JPH0218540B2 - - Google Patents

Info

Publication number
JPH0218540B2
JPH0218540B2 JP56201617A JP20161781A JPH0218540B2 JP H0218540 B2 JPH0218540 B2 JP H0218540B2 JP 56201617 A JP56201617 A JP 56201617A JP 20161781 A JP20161781 A JP 20161781A JP H0218540 B2 JPH0218540 B2 JP H0218540B2
Authority
JP
Japan
Prior art keywords
electrode
diameter
electron gun
electrode plate
color picture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56201617A
Other languages
Japanese (ja)
Other versions
JPS58103752A (en
Inventor
Masaji Shirai
Masaaki Yamauchi
Kazuo Majima
Ko Takano
Masakazu Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20161781A priority Critical patent/JPS58103752A/en
Priority to US06/448,601 priority patent/US4581560A/en
Priority to GB08235561A priority patent/GB2112564B/en
Priority to DE19823246458 priority patent/DE3246458A1/en
Publication of JPS58103752A publication Critical patent/JPS58103752A/en
Publication of JPH0218540B2 publication Critical patent/JPH0218540B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/46Arrangements of electrodes and associated parts for generating or controlling the ray or beam, e.g. electron-optical arrangement
    • H01J29/48Electron guns
    • H01J29/50Electron guns two or more guns in a single vacuum space, e.g. for plural-ray tube
    • H01J29/503Three or more guns, the axes of which lay in a common plane

Description

【発明の詳細な説明】 本発明は、カラー受像管用電子銃に関し、特に
主レンズを構成する電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron gun for a color picture tube, and more particularly to an electrode constituting a main lens.

第1図は、従来の電子銃に備えたカラー受像管
の断面図である。ガラス外囲器1のフエースプレ
ート部2の内壁に、3色の蛍光体を交互にストラ
イプ状に塗布した蛍光面3が支持されている。陰
極6,7,8の中心軸15,16,17はG1電
極9,G2電極10、主レンズを構成するG3の電
極11、および遮蔽カツプ13のそれぞれの陰極
に対応する開孔ならびに、G3電極の開孔部と接
続する内円筒20,21,22の中心軸と一致
し、共通平面上に、互いにほぼ平行に配置されて
いる。主レンズを構成するもう一方の電極である
G4電極12の中央の開孔部ならびに、それと接
続した内円筒24の中心軸は、上記中心軸16と
一致しているが、外側の両開孔ならびに、それら
と接続する内円筒23,25の中心軸18,19
はそれぞれに対応する中心軸15,17と一致せ
ず外側にわずかに変位している。各内円筒の内径
は、対応する開孔の径と一致する。各陰極から射
出される3本の電子ビームは、中心軸15,1
6,17に沿つて主レンズに入射する。G3電極
11は、G4電極12よりも低電位に設定され、
高電位のG4電極12は、遮蔽カツプ13、ガラ
ス外囲器1の内壁に設けられた導電膜5と同電位
になつている。G3、G4両電極の中央部の開孔と
内円筒21,24は同軸になつており、また、内
円筒が、非軸対称の電極外周部からの影響を打ち
消すので、中央に形成される主レンズは軸対称と
なり、中央ビームは主レンズによつて集束された
後、軸に沿つた軌道を直進する。一方、両電極の
外側の開孔と、内円筒20,22ならびに23,
25は、互いに軸がずれているので、外側には非
軸対称の主レンズが形成される。このため、外側
ビームは、主レンズ領域のうち、G4電極側に形
成される発散レンズ領域で、レンズ中心軸から中
央ビーム方向に外れた部分を通過し、主レンズに
よる集束作用と同時に、中央ビーム方向への集中
力をうける。こうして、3本の電子ビームは、シ
ヤドウマスク4上で、結像すると同時に、互いに
重なり合うように集中する。この様に、各ビーム
を集中させる操作を、静コンバーゼンス(以後
STCと略す)と呼ぶ。さらに各電子ビームは、
シヤドウマスク4により色選別をうけ、各ビーム
に対応する色の蛍光体を励起発光させる成分だけ
が、シヤドウマスク4の開孔を通過し、蛍光面3
に到る。また、電子ビームを蛍光面上で走査する
ため、外部磁気偏向ヨーク14が設けられてい
る。
FIG. 1 is a sectional view of a color picture tube included in a conventional electron gun. A phosphor screen 3 is supported on the inner wall of a face plate portion 2 of a glass envelope 1 and is coated with phosphors of three colors alternately in stripes. The central axes 15, 16, 17 of the cathodes 6, 7, 8 are connected to the G1 electrode 9, the G2 electrode 10, the G3 electrode 11 constituting the main lens, and the openings corresponding to the respective cathodes of the shielding cup 13, as well as the G3 electrode. The inner cylinders 20, 21, and 22 are arranged substantially parallel to each other on a common plane and coincide with the central axes of the inner cylinders 20, 21, and 22 connected to the openings of the inner cylinders. This is the other electrode that makes up the main lens.
The central aperture of the G4 electrode 12 and the central axis of the inner cylinder 24 connected thereto coincide with the central axis 16, but both the outer apertures and the inner cylinders 23 and 25 connected thereto coincide with the central axis 16. Central axis 18, 19
do not coincide with the corresponding central axes 15 and 17, but are slightly displaced outward. The inner diameter of each inner cylinder matches the diameter of the corresponding aperture. Three electron beams emitted from each cathode have central axes 15, 1
The light enters the main lens along lines 6 and 17. The G3 electrode 11 is set to a lower potential than the G4 electrode 12,
The high potential G4 electrode 12 is at the same potential as the shielding cup 13 and the conductive film 5 provided on the inner wall of the glass envelope 1. The opening in the center of both G3 and G4 electrodes and the inner cylinders 21 and 24 are coaxial, and since the inner cylinder cancels out the influence from the non-axisymmetric electrode outer periphery, the main body formed in the center The lenses are axially symmetrical, and the central beam travels straight along a trajectory along the axis after being focused by the main lens. On the other hand, the openings on the outside of both electrodes and the inner cylinders 20, 22 and 23,
Since the axes of the lens elements 25 are shifted from each other, a non-axisymmetric main lens is formed on the outside. Therefore, the outer beam passes through a part of the main lens area that is deviated from the lens center axis in the direction of the center beam in the diverging lens area formed on the G4 electrode side, and at the same time as the main lens focuses, the outer beam Gain concentration in a direction. In this way, the three electron beams form an image on the shadow mask 4 and at the same time are concentrated so as to overlap each other. In this way, the operation of concentrating each beam is called static convergence (hereinafter referred to as
(abbreviated as STC). Furthermore, each electron beam is
The colors are sorted by the shadow mask 4, and only the components that excite the phosphor of the color corresponding to each beam to emit light pass through the apertures of the shadow mask 4 and pass through the phosphor screen 3.
reach. Further, an external magnetic deflection yoke 14 is provided to scan the electron beam on the fluorescent screen.

