JPH04210699A - Apparatus for separation of protein - Google Patents

Apparatus for separation of protein

Info

Publication number
JPH04210699A
JPH04210699A JP40072290A JP40072290A JPH04210699A JP H04210699 A JPH04210699 A JP H04210699A JP 40072290 A JP40072290 A JP 40072290A JP 40072290 A JP40072290 A JP 40072290A JP H04210699 A JPH04210699 A JP H04210699A
Authority
JP
Japan
Prior art keywords
protein
solution
protein separation
section
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40072290A
Other languages
Japanese (ja)
Inventor
Makoto Nakabayashi
中林   誠
Shinichiro Niwa
真一郎 丹羽
Toshihiko Kishimoto
利彦 岸本
Misako Umemoto
梅本 みさ子
Atsushi Uno
敦史 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP40072290A priority Critical patent/JPH04210699A/en
Priority to EP19920900887 priority patent/EP0514554A4/en
Priority to PCT/JP1991/001697 priority patent/WO1992010508A1/en
Priority to DE1992900887 priority patent/DE514554T1/en
Publication of JPH04210699A publication Critical patent/JPH04210699A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/84Preparation of the fraction to be distributed
    • G01N2030/8411Intermediate storage of effluent, including condensation on surface
    • G01N2030/8417Intermediate storage of effluent, including condensation on surface the store moving as a whole, e.g. moving wire

