JPH0489500A - Method for purifying substance by affinity chromatography and apparatus for purification - Google Patents

Method for purifying substance by affinity chromatography and apparatus for purification

Info

Publication number
JPH0489500A
JPH0489500A JP2202842A JP20284290A JPH0489500A JP H0489500 A JPH0489500 A JP H0489500A JP 2202842 A JP2202842 A JP 2202842A JP 20284290 A JP20284290 A JP 20284290A JP H0489500 A JPH0489500 A JP H0489500A
Authority
JP
Japan
Prior art keywords
separation
ligand
purification
membrane
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2202842A
Other languages
Japanese (ja)
Inventor
Masabumi Ogata
緒方 正文
Keiichi Arikawa
有川 敬一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP2202842A priority Critical patent/JPH0489500A/en
Publication of JPH0489500A publication Critical patent/JPH0489500A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To efficiently and economically separate protein-related substances by using a separation membrane unit prepared by linking a ligand to a membranous support obtained by forming cellular glass into a tubular shape as an affinity adsorbent. CONSTITUTION:Cellular glass is initially formed into a tubular or platy shape and a ligand having a moderate affinity for the objective substance is then linked to the resultant membranous support. The obtained support is subsequently used as a separation membrane unit and a sample liquid for separation is then passed therethrough to carry out purification by affinity chromatography. A support having 0.3-2mm thickness for the tubular shape and 0.3-1mm thickness for the platy shape and 0.3-0.6cc/g pore volume, 100-400m<2>/g specific surface area and 0.1-10/mum pore diameter is preferred as the aforementioned support. Furthermore, e.g. protein A for IgG is cited as the ligand.

Description

【発明の詳細な説明】 〔発明の背景〕 〈産業上の利用分野〉 本発明は、バイオテクノロジー技術によって生産される
医薬品等の各種タンパク質関連物質、ポリヌクレオチド
、糖脂質、多糖類等の、アフィニティクロマトグラフィ
ーによって分離できる物質の精製に関し、更に具体的に
は、分離精製効率の高いアフィニテイクロマトグラフイ
ーに基づくタンパク質関連物質等の精製方法および精製
装置に関するものである。
[Detailed description of the invention] [Background of the invention] The present invention relates to the purification of substances that can be separated by chromatography, and more specifically to a method and apparatus for purifying protein-related substances based on affinity chromatography with high separation and purification efficiency.

〈従来の技術〉 アフィニテイクロマトグラフイーは、タン(り質等の物
質の持つ分子間の特異的相互作用に基づく分離方法であ
り、選択性か高く収率も優れ、バイオテクノロジー分野
で生産される各種生理活性物質等の分離、精製に広く利
用されている。
<Conventional technology> Affinity chromatography is a separation method based on specific interactions between molecules of substances such as proteins. It is widely used for the separation and purification of various physiologically active substances.

アフィニテイクロマトグラフイーによるタンパク質等の
分離精製においては、通常ゲル状の吸着体にリガンドを
結合させてこれをカラムに充填し、カラムクロマトグラ
フィーにより一連の分離精製操作が行なわれる。すなわ
ち、まず特異性の高いリガンドを固定化した担体を充填
したカラムに、目的物質を含む溶液を供給することによ
り、カラム内を流れる間に目的物質は選択的かつ可逆的
にリガンドに結合し、はとんどの不純物はカラム外に流
出する。引き続き、緩衝液てカラム中に残留する不純物
を洗い出す。その後、適当な溶出液をカラムに流すこと
により、不純物が除かれたリガンドと結合した目的物質
を解離、溶出させ、これを回収する。
In the separation and purification of proteins and the like by affinity chromatography, a ligand is usually bound to a gel-like adsorbent, which is packed into a column, and a series of separation and purification operations are performed by column chromatography. That is, by first supplying a solution containing the target substance to a column filled with a carrier immobilized with a highly specific ligand, the target substance selectively and reversibly binds to the ligand while flowing through the column. Most of the impurities flow out of the column. Subsequently, impurities remaining in the column are washed out with a buffer solution. Thereafter, by flowing a suitable eluent through the column, the target substance bound to the ligand from which impurities have been removed is dissociated and eluted, and recovered.