受像管のフオーカス特性に大きく影響を与える
要因に、主レンズのレンズ倍率、収差があり、こ
れらは、レンズ集束作用の強度に強く依存する。
受像管では、電子ビームの走査面積と、最大偏向
角を定めると、主レンズから結像面までの距離が
確定する。結像面までの距離が一定であるという
条件の下で、レンズ集束作用を弱めることは、レ
ンズ倍率の低下をもたらし、さらに、偏向収差の
増大を防ぐため、主レンズ内でのビームの広がり
を一定値に抑えるという条件を加えると、主レン
ズへのビーム入射角度を低下させることになる。
ビーム入射角度をαiとすると、主レンズの収差の
中で最も優勢な球面収差による最小錯乱円直径δ
は、 δ=1/2MCspαi 3 と表され、ビーム入射角度を低下させると、球面
収差を低減させることができる。ここで、Mはレ
ンズ倍率、Cspは球面収差係数である。
Factors that greatly affect the focus characteristics of a picture tube include the lens magnification and aberration of the main lens, which strongly depend on the strength of the lens focusing action.
In a picture tube, the distance from the main lens to the image plane is determined by determining the scanning area of the electron beam and the maximum deflection angle. Under the condition that the distance to the image plane is constant, weakening the lens focusing effect will result in a decrease in lens magnification, and in addition, to prevent an increase in deflection aberration, the beam spreading within the main lens will be reduced. Adding the condition of keeping it to a constant value will reduce the beam incidence angle to the main lens.
When the beam incidence angle is α i , the diameter of the circle of least confusion due to spherical aberration, which is the most dominant among the aberrations of the main lens, is δ
is expressed as δ=1/2MC sp α i 3 , and by lowering the beam incidence angle, the spherical aberration can be reduced. Here, M is the lens magnification and C sp is the spherical aberration coefficient.

このように、受像管では、主レンズのレンズ集
束作用を弱めると、レンズ倍率、球面収差が低減
され、フオーカス特性が向上する。この集束作用
を弱める方法の1つは、主レンズを形成するG3、
G4電極の開孔部ならびに対応する内円筒に径を
拡大することである。(以後、説明を簡単にする
ため、開孔部径と述べるときは、同時に対応する
内円筒の径も含むこととする。) しかし、第1図に示したようなインライン型電
子銃では、赤、縁、青3色のそれぞれに対応する
主レンズを同一平面に一列に配列しているので、
上記開孔部径は、ガラス外囲器1のうち、電子銃
を収容しているネツク部分の内径の1/3以下でな
ければならない。電極の厚みを考慮し、さらに電
極加工上の問題点をも配慮すると、限界値はさら
に小さな値となる。この限界値を引き上げるため
に、ネツク部分の内径を拡大すると、偏向電力が
増大し、また、一般に上記開孔部径を拡大する
と、開孔部の離心距離が大きくなり、コンバーゼ
ンス特性が悪化するという問題が生ずる。これら
の点を勘案し、開孔部径は、通常、できるだけ大
きくしてあるので、これ以上の拡大は極めて困難
である。
In this way, in a picture tube, weakening the lens focusing effect of the main lens reduces lens magnification and spherical aberration, and improves focus characteristics. One way to weaken this focusing effect is to use G3, which forms the main lens,
The diameter of the opening of the G4 electrode as well as the corresponding inner cylinder is enlarged. (Hereafter, to simplify the explanation, when we refer to the aperture diameter, we will also include the diameter of the corresponding inner cylinder.) However, in an in-line electron gun like the one shown in Figure 1, , rim, and the main lenses corresponding to each of the three blue colors are arranged in a row on the same plane.
The diameter of the opening must be 1/3 or less of the inner diameter of the neck portion of the glass envelope 1 that accommodates the electron gun. If the thickness of the electrode is taken into consideration, as well as problems in electrode processing, the limit value becomes even smaller. In order to raise this limit value, increasing the inner diameter of the neck portion increases the deflection power, and generally speaking, increasing the aperture diameter increases the eccentric distance of the aperture, which worsens the convergence characteristics. A problem arises. Taking these points into consideration, the diameter of the opening is usually made as large as possible, so it is extremely difficult to enlarge it any further.