Abstract

PURPOSE:To provide the subject apparatus equipped with a concentration-variable liquid supply unit, a protein separation unit containing an immobilized nucleic acid capable of adsorbing various kinds of proteins in a sample, a solution-transport unit for sending a solution thereto and a protein-receiving unit, and capable of precisely separating specified kinds of proteins in a short time. CONSTITUTION:A buffer solution is sent and transferred through a solution-transport pass 16 to a protein separation unit 8 by a concentration-variable liquid supply unit 1 capable of supplying a liquid while varying the concentration of the solution with time. A sample solution of the protein is injected through a sample inlet 9 attached to the solution-transport pass 16 and introduced into a protein separation unit 8 packed with an adsorbent prepared by fixing a nucleic acid capable of specifically adsorbing a specified protein to a rigid carrier having an enough strength to endure the pressure applied during supply or passage of the solution without deformation destruction. The specified protein is adsorbed thereby and an eluent is subsequently introduced to the protein separation unit 8 to elute the adsorbed protein. The eluted protein is then discharged through a solution outlet 11 to a protein-receiving unit 15, thus separating and recovering the objective protein.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、分子生物学等の分野に
おいて使用される、蛋白質溶液から成る核酸の配列に特
異的に結合する蛋白質を精密かつ短時間で分離するため
の蛋白質分離装置に関するものである。 [0002] 【従来の技術lDNA結合蛋白質を分離するための従来
技術として、オープンカラムクロマトグラフィー(アフ
ィニティークロマトグラフィー、ゲル濾過)を用いて、
蛋白質溶液を蛋白質の固定層と移動層との分配係数の差
を利用して分離し、この溶液の両分を時間とともに試験
管等の容器に分取して、物質を分離する方法がある(従
来技術1)。また、試料溶液をゲル電気泳動後、特定の
バンド部分のゲルを切り出して、試料溶液中に含まれて
いた物質を分画する方法が採られていた(従来技術2)
。更に、試料溶液をショ糖等で密度勾配をつけた遠心管
に添加して、10,000〜so、ooo回転/分の遠
心分離にかけ、試料溶液中の物質を密度に準じて分画し
、次いで、分画された物質を注射針で取り出して、その
物質を分取する方法も採られていた(従来技術3)。 [0003] 【発明が解決しようとする課題】従来技術1では、セル
ロース、アガロース等の多糖類等の軟質担体からなるい
わゆるソフトゲル(例えば、セファロース:ファルマシ
ア社製商品名)を用いたオーブンカラムを使用していた
。しかしながらソフトゲルは一般に物理的強度が弱いた
め、高い静水圧を掛けると例えば構造破壊等のゲルの構
造的変化によって分離能が低下する。一方、低静水圧で
は、送液の速度が遅くなり、そのためカラム内で一旦分
離された物質が拡散の影響により精密な濃度勾配を維持
することができなくなり、高い分離能を得ることが困難
であり、また、分離に長時間を要した。 [0004]また、順次カラムから流出する異なる種類
の蛋白質を含む溶液を、一定容量(例えば、5m1)の
容器に分取すると、例えば、次の容器に切り替わるとき
に溶液に分離された特定種類の蛋白質が多く含まれてい
る場合において、その特定種類の蛋白質が別の容器に分
かれたり、次の容器に分取された他の種類の蛋白質と混
合したりすることがある。分取する容器の容量を更に小
さくすることによって、他の蛋白質との混同をある程度
防止することができるが、精密な分離には限度があり、
また操作も極めて繁雑であった。 [0005]従来技術2では、蛋白質を精密に分離する
ことができるが、バンド部分から蛋白質を取り出すこと
が非常に困難であった。従来技術3では、注射針で分離
された蛋白質を取り出す操作は極めて注意力を要し、困
難であった。 [0006]本発明は、上記の従来技術における課題を
解決ためになされたものであって、蛋白質を精密かつ短
時間で分離するための装置を提供するものである。 [0007]
[Industrial Application Field] The present invention relates to a protein separation device used in the field of molecular biology, etc., for precisely and quickly separating proteins that specifically bind to nucleic acid sequences consisting of protein solutions. It is something. [0002] [Prior Art] As a conventional technique for separating DNA-binding proteins, open column chromatography (affinity chromatography, gel filtration) is used.
There is a method to separate substances by separating a protein solution by utilizing the difference in partition coefficient between a fixed protein layer and a moving protein layer, and dividing both parts of this solution into containers such as test tubes over time ( Prior art 1). In addition, a method has been adopted in which after gel electrophoresis is performed on a sample solution, the gel in a specific band is cut out and the substances contained in the sample solution are fractionated (Conventional technology 2).
. Furthermore, the sample solution is added to a centrifugal tube prepared with a density gradient using sucrose, etc., and centrifuged at 10,000 to 10,000 revolutions/minute to fractionate the substances in the sample solution according to their density. A method has also been adopted in which the fractionated substance is then taken out with a syringe needle and fractionated (Prior Art 3). [0003] [Problems to be Solved by the Invention] In Prior Art 1, an oven column using a so-called soft gel (for example, Sepharose: trade name manufactured by Pharmacia) made of a soft carrier such as a polysaccharide such as cellulose or agarose is used. I was using it. However, since soft gels generally have low physical strength, when high hydrostatic pressure is applied, the separation ability decreases due to structural changes in the gel, such as structural destruction. On the other hand, at low hydrostatic pressure, the speed of liquid delivery is slow, and as a result, substances once separated in the column are unable to maintain a precise concentration gradient due to the influence of diffusion, making it difficult to obtain high resolution. However, it also took a long time to separate. [0004] Furthermore, if solutions containing different types of proteins that flow out from a column sequentially are fractionated into a container with a fixed volume (for example, 5 ml), for example, when switching to the next container, a specific type of protein separated into the solution will be collected. When a large amount of protein is contained, that particular type of protein may be separated into another container or mixed with other types of protein separated into the next container. By further reducing the volume of the container for fractionation, confusion with other proteins can be prevented to some extent, but there is a limit to precise separation.