ここで使用されるゲル材質としては、セルロース、デキ
ストラン、アガロース、ポリアクリルアミド、多孔質ガ
ラスのほか、ビニルポリマー、ナイロンおよびポリスチ
レン、アミノ酸共重合物、ウルトラゲル(Ultrag
el)などが使用されている。
Gel materials used here include cellulose, dextran, agarose, polyacrylamide, porous glass, as well as vinyl polymers, nylon and polystyrene, amino acid copolymers, and ultra gels.
el) etc. are used.

〔発明の概要〕[Summary of the invention]

〈発明が解決しようとする課題〉 しかし、上記したような従来のカラムクロマトグラフィ
ーによるタンパク質等の分離精製法では、次のような点
でスケールアップが難しく、工業規模で使用するには経
済的に不利である。
<Problem to be solved by the invention> However, with the conventional separation and purification method of proteins, etc. using column chromatography as described above, it is difficult to scale up due to the following points, and it is not economical to use it on an industrial scale. It is disadvantageous.

・アガロース系では、圧密化が激しく、圧損の増大およ
び分離効率の低下をきたす。
- In agarose-based materials, compaction is severe, resulting in increased pressure loss and decreased separation efficiency.

・シリカ系では、圧密化は低減されるが、分離効率を向
上させるため粒子径を小さくする必要があり、これによ
って高圧下での運転となるために設備費か嵩む。
- Silica-based systems reduce compaction, but in order to improve separation efficiency, it is necessary to reduce the particle size, which requires operation under high pressure, which increases equipment costs.

・物質移動か律速となるため、リガンド使用量が増大し
、経済的でない。
・Since mass transfer is rate-limiting, the amount of ligand used increases, making it uneconomical.

このような欠点を克服するため、次のような特徴を有す
る膜アフィニティ法が最近報告されている。
In order to overcome these drawbacks, a membrane affinity method having the following characteristics has recently been reported.

・吸着体の充填高さか最小であり、操作圧が小さく処理
能力が最大になる。
・The filling height of the adsorbent is the minimum, the operating pressure is low, and the processing capacity is maximized.

・膜面積を大きくすることで、リガンド導入量と目的物
質の吸着容量が増加する。
- Increasing the membrane area increases the amount of ligand introduced and the adsorption capacity of the target substance.

・物質移動が大きく、これによってリガンドの利用効率
が増大する。
- Mass transfer is large, which increases the efficiency of ligand utilization.

しかしながら、ここで使用されている膜材質は、セルロ
ース系、ナイロン等の有機膜であるため、次の様な欠点
を有する。
However, since the membrane material used here is an organic membrane such as cellulose or nylon, it has the following drawbacks.

・耐薬品性に劣り、これによって脱吸着体の活性化方法
が制限される。
-Poor chemical resistance, which limits the activation method of the desorbent.

・耐熱性に劣り、これによってスチーム滅菌は不可能で
、サニタリー性の点で問題がある。
-Poor heat resistance, which makes steam sterilization impossible and poses a sanitary problem.

・膜の強度が低く、膜の寿命か短い。・The strength of the membrane is low and the life of the membrane is short.

本発明は、上記問題点を解決し、分離効率の優れた経済
的なタンパク質関連物質等の工業的精製方法および精製
装置を提供することを目的としてなされたものである。
The present invention has been made with the object of solving the above-mentioned problems and providing an economical industrial purification method and purification apparatus for protein-related substances etc. with excellent separation efficiency.

〈課題を解決するための技術的手段〉 本発明者らは、上記の課題を解決するために鋭意研究を
重ねた結果、多孔質ガラスを膜状に成形したものをアフ
ィニティ吸着体として使用することにより、タンパク質
関連物質を効率よくかつ経済的に分離できることを見出
し、この知見をもとに本発明を完成させるに至った。
<Technical means for solving the problem> As a result of extensive research in order to solve the above problems, the present inventors have discovered that porous glass formed into a membrane can be used as an affinity adsorbent. It was discovered that protein-related substances can be efficiently and economically separated by this method, and the present invention was completed based on this knowledge.

すなわち、本発明による物質の精製法は、アフィニティ
クロマトグラフィーを用いた物質の精製法において、多
孔質ガラスを管状またはプレート状に成形した膜状担体
に、目的とする物質に対して適度な親和性を有するリガ
ンドを結合させてこれを分離膜体とし、該分離膜体に対
して分離用試料液を通過させること、を特徴とするもの
である。
That is, the substance purification method according to the present invention is a substance purification method using affinity chromatography. The method is characterized in that a ligand having the above-mentioned properties is bound to form a separation membrane, and a sample liquid for separation is passed through the separation membrane.

