electron gun for color picture tube
US6744191B2 (en) Cathode ray tube including an electron gun with specific main lens section
JPH0272546A (en) Electron gun for color picture tube
JPH0452586B2 (en)
JPH05325825A (en) Electron gun for color cathode-ray tube
JP2644769B2 (en) Color picture tube
JPH04212243A (en) Electron gun for color image pickup tube
JPH1125879A (en) Electron gun for color cathode-ray tube
JPS6331891B2 (en)
JPS6028139A (en) Electron gun for color picture tube
JP2602254B2 (en) Color picture tube
JP2692858B2 (en) Color picture tube equipment
JP3360863B2 (en) Electron gun for picture tube
JPS6079647A (en) Electron gun for color picture tube
JPH06243797A (en) Electron gun for color cathode-ray tube
JPH08129967A (en) Color picture tube device