Moreover, the operation was extremely complicated. [0005] Conventional technology 2 allows proteins to be precisely separated, but it is very difficult to extract proteins from band portions. In Prior Art 3, the operation of extracting separated proteins with a syringe needle required extremely careful attention and was difficult. [0006] The present invention has been made to solve the problems in the prior art described above, and provides an apparatus for separating proteins precisely and in a short time. [0007]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、溶液の濃度を経時的に変化させながら送液する濃
度可変送液部と、蛋白質溶液試料中の各種蛋白質を分離
する蛋白質分離部と、前記濃度可変送液部からの溶液を
前記蛋白質分離部に輸送する溶液輸送路と、前記蛋白質
分離部において前記溶液によって分離された蛋白質を含
む前記溶離液を経時的に受け取る蛋白質受け取り部とを
有し、前記蛋白質分離部又は前記溶液輸送路には蛋白質
溶液試料を注入する試料注入口が設けられ、溶離液を前
記蛋白質受け取り部に流出する溶液流出口が設けられて
いる蛋白質分離装置において、前記蛋白質分離部が前記
溶液の供給、通過時の圧力による変形破壊を起こさない
だけの十分な強度の硬質担体に特定蛋白質を特異的に吸
着し得る核酸を固定化してなる吸着体を有することを特
徴とする蛋白質分離装置にある。 [00081以下、本発明を図を参照しながら説明する
。本発明において、溶液の濃度例えば、組成、イオン強
度pH等を経時的に変化させながら送液し得る濃度可変
送液部は、例えば、図1に示す様に構成された装置を用
いることができる。すなわち、図1において1、濃度可
変送液部1は、蛋白質分離部中8の吸着体6において特
異的に吸着された蛋白質を吸着体6から解離することが
できる溶液の溶媒と溶質それぞれ収容する容器A2及び
容器B3と、該容器A2と容器B3とからの溶媒と溶質
をその混合比率を変えながら混合する溶液混合部4とポ
ンプ5とから構成されている。容器A2及び容器B3に
は、それぞれ濃度の異なる溶液を収容してもよい。 [00091本発明において、蛋白質分離部8は、例え
ば、特定蛋白質を吸着する吸着体をクロマト管7に充填
したカラム8からなる。蛋白質分離部カラム8に用いら
れる吸着体は、例えば、無機高分子(シリカ、多孔質ガ
ラス等)、天然または合成有機高分子(エボナイト、メ
ラミン、ポリエーテルエーテルケトン等)で、核酸と固
定化できる官能基をもつ物質、又は物理的、化学的方法
により官能基を導入できる物質であるか、又は金属(酸
化チタン等)、セラミックス(窒化ケイ素等)、結晶板
(食塩等)を表面処理して、核酸を固定化できるように
処理した硬質担体の粒子に、特定の蛋白質と結合する核
酸を好ましくはその末端部において、固定化したもので
ある。硬質担体の強度は、溶液供給、通過時の静水圧1
0Kg/Cm2、好ましくは100Kg/Cm2に十分
耐えられるだけの強度を有するものである。粒子の径と
して、10ILm以下のものが好ましい。その理由は、
10μm以下であれば吸着体内における粒子の表面積を
充分にとることができるからである。
[Means for Solving the Problems] The gist of the present invention is to provide a variable concentration liquid feeding unit that feeds a solution while changing its concentration over time, and a protein separation device that separates various proteins in a protein solution sample. a solution transport path for transporting the solution from the variable concentration liquid feeding section to the protein separation section; and a protein receiving section that receives over time the eluent containing the protein separated by the solution in the protein separation section. A protein separation device comprising: a sample injection port for injecting a protein solution sample into the protein separation section or the solution transport path; and a solution outflow port for flowing the eluent into the protein receiving section. In this, the protein separation section has an adsorbent formed by immobilizing a nucleic acid capable of specifically adsorbing a specific protein on a hard support having sufficient strength to prevent deformation and destruction due to the pressure during supply and passage of the solution. A protein separation device is characterized by the following. [00081 Hereinafter, the present invention will be explained with reference to the drawings. In the present invention, for example, a device configured as shown in FIG. 1 can be used as a variable concentration liquid feeding section that can feed a solution while changing its concentration, composition, ionic strength, pH, etc. over time. . That is, in FIG. 1, the variable concentration liquid feeding section 1 accommodates a solvent and a solute of a solution capable of dissociating the protein specifically adsorbed on the adsorbent 6 of the protein separation section 8 from the adsorbent 6. It is comprised of a container A2 and a container B3, a solution mixing section 4 and a pump 5 that mix the solvent and solute from the containers A2 and B3 while changing the mixing ratio. Container A2 and container B3 may each contain solutions with different concentrations. [00091] In the present invention, the protein separation section 8 includes, for example, a column 8 in which a chromatography tube 7 is filled with an adsorbent that adsorbs a specific protein. The adsorbent used in the protein separation section column 8 is, for example, an inorganic polymer (silica, porous glass, etc.), a natural or synthetic organic polymer (ebonite, melamine, polyetheretherketone, etc.), which can be immobilized with nucleic acids. The substance has a functional group, or a substance into which a functional group can be introduced by physical or chemical methods, or the surface treatment of metals (titanium oxide, etc.), ceramics (silicon nitride, etc.), crystal plates (salt, etc.) A nucleic acid that binds to a specific protein is immobilized on hard carrier particles that have been treated to allow nucleic acid to be immobilized, preferably at the ends thereof. The strength of the hard carrier is determined by the hydrostatic pressure during solution supply and passage1
It has enough strength to withstand 0 Kg/Cm2, preferably 100 Kg/Cm2. The diameter of the particles is preferably 10 ILm or less. The reason is,
This is because if the particle size is 10 μm or less, a sufficient surface area of the particles within the adsorbent can be obtained.