また、本発明によるアフィニティク口マトグラフィーに
よる物質の精製装置は、目的とする物質に対して適度な
親和性を有するリガンドを担体に結合させて構成した分
離膜体を、分離用試料液の供給用ケーシング内に保持さ
せて成る物質の精製装置であって、上記担体を、多孔質
ガラスを管状またはプレート状に成形して構成したこと
、を特徴とするものである。
In addition, in the substance purification device using affinity stomatography according to the present invention, a separation membrane body configured by bonding a ligand having an appropriate affinity for a target substance to a carrier is used to supply a sample liquid for separation. This apparatus is characterized in that the carrier is formed by molding porous glass into a tube or plate shape.

く効 果〉 本発明は下記のような効果を有する。Effect The present invention has the following effects.

(1)  管状またはプレート状の膜吸着体の採用によ
って低圧化での運転か可能になり、また圧密化の問題か
ない。
(1) Adoption of a tubular or plate-shaped membrane adsorbent allows operation at low pressure and eliminates the problem of compaction.

(2)  細孔径がコントロールされた多孔質ガラス膜
を採用しているため、従来のゲル法で問題となっていた
物質移動の低下を防止することができ、リガンドの有効
利用と物質の経済的な分離、精製が可能となる。
(2) Since a porous glass membrane with controlled pore size is used, it is possible to prevent the decline in mass transfer, which was a problem with conventional gel methods, allowing for effective use of ligands and economical use of materials. separation and purification becomes possible.

(3)  無機膜の採用によって吸着体か耐薬品性に優
れ、従ってリガンド結合のための膜吸着体の活性化方法
が制限されず、この方法として種々のものを利用するこ
とかできる。
(3) By employing an inorganic membrane, the adsorbent has excellent chemical resistance, and therefore the method of activating the membrane adsorbent for ligand binding is not limited, and various methods can be used for this purpose.

(4)  耐熱性にすくれているため、オートクレーブ
滅菌か可能となってサニタリー性が向上し、更に膜強度
にすぐれており、寿命か長く経済的である。
(4) Since it has excellent heat resistance, it can be sterilized in an autoclave, improving sanitary properties. Furthermore, it has excellent membrane strength and has a long lifespan, making it economical.

〔発明の詳細な説明〕[Detailed description of the invention]

く精製法〉 本発明による物質の精製法は、アフイニテイクロマトグ
ラフィーを用いた物質の精製法において、多孔質ガラス
を管状またはプレート状に成形した膜状担体に、目的と
する物質に対して適度な親和性を有するリガンドを結合
させてこれを分離膜体とし、該分離膜体に対して分離用
試料液を通過させること、を特徴とするものであること
は前記したところであり、多孔質ガラス膜をアフイニテ
イクロマトグラフィーの担体として目的物質を分離する
ことを基本原理とするものである。
Purification method> The method of purifying a substance according to the present invention is a method of purifying a substance using Affinity chromatography, in which a membrane carrier made of porous glass is formed into a tube or a plate, and a target substance is added to the membrane carrier. As mentioned above, the method is characterized in that a ligand having a suitable affinity is bound to form a separation membrane, and a sample liquid for separation is passed through the separation membrane. The basic principle is to separate target substances using a glass membrane as a carrier for affinity chromatography.

本発明において、分離の対象となる目的の物質は、アフ
ィニティクロマトグラフィー、すなわち物質の示す特異
的な相互作用である親和性を利用したクロマトグラフィ
ー、によって分離できるものであり、このような物質と
しては、バイオテクノロジーによって生産される医薬品
等の各種タンパク質関連物質(たとえば種々のホルモン
、酵素、抗体、アルブミンなど)をはじめ、ポリヌクレ
オチド、糖脂質、多糖類なとがあげられる。
In the present invention, the target substance to be separated can be separated by affinity chromatography, that is, chromatography that utilizes affinity, which is a specific interaction between substances, and such substances include Examples include various protein-related substances (for example, various hormones, enzymes, antibodies, albumin, etc.) such as pharmaceuticals produced by biotechnology, as well as polynucleotides, glycolipids, and polysaccharides.

また、これらの目的物質を含む分離用試料液としては、
たとえば発酵液、破砕菌体等の抽出液、あるいはこれら
の精製液などがあげられる。
In addition, sample solutions for separation containing these target substances include:
Examples include fermentation liquid, extracts of crushed bacterial cells, and purified liquids thereof.