特開昭55−17963号公報に、上記開孔部径を、
上記限界値以上に拡大する一方法が開示されてい
る。この方法では、開孔部径を、隣り合う開孔部
の離心距離よりも大きくとつたことにより生ず
る、開孔部の重なり部分を連通させ、さらに連通
部には、電位補正のための仕切り板を設けてあ
る。
In Japanese Patent Application Laid-Open No. 55-17963, the above-mentioned hole diameter is
One method of expanding beyond the above limit is disclosed. In this method, the diameter of the aperture is set larger than the eccentric distance between adjacent apertures, so that the overlapping portions of the apertures are communicated, and a partition plate is installed in the communication area for potential correction. is provided.

しかし、この方法でも、開孔部径には、一定の
限界がある。G3電極の、外周部の水平方向(電
子ビームを通過する3個の開孔の配列方向)の径
をh、開孔部の離心距離をSとすると、開孔部径
の限界値Lは、 L=h−2×S ……(1) となる。実際には電極加工上の問題から、この限
界値はさらに小さな値となる。
However, even with this method, there is a certain limit to the diameter of the opening. Assuming that the diameter of the outer periphery of the G3 electrode in the horizontal direction (the direction in which the three apertures pass through the electron beam) is h, and the eccentric distance of the aperture is S, the limit value L of the aperture diameter is: L=h-2×S...(1). In reality, this limit value becomes even smaller due to problems in electrode processing.

本発明は、電子銃の径形がネツク管内径によつ
て制約をうけている場合にも、前記開孔部径を、
(1)式で制約される値よりもさらに実効的に増大さ
せることができ、もつてフオーカス特性をさらに
向上させることのできるカラー受像管用電子銃を
提供することを目的とする。
In the present invention, even when the diameter of the electron gun is restricted by the inner diameter of the neck tube, the diameter of the opening can be adjusted to
It is an object of the present invention to provide an electron gun for a color picture tube that can effectively increase the value more than the value constrained by equation (1) and further improve the focus characteristics.

上記目的を達成するため、本発明はG3電極と
G4電極の対向面を構成している極板だけを、互
いに後退させ、この極板を外周電極の内部に配置
することを特徴とする。この様にすると、G3電
極内部にはG4電極側の高電位が、G4電極内部に
は、G3電極側の低電位がより深く侵入する。さ
らに、従来例の如き内円筒20〜25を取り除
き、電位の侵入を一層深くさせる。このような電
位の侵入は、対向面上の開孔部径を拡大したのと
実質的に同じ効果をもつ。即ち、実効径が増大す
る。しかし、G3電極と、G4電極の対向面を除い
た外周電極の断面は非円形であり、水平方向の径
が、垂直方向の径よりも大きい。したがつて、電
位の侵入は水平方向で著しく、水平方向の実効径
が、垂直方向の実効径よりも大きくなる。このた
め、水平方向のレンズ集束作用が垂直方向よりも
弱くなるので、電子ビームを集束する際、非点収
差があらわれる。そこで、本発明では、対向電極
板に形成される開孔部の形状を非円形とし、水平
方向の径を、垂直方向の径よりも小さくする。こ
の様にして、水平方向の電位の侵入を抑えると、
水平垂直方向のレンズ集束作用を等しくでき、非
点収差を取り除くことができる。
In order to achieve the above object, the present invention uses a G3 electrode and
It is characterized in that only the electrode plates forming the facing surfaces of the G4 electrode are moved back from each other and these electrode plates are arranged inside the outer peripheral electrode. In this way, the high potential of the G4 electrode penetrates into the G3 electrode, and the low potential of the G3 electrode penetrates deeper into the G4 electrode. Furthermore, the inner cylinders 20 to 25 as in the conventional example are removed, allowing the potential to penetrate deeper. Such potential penetration has substantially the same effect as enlarging the diameter of the aperture on the opposing surface. That is, the effective diameter increases. However, the cross section of the outer peripheral electrode excluding the facing surfaces of the G3 electrode and the G4 electrode is non-circular, and the diameter in the horizontal direction is larger than the diameter in the vertical direction. Therefore, the potential penetration is significant in the horizontal direction, and the effective diameter in the horizontal direction becomes larger than the effective diameter in the vertical direction. For this reason, the lens focusing effect in the horizontal direction is weaker than in the vertical direction, so astigmatism appears when focusing the electron beam. Therefore, in the present invention, the shape of the opening formed in the counter electrode plate is made non-circular, and the diameter in the horizontal direction is made smaller than the diameter in the vertical direction. In this way, if we suppress the invasion of horizontal potential,
The horizontal and vertical lens focusing effects can be made equal, and astigmatism can be eliminated.

本発明によれば、対向電極板の後退量と、該対
向電極板に形成される開孔の形状を適正に選ぶこ
とにより、実質的に開孔部の径を増大させたと同
じ効果が生じ、レンズ集束作用が弱くなり、フオ
ーカス特性が改善される。
According to the present invention, by appropriately selecting the amount of retraction of the counter electrode plate and the shape of the aperture formed in the counter electrode plate, substantially the same effect as increasing the diameter of the aperture is produced; Lens focusing effect is weakened and focus characteristics are improved.

さらに、副次的な効果として、外側の電子ビー
ムに内側方向への集中力が生じ、G3電極側開孔
の中心軸とG4電極側開孔の中心軸を偏位させる
ことなく一致させても、STCをとることができ
る。これは、G3電極の内部の電位が、外周部付
近では低く、G4側高電位の深く侵入する中央部
では高くなるため、外周部から内側に向う電界が
生じるためである。
Furthermore, as a secondary effect, a concentration force is generated inward in the outer electron beam, and even if the central axis of the G3 electrode side aperture and the central axis of the G4 electrode side aperture are aligned without deviation. , you can take STC. This is because the potential inside the G3 electrode is low near the outer periphery and higher in the center where the high potential on the G4 side penetrates deeply, so an electric field is generated inward from the outer periphery.