【00101  例えば、蛋白質溶液試料中に含まれる
制限酵素Eco  RIを本発明の装置によって分離す
る場合は、用いられる吸着体は、粒子に以下の配列を持
つDNAを結合、固定化したものである。 [00111 なお、制限酵素Eco  RIが結合する部位は、下線
箇所である。 [0012T上記DNAをシリカ粒子(粒径:5μm)
に固定化し、DNAアフィニティーカラムを調整する方
法は、例えば、以下のようにして行う。精製された上記
(a)及び(b)の配列を持つDNA各々100μmを
減圧下で乾燥した後、IMNaCl  100μlに溶
解し、0.4M  NaHCo3 (pH7,5)10
0μmを加える。しかる後、95℃水溶上で2分間処理
後、20分間かけて、55℃まで冷却することでアニー
リングする。これにトレシル活性化シリカゲル20mg
を加え、室温で24時間反応させる。反応終了後、ゲル
をIM  NaC1で3回洗浄し、遠心後残渣としてD
NAを固定化する。これを緩衝液A (0,5MNaC
1,pH7,5,1mM  EDTA、10mM  リ
ン酸)に懸濁し、パッカーに入れ、緩衝液B (150
mM  NaC1,10mMリン酸)で送液し、クロマ
ト管6に充填する。緩衝液C(40mM  Tris−
HCI、 pH7,5゜0.2M  NaC1,5mM
  EDTA、2mM  DTT)を送液してカラムを
洗浄し、DNAアフィニティーカラムを得る。 [00131カラムにおける吸着体6は、図2に示す部
分拡大図の様なものと考えられる。すなわち、支持体た
る担体21に核酸22の末端が結合固定化されている。 なお、担体粒子に固定化する、特定の蛋白質と特異的に
結合する物質は、合成機により合成して得たDNAに限
られるものではなく、天然のDNA、RNA等も使用す
ることができる。カラムのクロマト管7は、100Kg
/Cm2の静水圧に耐え得るものであって溶液に不活性
のものであれば、特に限定されない。例えば、金属管(
ステンレス等)、プラスチック(高密度ポリエチレン等
)、無機物質(ガラス等)を用いることができる。クロ
マト管7の内横断面積は、4mm2以下であるがなお一
層蛋白質の分離を精密に行うことができるので好ましい
。 [0014]その理由として考えられることは、4mm
2以下では、本発明において上記吸着体を用いた場合に
、径方向への蛋白質の拡散が抑制されるためであると思
われる。特に、内横断面積が1mm”以下である場合は
、水の粘性による影響を受けるので与える静水圧が高く
なり、より好ましい。蛋白質溶液試料は、試料注入口9
から例えばシリンジ10を用いてカラム内に注入するこ
とができる。 [00151本発明において、蛋白質受け取り部15は
、例゛えば、図1に示す様なメンブラン13の上に、分
離された蛋白質を含む溶液を、ローター14により順次
展開する装置であっても良い。又は、平板面上に、展開
された溶液からなる溶離液12の方向は、直線でも、渦
巻き状でも良く、特に限定されるものではない。メンブ
ラン11上に展開する装置の場合においては、メンブラ
ン11の材質として、例えば、ニトロセルロース、ナイ
ロン、ポリテトラフルオロエチレン、ポリエチレン等の
天然又は合成有機高分子材料、或は、シリコーン樹脂等
の無機高分子、アルミニューム等の金属を用いることが
できる。 [0016] 【実施例】図1に示すの容器A2、容器B3及び溶液混
合部4からなる濃度可変送液部1を備える蛋白質分離装
置を用い、容器A2に収容する緩衝液Cと容器B3に収
容する緩衝液D (40mMTris−HCI、1.5
M  Nacl、pH7,5,5mM  EDTA、2
mM  DTT)を、濃度勾配(時間的濃度変化)が1
0分間で緩衝液りが0%から100%になるように混合
し、流速0゜3m1/分で、送液し、溶液輸送路16を
介して、蛋白質分離部8に輸送した。 [00171本実施例において使用した蛋白質分離部8
は、内径2. 1mm、長さ100mmのクロマト管7
(ステンレス製)に、粒子径5μmのシリカゲルに制限
酵素Eco  RIに特異的に結合するDNAをその末
端において固定して形成したゲルを充填したものである
。 [0018]なお、上記溶液を輸送するに先立って、蛋
白質溶液試料として、緩衝液Cを溶媒とするEco  
RIを含む蛋白質粗溶液を用い、蛋白質分離部の一端に
設けられた試料注入口よりシリンジを用いて200μm
注入して、15℃、1時間反応させて、ゲルにEco 
 RIを特異的に結合させる。上記溶液を10分間蛋白
質分離部8を通して、Eco  RIを溶出した。次い
で、Eco  RIを含む溶液を蛋白質分離部5の他端
に設けた溶液流出口11より流出させ、蛋白質受け取り
部15に展開させた。 [00191本実施例において備えた蛋白質受け取り部
15は、メンブラン13として1.5cm/分の速度で
移動するニトロセルロース膜(アマジャム社製)からな
るものである。ニトロセルロース膜は、幅50mm。 長さ300 mm、で、予め結合溶液(HEPES :
 10mM、NaC1: 50mM、MgCl2 : 
10mM、EDTA: 0.1mM、DTT: 1mM
、脱脂粉乳2.5%)で湿った状態で用いた。 [00201本実施例よりEco  RIが分離された
ことの確認は、以下の方法で行った。Eco  RIと
結合する配列を持つDNA二重鎖を合成し、32pで標
識する。この標識DNAlX105cpm/m1を含む
0゜2MKCl結合溶液(二本実施例で得た、ニトロセ
ルロース膜を浸し、DNAと蛋白質とを反応させた。0
.2MKCL結合溶液で1時間洗浄後、オートラジオグ
ラフィーにより測定した。その結果、発色した箇所が1
スポツトであった。このことから、本実施例によりEc
。 RIが特異的に溶出され、分離されたことが確認された
。 [00211 【発明の効果]本発明により、特定種類の蛋白質を精密
にかつ短時間で分離することができ、しかも従来技術に
比べて母液の量が少なくて済む。
For example, when the restriction enzyme Eco RI contained in a protein solution sample is separated using the apparatus of the present invention, the adsorbent used is one in which DNA having the following sequence is bound and immobilized on particles. [00111 Note that the site to which the restriction enzyme Eco RI binds is underlined. [0012T The above DNA was added to silica particles (particle size: 5 μm)