担体は、前記のように多孔質ガラスを管状またはプレー
ト状に成形した膜状のもので、その厚さが好ましくは0
.3〜4.0wm程度、より好ましくは、管状の場合に
は0.3〜2. 0wm、プレート状の場合には0,3
〜1.01のもの、細孔容積が好ましくは0.3〜1.
0cc/g程度、より好ましくは0.3〜0.6cc/
gのもの、比表面積が好ましくは1〜500i/g程度
、より好ましくは100〜400rrf/gのもの、細
孔径が好ましくは0.05〜50μm程度、より好まし
くは0.1〜10μmのものである。
As mentioned above, the carrier is a membrane formed from porous glass into a tubular or plate shape, and its thickness is preferably 0.
.. About 3 to 4.0 wm, more preferably 0.3 to 2.0 wm in the case of a tubular shape. 0wm, 0.3 in case of plate shape
~1.01, preferably with a pore volume of 0.3~1.
About 0 cc/g, more preferably 0.3 to 0.6 cc/
g, the specific surface area is preferably about 1 to 500 i/g, more preferably 100 to 400 rrf/g, and the pore diameter is preferably about 0.05 to 50 μm, more preferably 0.1 to 10 μm. be.

担体としての多孔質ガラスは、SiOっ、Al2O3、
B2O3等の一般的な無機ガラス成分から選ばれる1種
または複数種の成分から焼成されるものであり、この多
孔質カラスの焼成方法については、一般的な文献、たと
えば「ファインセラミックスハンドブック」浜野健也編
集(朝倉書店)、「バイオセラミックス」 (技報堂出
版)、などを参照することかできる。
Porous glass as a carrier is SiO, Al2O3,
It is fired from one or more components selected from general inorganic glass components such as B2O3, and the method for firing this porous glass is described in general literature, such as "Fine Ceramics Handbook" by Ken Hamano. You can refer to ``Bioceramics'' (Gihodo Publishing), edited by Yaya (Asakura Shoten), etc.

目的とする物質は、担体に結合させたりガントによって
吸着されるか、リガンドとしては、一般的な文献、たと
えば「実験と応用 アフィニティクロマトグラフィー」
 (講談社)などに記載されているように、種々のホル
モンタンパク質に対する特異的リセプター、種々の酵素
に対する基質、種々の抗原(または抗体)に対する抗体
(または抗原)、IgGに対するプロティンA1ポリヌ
クレオチドに対する相補的ポリヌクレオチド、NAD(
P)関連酵素、ATP関連酵素、血清アルブミン等に対
する合成色素、糖タンパク質、糖脂質、多糖類などに対
するレクチン、血液凝固因子などに対するヘパリンなど
が一般にあげられる。
The target substance can be bound to a carrier or adsorbed by Gantt, or the ligand can be prepared from general literature such as "Experiment and Application Affinity Chromatography".
(Kodansha), etc., specific receptors for various hormone proteins, substrates for various enzymes, antibodies (or antigens) for various antigens (or antibodies), complementary proteins for protein A1 polynucleotide for IgG, etc. Polynucleotide, NAD (
P) Related enzymes, ATP-related enzymes, synthetic dyes for serum albumin, etc., lectins for glycoproteins, glycolipids, polysaccharides, etc., heparin for blood coagulation factors, etc. are generally mentioned.

リガンドの担体への結合は共有結合によるのか普通であ
り、担体にシアノ基、エポキシ基、アミノ基などを結合
させたものにリガンド(タンパク質もしくはペプチドか
多い)の−NH2、−COOHあるいは−○Hなどを常
法によって共有結合させることにより担体にリガンドを
固定することができる。また、共有結合によってリガン
ドを担体に固定させるためには、担体としての多孔質ガ
ラスを活性化しておく必要がある。このような担体の活
性化方法および共有結合によるリガンドの固定化方法に
ついては一般的な文献、たとえば「実験と応用 アフィ
ニティークロマトグラフィー」 (講談社)、などを参
照することができるが、活性化方法の例の概要は下記の
ように説明される。
The bonding of the ligand to the carrier is usually through a covalent bond, and the ligand (often a protein or peptide) is attached to -NH2, -COOH or -○H by bonding a cyano group, epoxy group, amino group, etc. to the carrier. The ligand can be immobilized on the carrier by covalently bonding the like using a conventional method. Furthermore, in order to immobilize the ligand on the carrier by covalent bonding, it is necessary to activate the porous glass as the carrier. General literature such as "Experiments and Applied Affinity Chromatography" (Kodansha) can be referred to for the method of activating such a carrier and the method of immobilizing a ligand by covalent bonding, but the An overview of the example is explained below.