また、本発明電子銃は、電子ビームを通過する
開孔に連通部分が無く、また、電位補正のための
仕切り板も必要としないので、前記の特開昭55−
17963に示された電極構造とは全く異なる。
Furthermore, the electron gun of the present invention has no communicating part in the aperture through which the electron beam passes, and also does not require a partition plate for potential correction.
This is completely different from the electrode structure shown in 17963.

以下、本発明の実施例を、図面により説明す
る。第2図は、本発明電子銃の一実施例の要部断
面図であり、バイポテンシヤル型主レンズを構成
するG3、G4電極の水平方向、および垂直方向の
断面図である。図において、111はG3電極の
外周部、121はG4電極の外周部、13はカツ
プ電極である。112はG3電極の外周部111
の内部に設けられた、非点収差修正用の極板、1
22はG4電極の外周部121の内部に設けられ
た非点収差修正用の極板である。極板112には
中央ビームの通過する開孔114と、外側ビーム
の通過する開孔113,113′が、極板122
には中央ビームの通過する開孔124と、外側ビ
ームの通過する開孔123,123′が一列に設
けられている。本実施例では、開孔113,11
3′,114,123,123′,124は楕円形
であり、また、G3側とG4側の互いに対応する開
孔の形状と寸法は同一である。外側の開孔11
3,113′,123,123′と中央の開孔11
4,124とを同一形状、同一寸法にすると、外
側に形成される主レンズの水平方向に対するレン
ズ集束作用が強くなるので、外側開孔の水平方向
径を、中央開孔の水平方向径よりも大きくし、水
平、垂直両方向の集束作用の強度を等しくする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view of a main part of an embodiment of the electron gun of the present invention, and is a sectional view in the horizontal direction and the vertical direction of the G3 and G4 electrodes forming the bipotential main lens. In the figure, 111 is the outer periphery of the G3 electrode, 121 is the outer periphery of the G4 electrode, and 13 is the cup electrode. 112 is the outer peripheral part 111 of the G3 electrode
A polar plate for astigmatism correction provided inside the
Reference numeral 22 denotes a polar plate for astigmatism correction provided inside the outer peripheral portion 121 of the G4 electrode. The electrode plate 112 has an aperture 114 through which the central beam passes and apertures 113 and 113' through which the outer beams pass.
An aperture 124 through which the central beam passes and apertures 123 and 123' through which the outer beams pass are provided in a row. In this embodiment, the openings 113, 11
3', 114, 123, 123', and 124 are elliptical, and the shapes and dimensions of the corresponding openings on the G3 side and G4 side are the same. Outer opening 11
3, 113', 123, 123' and central opening 11
4 and 124 have the same shape and size, the lens focusing effect in the horizontal direction of the main lens formed on the outside becomes stronger, so the horizontal diameter of the outer aperture is set to be larger than the horizontal diameter of the central aperture. Increase the strength of the focusing action in both the horizontal and vertical directions.

第3図は、第2図に示した実施例において、外
周部111,121の水平方向径h=20.0mm、そ
の垂直方向径v=9.4mm、中央開孔114,12
4の垂直方向径a1=外側開孔113,113′,
123,123′の垂直方向径a2=8.4mm、極板1
12の後退量d1=極板122の後退量d2=1.5mm、
離心距離S=6.6mmとしたとき、中央開孔114,
124の水平方向径b1に対する水平、垂直両方向
のフオーカス距離の比を計算機シミユレーシヨン
によつて求めたものである。
FIG. 3 shows, in the embodiment shown in FIG.
4 vertical diameter a 1 = outer opening 113, 113',
Vertical diameter a 2 of 123, 123' = 8.4 mm, plate 1
Retraction amount d 1 of electrode plate 122 = Retraction amount d 2 of electrode plate 122 = 1.5 mm,
When the eccentric distance S = 6.6 mm, the central opening 114,
The ratio of the focus distance in both the horizontal and vertical directions to the horizontal diameter b 1 of 124 was determined by computer simulation.

ここで、水平、あるいは垂直方向フオーカス距
離とは、中心軸上の一点からある出射角度をもつ
て出射し、中央開孔の水平あるいは垂直方向の対
称軸を通過する電子ビームが主レンズにより集束
され、再び中心軸を横切るまでの距離を、G3電
極のG4電極側端面から測つたものである。同端
面から蛍光スクリーンまでの距離を3.40mmとし、
出射角を一定値に定め、水平、垂直の各フオーカ
ス距離が、この340mmという値に一致する出射点
をそれぞれ求め、さらに、これらの出射点の中間
から、同一出射角で電子ビームを出射させる。第
3図は、このときの水平、垂直両方向のフオーカ
ス距離の比を示したものである。図から分るよう
に、中央開孔の水平方向径b15.5mmとすれば、
垂直方向と水平方向のフオーカス距離が一致し、
両方向の集束作用の強度が等しくなるので非点収
差を取り除くことができる。
Here, the horizontal or vertical focus distance means that the electron beam that is emitted from one point on the central axis at a certain emission angle and passes through the horizontal or vertical axis of symmetry of the central aperture is focused by the main lens. , the distance from the end face of the G3 electrode on the G4 electrode side to the point where it crosses the central axis again is measured. The distance from the same end face to the fluorescent screen is 3.40mm,
The emission angle is set to a constant value, the emission points whose horizontal and vertical focus distances match this value of 340 mm are found, and the electron beam is then emitted from the middle of these emission points at the same emission angle. FIG. 3 shows the ratio of focus distances in both the horizontal and vertical directions at this time. As can be seen from the figure, if the horizontal diameter of the central hole is b 1 5.5 mm,
Vertical and horizontal focus distances match,
Since the intensity of the focusing action in both directions becomes equal, astigmatism can be eliminated.