For example, a method for immobilizing DNA on a DNA affinity column and preparing a DNA affinity column is performed as follows. After drying 100 μm each of purified DNA having the above sequences (a) and (b) under reduced pressure, it was dissolved in 100 μl of IMNaCl, and 10 μl of 0.4 M NaHCo3 (pH 7,5) was added.
Add 0 μm. Thereafter, it is treated on an aqueous solution at 95° C. for 2 minutes, and then annealed by cooling to 55° C. over 20 minutes. Add to this 20mg of Tresil activated silica gel.
and react at room temperature for 24 hours. After the reaction was completed, the gel was washed three times with IM NaCl, and the residue after centrifugation was collected as D
Immobilize NA. This was added to buffer A (0.5M NaC
1, pH 7, 5, 1mM EDTA, 10mM phosphoric acid), put it in a packer, and add buffer B (150
1mM NaCl, 10mM phosphoric acid) and fill it into the chromato tube 6. Buffer C (40mM Tris-
HCI, pH 7,5゜0.2M NaCl 1,5mM
EDTA, 2mM DTT) is sent to wash the column to obtain a DNA affinity column. The adsorbent 6 in the [00131 column is considered to be something like the partially enlarged view shown in FIG. 2. That is, the ends of the nucleic acids 22 are bonded and immobilized to the carrier 21, which is a support. Note that the substance that is immobilized on the carrier particles and that specifically binds to a specific protein is not limited to DNA synthesized using a synthesizer, and natural DNA, RNA, etc. can also be used. The chromatography tube 7 of the column weighs 100Kg.
It is not particularly limited as long as it can withstand the hydrostatic pressure of /Cm2 and is inert to the solution. For example, a metal tube (
Stainless steel, etc.), plastics (high-density polyethylene, etc.), and inorganic materials (glass, etc.) can be used. The internal cross-sectional area of the chromatography tube 7 is preferably 4 mm2 or less, since this allows for more precise protein separation. [0014] A possible reason for this is that 4 mm
This is believed to be because when the adsorbent is less than 2, the diffusion of protein in the radial direction is suppressed when the above-mentioned adsorbent is used in the present invention. In particular, when the inner cross-sectional area is 1 mm" or less, it is more preferable because it is affected by the viscosity of water and the hydrostatic pressure applied becomes high.
It can be injected into the column using, for example, the syringe 10. [00151 In the present invention, the protein receiving section 15 may be a device that sequentially spreads a solution containing separated proteins on the membrane 13 as shown in FIG. 1 using a rotor 14, for example. Alternatively, the direction of the eluent 12 made of the solution spread on the flat plate surface may be straight or spiral, and is not particularly limited. In the case of a device developed on the membrane 11, the material of the membrane 11 is, for example, a natural or synthetic organic polymer material such as nitrocellulose, nylon, polytetrafluoroethylene, or polyethylene, or an inorganic polymer material such as silicone resin. Molecules, metals such as aluminum can be used. [0016] [Example] Using a protein separation apparatus equipped with a variable concentration liquid feeding section 1 consisting of a container A2, a container B3, and a solution mixing section 4 shown in FIG. Buffer D (40mM Tris-HCI, 1.5
M Nacl, pH 7,5, 5mM EDTA, 2
mM DTT) with a concentration gradient (temporal concentration change) of 1
The buffer solution was mixed so that the concentration ranged from 0% to 100% in 0 minutes, and the solution was fed at a flow rate of 0.3 ml/min to the protein separation section 8 via the solution transport path 16. [00171 Protein separation unit 8 used in this example
is the inner diameter 2. Chromatography tube 7 with a diameter of 1 mm and a length of 100 mm
(made of stainless steel) is filled with a gel formed by fixing DNA that specifically binds to the restriction enzyme Eco RI to a silica gel having a particle size of 5 μm at its end. [0018] Before transporting the above solution, as a protein solution sample, Eco
Using a crude protein solution containing RI, use a syringe to inject 200 μm from the sample injection port provided at one end of the protein separation section.
Inject Eco into the gel and react at 15°C for 1 hour.
specifically binds RI. The above solution was passed through the protein separation section 8 for 10 minutes to elute Eco RI. Next, a solution containing Eco RI was allowed to flow out from the solution outlet 11 provided at the other end of the protein separation section 5 and developed in the protein receiving section 15 . [00191 The protein receiving section 15 provided in this example is composed of a nitrocellulose membrane (manufactured by Amajam) that moves at a speed of 1.5 cm/min as the membrane 13. The nitrocellulose membrane has a width of 50 mm. The length is 300 mm, and the binding solution (HEPES:
10mM, NaCl: 50mM, MgCl2:
10mM, EDTA: 0.1mM, DTT: 1mM
, skim milk powder (2.5%)). [00201 Confirmation that Eco RI was separated from this example was performed by the following method. A DNA duplex with a sequence that binds to Eco RI is synthesized and labeled with 32p. The nitrocellulose membrane obtained in this example was immersed in a 0.2 M KCl binding solution containing 105 cpm/ml of this labeled DNAAlX, and the DNA and protein were allowed to react.
.. After washing with 2M KCL binding solution for 1 hour, measurement was performed by autoradiography. As a result, the number of colored areas was 1
It was spot on. From this, according to this example, Ec
. It was confirmed that RI was specifically eluted and separated. [00211] [Effects of the Invention] According to the present invention, a specific type of protein can be separated precisely and in a short time, and moreover, the amount of mother liquor can be reduced compared to the conventional technique.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 本発明の一実施例を示す概略図[Figure 1] Schematic diagram showing one embodiment of the present invention