また、このときレンズ集束作用は、1mmの間隔
でつき合わされた、直径8mmの円筒のバイポテン
シヤルレンズと同等の強度をもつ。これは、h=
20.0mm、S=6.6mmとしたとき、(1)式で制約され
る電極開孔部に対する限界値6.8mmよりも大きな
値になつている。
Further, in this case, the lens focusing action has a strength equivalent to that of bipotential lenses of 8 mm diameter cylinders that are aligned at an interval of 1 mm. This is h=
When 20.0 mm and S = 6.6 mm, this value is larger than the limit value of 6.8 mm for the electrode opening restricted by equation (1).

第4図は、第2図に示した実施例において、上
記寸法としたとき、外側開孔113,113′,
123,123′の水平方向径b2の値と、外側電
子ビームの螢光面上での水平方向スポツト移動距
離の関係を計算機シミユレーシヨンによつて求め
たものである。G3電極には7kV、G4電極には
25kVを印加し、G3電極のG4電極側端部から螢光
面までの距離を340mmとした。外側電子ビームと、
中央電子ビームとは、水平方向に6.6mm離れてい
るので、STCをとるために必要な、スポツト移
動距離は6.6mmであるが、実際には、色純度調整
の自由度を残すため、6.1mm程度に設計する場合
が多い。この移動距離を確保するためには、b2
値は、5.8mmとなる。
FIG. 4 shows the outer openings 113, 113',
The relationship between the value of the horizontal diameter b2 of 123 and 123' and the horizontal spot movement distance of the outer electron beam on the fluorescent surface was determined by computer simulation. 7kV for G3 electrode, 7kV for G4 electrode
25 kV was applied, and the distance from the end of the G3 electrode on the G4 electrode side to the fluorescent surface was set to 340 mm. an outer electron beam;
The central electron beam is 6.6 mm apart in the horizontal direction, so the spot movement distance required to take STC is 6.6 mm, but in reality it is 6.1 mm in order to leave freedom in color purity adjustment. It is often designed to a certain degree. In order to secure this moving distance, the value of b 2 is 5.8 mm.

第5図は、本発明電子銃の他の実施例の要部断
面図であり、G3電極の垂直方向の断面を示す図
である。極板112に設けられた開孔41,4
1′,42は、2つの円弧の端点を平行な二直線
で結んだ形状をしている。開孔が楕円であるもの
よりも螢光面でのスポツト形状は悪化するが、開
孔が円弧と直線より成るため、容易に、また、精
度良く工作できるという長所をもつ。本実施例に
おいても、開孔の水平方向径は垂直方向径よりも
小さい。
FIG. 5 is a sectional view of a main part of another embodiment of the electron gun of the present invention, and is a view showing a vertical cross section of the G3 electrode. Openings 41 and 4 provided in the electrode plate 112
1' and 42 have a shape in which the end points of two circular arcs are connected by two parallel straight lines. Although the shape of the spot on the fluorescent surface is worse than when the aperture is elliptical, it has the advantage that it can be machined easily and with high precision because the aperture consists of circular arcs and straight lines. In this embodiment as well, the horizontal diameter of the opening is smaller than the vertical diameter.

第6図及び第7図は、本発明電子銃のさらに他
の実施例の要部断面図であり、それぞれG3電極、
G4電極の垂直方向の断面を示す図である。中央
の開孔52,62は垂直方向の対称軸をもつが外
側の開孔51,51′,61,61′は垂直方向の
対称軸をもたない。外側開孔51,51′,52,
52′は長径が同一で、短径の異なる2つの楕円
を組み合わせたものであり、G3電極の外側開孔
51,51′は外側に組み合わされた楕円の短径
が、内側に組み合わされた楕円の短径よりも小さ
くなつている。G3電極の外側開孔をこの様な形
状にすると、第2図の113,113′の様に開
孔が、1つの楕円の場合よりも、電子ビーム中央
方向へ集させる力が強くなるので、水平方向の径
をより小さくしても、STCをとることができる。
FIG. 6 and FIG. 7 are main part sectional views of still another embodiment of the electron gun of the present invention, respectively.
FIG. 3 is a diagram showing a vertical cross section of the G4 electrode. The central apertures 52, 62 have a vertical axis of symmetry, but the outer apertures 51, 51', 61, 61' do not have a vertical axis of symmetry. Outer openings 51, 51', 52,
52' is a combination of two ellipses with the same major axis and different minor axes, and the outer openings 51, 51' of the G3 electrode are such that the minor axis of the ellipse combined on the outside is the same as the ellipse combined on the inside. It is smaller than the short axis of. When the outer aperture of the G3 electrode is shaped like this, the force for concentrating the electron beam toward the center becomes stronger than when the aperture is a single ellipse like 113 and 113' in Fig. 2. STC can be obtained even if the horizontal diameter is made smaller.

逆に、G4電極では、第7図の61,61′の様
に、外側開孔を内側の楕円の短径が外側の楕円の
短径よりも小さい2つの楕円を組み合わせて構成
すると、電子ビームを中央方向へ集中させる力が
強くなる。
On the other hand, in the G4 electrode, if the outer aperture is constructed by combining two ellipses, the inner ellipse's minor axis being smaller than the outer ellipse's minor axis, as shown at 61 and 61' in Figure 7, the electron beam The force that concentrates the energy toward the center becomes stronger.

この様に、外側の開孔を垂直方向に対し非対称
にすると、電子ビームに対する集力が増し、
STCがとり易くなる。また、集中力が強過ぎる
場合は、第6図の開孔をG4電極側に、第7図の
開孔をG3電極側に用いれば、集中力を弱めるこ
ともできる。
In this way, by making the outer aperture asymmetrical with respect to the vertical direction, the concentration of the electron beam increases,
STC becomes easier to take. Furthermore, if the concentration is too strong, the concentration can be weakened by using the aperture shown in FIG. 6 on the G4 electrode side and the aperture shown in FIG. 7 on the G3 electrode side.

第8図は本発明のさらに他の実施例の要部断面
図であり、極板112,122を後退させず、電
極外囲部の対向面と同一平面に配置した実施例で
ある。楕円形の開孔113,113′,114,
123,123′,124により、非点収差を補
正する。
FIG. 8 is a sectional view of a main part of still another embodiment of the present invention, and is an embodiment in which the electrode plates 112 and 122 are not retracted but are arranged on the same plane as the facing surface of the electrode outer enclosure. Oval openings 113, 113', 114,
123, 123', and 124 correct astigmatism.

本実施例では極板が後退していないため、第
2,5,6,7図に示した実施例ほどには電極内
部への対向電極電位の侵入は深くならない。しか
し、従来例の如き内円筒が取り除かれているた
め、第1図に示した従来の電極構造よりは、対向
電極電位が深く侵入するため、開孔径を増加させ
たのと同一の効果がある程度得られ、フオーカス
特性は向上する。
In this embodiment, since the electrode plate is not retracted, the counter electrode potential does not penetrate as deeply into the electrode as in the embodiments shown in FIGS. 2, 5, 6, and 7. However, since the inner cylinder as in the conventional example is removed, the counter electrode potential penetrates deeper than in the conventional electrode structure shown in Figure 1, so the same effect as increasing the aperture diameter can be obtained to some extent. obtained, and the focus characteristics are improved.

第8図の実施例は、プレス加工により、電極外
周部と極板とを同時に成形でき、製作が容易であ
るという長所がある。
The embodiment shown in FIG. 8 has the advantage that the outer circumferential portion of the electrode and the electrode plate can be simultaneously molded by press working, and manufacturing is easy.

本発明によれば、電子銃外形を制約された中
で、同一水平面に赤、縁、青3色に対応する主レ
ンズを並列させる際に可能な、最大の径をもつ円
筒電極をつき合わせた場合よりも、集束作用の弱
い主レンズを構成することができるので、カラー
ブラウン管のフオーカス特性を格段に改善できる
効果がある。
According to the present invention, cylindrical electrodes with the largest diameter possible when arranging the main lenses corresponding to the three colors of red, edge, and blue on the same horizontal plane are brought together within the constraints of the outer shape of the electron gun. Since it is possible to configure a main lens with a weaker focusing effect than in the case of the present invention, it is possible to significantly improve the focus characteristics of a color cathode ray tube.

さらに、主レンズを構成するG3電極とG4電極
に形成される外側開孔の中心軸を偏位させること
なく、極板の後退量、及び該極板に形成される開
孔形状を適正に選ぶことにより、STCをとるこ
とができるので、組立時に、G3電極、G4電極に
対し、同径、同軸の治具を用いることができ、組
立精度を向上させることができる。
Furthermore, the amount of retraction of the electrode plate and the shape of the aperture formed in the electrode plate are appropriately selected without deviating the central axis of the outer aperture formed in the G3 and G4 electrodes that make up the main lens. As a result, since the STC can be taken, jigs with the same diameter and the same axis can be used for the G3 electrode and the G4 electrode during assembly, and assembly accuracy can be improved.

なお、本発明は、上述の説明で例示したバイポ
テンシヤル型主レンズのみならず、ユニポテンシ
ヤル型、またはその他の主レンズにも適用できる
ことは勿論である。また、上述の説明では、主レ
ンズを構成する1対の電極の双方に、本発明を適
用した例を述べたが、いずれか一方の電極にのみ
適用しても同様の効果が得られる。
Note that the present invention is of course applicable not only to the bipotential type main lens exemplified in the above description but also to a unipotential type or other type main lens. Further, in the above description, an example was described in which the present invention is applied to both of a pair of electrodes that constitute the main lens, but the same effect can be obtained even if the present invention is applied to only one of the electrodes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のインライン型カラー受像管の概
略を示す断面図、第2図は本発明電子銃の一実施
例の要部断面図、第3図は本発明電子銃の中央部
主レンズの水平、垂直方向のフオーカス距離と開
孔部短径との関係の一例を示す図、第4図はその
外側の主レンズの開孔部短径と、螢光面上での水
平方向スポツト移動距離の関係の一例を示す図、
第5図乃至第8図はそれぞれ本発明電子銃の他の
実施例の要部断面図である。 1……ガラス外囲器、2……フエースプレー
ト、3……螢光面、4……シヤドウマスク、5…
…導電膜、6,7,8……陰極、9……G1電極、
10……G2電極、11……G3電極、12……G4
電極、13……遮蔽カツプ、14……外部磁気偏
向ヨーク、121……G3側非点収差修正用極板、
122……G4側非点収差修正用極板、113,
114,123,124,41,42,51,5
2,61,62……ビーム通過用開孔。
FIG. 1 is a sectional view schematically showing a conventional in-line color picture tube, FIG. 2 is a sectional view of a main part of an embodiment of an electron gun of the present invention, and FIG. 3 is a sectional view of a central main lens of an electron gun of the present invention. A diagram showing an example of the relationship between the focus distance in the horizontal and vertical directions and the minor diameter of the aperture. Figure 4 shows the minor diameter of the aperture of the outer main lens and the horizontal spot movement distance on the fluorescent surface. A diagram showing an example of the relationship between
5 to 8 are sectional views of main parts of other embodiments of the electron gun of the present invention. 1... Glass envelope, 2... Face plate, 3... Fluorescent surface, 4... Shadow mask, 5...
...Conductive film, 6,7,8...Cathode, 9...G1 electrode,
10...G2 electrode, 11...G3 electrode, 12...G4
Electrode, 13... Shielding cup, 14... External magnetic deflection yoke, 121... G3 side astigmatism correction pole plate,
122...G4 side astigmatism correction polar plate, 113,
114, 123, 124, 41, 42, 51, 5
2, 61, 62...Apertures for beam passage.