【図2】 図
1に示す一実施例の蛋白質分離部において使用される吸
着体の部分拡大図である。
2 is a partially enlarged view of an adsorbent used in the protein separation section of the example shown in FIG. 1. FIG.

【符号の説明】[Explanation of symbols]

■ ・・濃度可変送液部 2 ・・容器A 3・・・容器B 4 ・・溶液混合部 5 ・・ポンプ 6 ・・吸着体 7 ・・クロマト管 8 ・・蛋白質分離 9 ・・試料注入口 10・・ シリンジ 11・・ 溶液流出口 12・・ 溶離液 13・・ メンプラン 14・・ ローター 15・・ 蛋白質受け取り部 16・・ 溶液輸送路 21・・ 担体 22・・ 核酸 ■...Variable concentration liquid feeding section 2...Container A 3...Container B 4...Solution mixing section 5...Pump 6...Adsorbent 7...Chromato tube 8...Protein separation 9...Sample injection port 10...Syringe 11...Solution outlet 12... Eluent 13... Menplan 14...Rotor 15... Protein receiving part 16... Solution transport path 21... Carrier 22...Nucleic acid

【図1】[Figure 1]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】溶液の濃度を経時的に変化させながら送液
し得る濃度可変送液部と、蛋白質溶液試料中の各種蛋白
質を分離する蛋白質分離部と、前記濃度可変送液部から
の溶液を前記蛋白質分離部に輸送する溶液輸送路と、前
記蛋白質分離部において前記溶液によって分離された蛋
白質を含む前記溶離液を経時的に受け取る蛋白質受け取
り部とを有し、前記蛋白質分離部又は前記溶液輸送路に
は蛋白質溶液試料を注入する試料注入口が設けられ、溶
離液を前記蛋白質受け取り部に流出する溶液流出口が設
けられている蛋白質分離装置において、前記蛋白質分離
部が前記溶液の供給、通過時の圧力による変形破壊を起
こさないだけの十分な強度の硬質担体に特定蛋白質を特
異的に吸着し得る核酸を固定化してなる吸着体を有する
ことを特徴とする蛋白質分離装置。
1. A variable concentration liquid feeding section capable of feeding a solution while changing its concentration over time, a protein separation section separating various proteins in a protein solution sample, and a solution from the variable concentration liquid feeding section. a solution transport path that transports the protein to the protein separation section, and a protein receiving section that receives over time the eluent containing the protein separated by the solution in the protein separation section, the protein separation section or the solution In the protein separation apparatus, the transport path is provided with a sample injection port for injecting a protein solution sample, and a solution outlet is provided for flowing the eluent into the protein receiving section, wherein the protein separation section supplies the solution, A protein separation device comprising an adsorbent formed by immobilizing a nucleic acid capable of specifically adsorbing a specific protein on a hard carrier having sufficient strength to prevent deformation and destruction due to pressure during passage.
【請求項2】蛋白質分離部が内横断面積4mm^2以下
であるクロマト管を用いたカラムである請求項1記載の
蛋白質分離装置。
2. The protein separation apparatus according to claim 1, wherein the protein separation section is a column using a chromatography tube having an internal cross-sectional area of 4 mm^2 or less.
【請求項3】クロマト管の内横断面積が1mm^2以下
である請求項2記載の蛋白質分離装置。
3. The protein separation apparatus according to claim 2, wherein the internal cross-sectional area of the chromatography tube is 1 mm^2 or less.
【請求項4】特定蛋白質を特異的に吸着し得る核酸がそ
の末端で硬質担体に固定化している請求項1記載の蛋白
質分離装置。
4. The protein separation device according to claim 1, wherein the nucleic acid capable of specifically adsorbing a specific protein is immobilized on a hard carrier at its terminal end.
【請求項5】硬質担体が静水圧10Kg/Cm^2に耐
え得る強度を有する請求項1又は4記載の蛋白質分離装
5. The protein separation device according to claim 1 or 4, wherein the hard carrier has a strength capable of withstanding hydrostatic pressure of 10 kg/cm^2.
【請求項6】硬質担体が静水圧100Kg/Cm^2
に耐え得る強度を有る請求項5記載の蛋白質分離装置
Claim 6: The hard carrier has a hydrostatic pressure of 100Kg/Cm^2
The protein separation device according to claim 5, which has strength enough to withstand
JP40072290A 1990-12-06 1990-12-06 Apparatus for separation of protein Pending JPH04210699A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP40072290A JPH04210699A (en) 1990-12-06 1990-12-06 Apparatus for separation of protein
EP19920900887 EP0514554A4 (en) 1990-12-06 1991-12-06 Method of separating protein and apparatus therefor
PCT/JP1991/001697 WO1992010508A1 (en) 1990-12-06 1991-12-06 Method of separating protein and apparatus therefor
DE1992900887 DE514554T1 (en) 1990-12-06 1991-12-06 PROCESS SEPARATION AND APPARATUS FOR THIS.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40072290A JPH04210699A (en) 1990-12-06 1990-12-06 Apparatus for separation of protein

Publications (1)

Publication Number Publication Date
JPH04210699A true JPH04210699A (en) 1992-07-31

Family

ID=18510604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40072290A Pending JPH04210699A (en) 1990-12-06 1990-12-06 Apparatus for separation of protein

Country Status (1)

Country Link
JP (1) JPH04210699A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060115A1 (en) * 2002-01-17 2003-07-24 Precision System Science Co., Ltd. System for housing/processing carrier and method for housing/processing carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003060115A1 (en) * 2002-01-17 2003-07-24 Precision System Science Co., Ltd. System for housing/processing carrier and method for housing/processing carrier
CN1298849C (en) * 2002-01-17 2007-02-07 准确系统科学株式会社 System for housing/processing carrier and method for housing/processing carrier

Similar Documents

Publication Publication Date Title
Herrera et al. Microdialysis sampling for determination of plasma protein binding of drugs
Sebille et al. Separation procedures used to reveal and follow drug—protein binding
Buszewski et al. Past, present, and future of solid phase extraction: a review
US10514330B2 (en) Device for isolation and/or purification of biomolecules
JPH04504911A (en) Combination of centrifuge tubes and porosity selection means for separation and collection of biological substances
JPH07501261A (en) Solid phase application system
SE445649B (en) APPLICATION OF A FIXED BEARER WITH IMMOBILIZED OROSOMUCOID FOR SEPARATION, PROCEDURE FOR PRODUCING SEPARATION MATERIAL, SEPARATION DEVICE AND SEPARATION MATERIAL
JPH0434451B2 (en)
Martín-Esteban Membrane-protected molecularly imprinted polymers: Towards selectivity improvement of liquid-phase microextraction
Poole Handbook of Methods and Instrumentation in Separation Science: Volume 1
EP2434906B1 (en) Multi-media affinity column to prevent leaching of ligands
Ito et al. Centrifugal precipitation chromatography
JPH04210699A (en) Apparatus for separation of protein
EP0143849A1 (en) Process and apparatus for scission treatment of deoxyribonucleic acid
EP0434354A1 (en) Separation material for blood coagulation factor, preparation and use thereof
US20100048867A1 (en) Device and process for purifying nucleic acids
Eveleigh Techniques and instrumentation for preparative immunosorbent separations
US5130027A (en) Stationary magnetically stabilized fluidized bed for protein separation and purification
EP0514554A1 (en) Method of separating protein and apparatus therefor
Theodoridis et al. Modern sample preparation methods in chemical analysis
Xuan et al. Evaluation of a hydrazide‐linked α1‐acid glycoprotein chiral stationary phase: Separation of R‐and S‐propranolol
Sun et al. Purification of human prothrombin from Nitschmann fraction III using DEAE membrane radial flow chromatography
Kong et al. Development of a DNA immunoadsorbent: coupling DNA on sepharose 4FF by an efficient activation method
JPH04210698A (en) Fractionation of biosubstance
Sun et al. Chromatography of human prothrombin from Nitschmann fraction III on DEAE Sepharose Fast Flow using axial and radial flow column