Claims (1)

【特許請求の範囲】 1 蛍光面に向けて3本の電子ビームを発生する
電子ビーム発生手段と、上記3本の電子ビームを
上記蛍光面に集束させる主レンズを構成する、互
いに隔てて設けられた、上記3本の電子ビームを
取り囲む2個の外周電極と、上記外周電極のそれ
ぞれの対向端部に配置され、上記3本の電子ビー
ムの通過する3個の開孔が一方向に沿つて形成さ
れてなる2個の電極板とを有するカラー受像管用
電子銃において、上記2個の電極板の少なくとも
一方の電極板が後退されて上記外周電極の内部に
配置されるとともに、上記後退された電極板の各
開孔の上記一方向の径がそれぞれその垂直方向の
径よりも小さく形成されてなることを特徴とする
カラー受像管用電子銃。 2 上記後退された電極板の開孔が楕円形である
ことを特徴とする特許請求の範囲第1項記載のカ
ラー受像管用電子銃。 3 上記後退された電極板の開孔が、上記一方向
と垂直な2本の直線と2つの円孤で囲まれた形状
に形成されてなることを特徴とする特許請求の範
囲第1項記載のカラー受像管用電子銃。 4 上記後退された電極板の開孔のうち、中央の
開孔は上記一方向と垂直の対称軸を有し、外側の
開孔は、上記対称軸と平行な対称軸を持たず、さ
らに上記外側の2つの開孔は、中央の開孔の上記
対称軸に関し互いに対称になるよう形成されてな
ることを特徴とする特許請求の範囲第1項記載の
カラー受像管用電子銃。 5 上記2個の電極板はともに同一距離後退され
て上記各電極板の内部に配置されたことを特徴と
する特許請求の範囲第1項記載のカラー受像管用
電子銃。 6 上記電極板の中央の開孔の上記垂直方向の径
を外側の開孔の上記垂直方向の径とほぼ同じ寸法
にしたことを特徴とする特許請求の範囲第1項記
載ののカラー受像管用電子銃。 7 上記電極板の中央の開孔の上記一方向の径を
外側の開孔の上記一方向の径よりも小さくしたこ
とを特徴とする特許請求の範囲第1項記載のカラ
ー受像管用電子銃。 8 上記一方の電極板の3つの開孔の形状は、上
記他方の電極板のそれぞれ対応する3つの開孔の
形状と同一であることを特徴とする特許請求の範
囲第1項記載のカラー受像管用電子銃。
[Scope of Claims] 1. Electron beam generating means that generates three electron beams toward the phosphor screen, and a main lens that focuses the three electron beams on the phosphor screen, which are provided at a distance from each other. In addition, two outer peripheral electrodes surrounding the three electron beams, and three openings arranged at opposing ends of the outer peripheral electrodes, through which the three electron beams pass, are arranged along one direction. In a color picture tube electron gun having two electrode plates, at least one of the two electrode plates is retracted and disposed inside the outer peripheral electrode, and the retracted electrode plate is disposed inside the outer peripheral electrode. An electron gun for a color picture tube, characterized in that the diameter of each opening in the electrode plate in one direction is smaller than the diameter in the vertical direction. 2. The electron gun for a color picture tube according to claim 1, wherein the aperture of the retracted electrode plate is elliptical. 3. Claim 1, characterized in that the opening in the retracted electrode plate is formed in a shape surrounded by two straight lines perpendicular to the one direction and two circular arcs. electron gun for color picture tubes. 4 Among the apertures of the retracted electrode plate, the central aperture has an axis of symmetry perpendicular to the one direction, and the outer apertures do not have an axis of symmetry parallel to the axis of symmetry, and 2. The electron gun for a color picture tube according to claim 1, wherein the two outer apertures are formed to be symmetrical with respect to the axis of symmetry of the central aperture. 5. The electron gun for a color picture tube according to claim 1, wherein the two electrode plates are both set back the same distance and placed inside each of the electrode plates. 6. A color picture tube according to claim 1, wherein the vertical diameter of the central aperture of the electrode plate is approximately the same as the vertical diameter of the outer apertures. electron gun. 7. The electron gun for a color picture tube according to claim 1, wherein the diameter of the central opening of the electrode plate in the one direction is smaller than the diameter of the outer opening in the one direction. 8. The color image receiving device according to claim 1, wherein the shapes of the three openings in the one electrode plate are the same as the shapes of the three corresponding openings in the other electrode plate. Tube electron gun.
JP20161781A 1981-12-16 1981-12-16 Electron gun for color picture tube Granted JPS58103752A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20161781A JPS58103752A (en) 1981-12-16 1981-12-16 Electron gun for color picture tube
US06/448,601 US4581560A (en) 1981-12-16 1982-12-10 Electron gun for color picture tube
GB08235561A GB2112564B (en) 1981-12-16 1982-12-14 Electron gun for color picture tube
DE19823246458 DE3246458A1 (en) 1981-12-16 1982-12-15 ELECTRONIC SPIN FOR COLOR PIPES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20161781A JPS58103752A (en) 1981-12-16 1981-12-16 Electron gun for color picture tube

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6597091A Division JPH0734352B2 (en) 1991-03-29 1991-03-29 Electron gun for color picture tube

Publications (2)

Publication Number Publication Date
JPS58103752A JPS58103752A (en) 1983-06-20
JPH0218540B2 true JPH0218540B2 (en) 1990-04-25

Family

ID=16444022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20161781A Granted JPS58103752A (en) 1981-12-16 1981-12-16 Electron gun for color picture tube

Country Status (1)

Country Link
JP (1) JPS58103752A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146540A3 (en) * 2000-04-14 2004-12-01 Matsushita Electric Industrial Co., Ltd. Color display tube

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211743A (en) * 1984-04-04 1985-10-24 Hitachi Ltd Electron gun for color picture tube
JPS6240136A (en) * 1985-08-14 1987-02-21 Mitsubishi Electric Corp Inline-type electron gun
JPH07114115B2 (en) * 1986-04-28 1995-12-06 三菱電機株式会社 Inline electron gun
JPH07111880B2 (en) * 1986-09-16 1995-11-29 三菱電機株式会社 Inline electron gun
JP2685485B2 (en) * 1988-04-13 1997-12-03 株式会社日立製作所 Color picture tube
JP2804051B2 (en) * 1988-11-10 1998-09-24 株式会社東芝 Color picture tube equipment
KR950000347B1 (en) * 1991-12-06 1995-01-13 삼성전관 주식회사 Electron gun for c-crt
JP3053959B2 (en) * 1992-04-21 2000-06-19 株式会社日立製作所 Color cathode ray tube with in-line type electron gun
JPH0721936A (en) 1993-06-30 1995-01-24 Hitachi Ltd Cathode-ray tube
JP2666723B2 (en) * 1994-05-09 1997-10-22 株式会社日立製作所 Color picture tube
JP3422842B2 (en) * 1994-05-23 2003-06-30 株式会社日立製作所 Cathode ray tube
JP3324282B2 (en) * 1994-07-11 2002-09-17 松下電器産業株式会社 Color picture tube equipment
JPH0831332A (en) * 1994-07-13 1996-02-02 Hitachi Ltd Color cathode-ray tube
KR100189610B1 (en) * 1995-07-28 1999-06-01 구자홍 In-line type electron gun for cathode ray tube
JPH11135031A (en) * 1997-10-30 1999-05-21 Hitachi Ltd Color cathode-ray tube
JP3975764B2 (en) * 2002-02-01 2007-09-12 松下電器産業株式会社 Electron gun and color picture tube device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123868A (en) * 1978-03-20 1979-09-26 Toshiba Corp Electron gun for in-line type color recelving tube
JPS5682549A (en) * 1979-12-10 1981-07-06 Toshiba Corp Electron gun

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449862U (en) * 1977-09-14 1979-04-06
JPS5682548U (en) * 1979-11-16 1981-07-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123868A (en) * 1978-03-20 1979-09-26 Toshiba Corp Electron gun for in-line type color recelving tube
JPS5682549A (en) * 1979-12-10 1981-07-06 Toshiba Corp Electron gun

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1146540A3 (en) * 2000-04-14 2004-12-01 Matsushita Electric Industrial Co., Ltd. Color display tube

Also Published As

Publication number Publication date
JPS58103752A (en) 1983-06-20

Similar Documents

Publication Publication Date Title
KR890001605B1 (en) Color picture tube having an improved inline electron gun with an expanded focus lens
KR0173722B1 (en) Color ray tube
KR890003825B1 (en) Electron gun for crt
CA1185309A (en) Color picture tube having an improved expanded focus lens type inline electron gun
JPH0218540B2 (en)
JPS62172635A (en) Color display tube
US5066887A (en) Color picture tube having an inline electron gun with an astigmatic prefocusing lens
US4520292A (en) Cathode-ray tube having an asymmetric slot formed in a screen grid electrode of an inline electron gun
KR880001014B1 (en) A electron-gun for a color t.v.
KR900008202B1 (en) Electron gun of color crt
US5506468A (en) Electron gun for color cathode-ray tube
JPH05251014A (en) Electron gun for color picture tube
JPH0533494B2 (en)
JPH0452586B2 (en)
JPH05325825A (en) Electron gun for color cathode-ray tube
EP0275191B1 (en) Color cathode-ray tube having a three-lens electron gun
US4388553A (en) Color picture tube having an expanded focus lens type inline electron gun with an improved stigmator
JPH08148095A (en) Electron gun and color cathode-ray tube provided with this electron gun
JP2690913B2 (en) Color picture tube
JP2644769B2 (en) Color picture tube
JPH1125879A (en) Electron gun for color cathode-ray tube
JPH04212243A (en) Electron gun for color image pickup tube
JPS6028139A (en) Electron gun for color picture tube
JP2685485B2 (en) Color picture tube
JP3348869B2 (en) Color cathode ray tube