まず、多孔質ガラスをシラン誘導体、たとえばγ−アミ
ノプロピルトリエトキシシランなど、で処理し、アルキ
ルアミノガラスを調製する。このアルキルアミノガラス
は、リガンドの種類や分離・精製の目的に応じて、芳香
族アミノ誘導体、イソシアン酸語導体、カルボン酸誘導
体、あるいは酸クロリド誘導体、などの形に調製するこ
とができる。
First, porous glass is treated with a silane derivative, such as γ-aminopropyltriethoxysilane, to prepare alkylamino glass. This alkylamino glass can be prepared in the form of aromatic amino derivatives, isocyanate derivatives, carboxylic acid derivatives, acid chloride derivatives, etc., depending on the type of ligand and the purpose of separation and purification.

また、アルキルアミノガラスは、カルボキシル基を有す
るリガンド(タンパク質もしくはポリペプチドがその代
表例である)、あるいはグルタルアルデヒドのような架
橋試薬を用いてアミノ基を固定化することも可能である
Furthermore, it is also possible to immobilize amino groups on alkylamino glass using a ligand having a carboxyl group (proteins or polypeptides are typical examples thereof) or a crosslinking reagent such as glutaraldehyde.

更に、リガンドと担体の間に適当な長さのスペーサー(
たとえば−(CH2)。−など)を導入することにより
、より有利にアフィニティクロマトグラフィーを行なう
ことができる。スペーサーを導入する方法として、スペ
ーサーをあらかじめ結合させた担体にリガンドを固定化
する方法と、あらかじめリガンドとスペーサーの結合体
を形成し、これを担体に固定化する方法があるが、どち
らも採用することか可能である。スペーサーを導入する
方法については、一般的な文献、たとえば「実験と応用
 アフィニティークロマトグラフィー」(講談社)を参
照することかできる。
Furthermore, a spacer of appropriate length (
For example -(CH2). - etc.), affinity chromatography can be performed more advantageously. There are two methods for introducing a spacer: one is to immobilize a ligand on a carrier to which a spacer has been bound in advance, and the other is to form a combination of a ligand and spacer in advance and immobilize it on a carrier. Both methods are used. It is possible. For information on how to introduce a spacer, you can refer to general literature such as "Experiments and Applications of Affinity Chromatography" (Kodansha).

本発明においては、多孔質ガラスの上記各種活性化方法
のうち、目的物質に応して、最も効率的な方法を適宜選
択することができる。
In the present invention, among the various activation methods for porous glass described above, the most efficient method can be appropriately selected depending on the target substance.

担体にリガンドを結合させる方法の好ましい具体例につ
いては、後記実験例に詳細に示されている。
Preferred specific examples of the method for binding the ligand to the carrier are shown in detail in the experimental examples below.

上述のようにして、多孔質ガラス製の担体にリガンドを
結合させることにより、目的物質を吸着、分離するだめ
の分離膜体が構成される。この分離膜体については、管
状のものが後述する第2図の精製装置に、プレート状の
ものが第3図の精製装置にそれぞれ示されている。
By binding a ligand to a porous glass carrier as described above, a separation membrane body for adsorbing and separating a target substance is constructed. Regarding this separation membrane body, a tubular one is shown in the purification apparatus shown in FIG. 2, which will be described later, and a plate-shaped one is shown in the purification apparatus shown in FIG. 3, respectively.

この分離膜体を用いて目的物質を分離、精製するために
は、従来の膜アフィニティクロマトグラフィーの場合の
方法と基本的には同じでよく、まず、適当な容器内に組
み込んだ分離膜体に対して目的物質を含む分離用試料液
を適当な圧力を加えながら供給、通過させて目的物質を
分離膜体に吸着させる。次に適当な緩衝液で分離膜体に
残留する不純物を洗い出し、その後、リガンドに結合し
た目的物質を適当な溶出液で解離、溶出させて回収する
。実際に分離膜体を利用するには、後述するような、第
2図に示した管状の分離膜体を組み込んだ精製装置、あ
るいは第3図に示したプレート状の分離膜体を組み込ん
だ精製装置などを用いればよい。また、上記緩衝液およ
び溶出液は、目的とする物質に応して従来と同様適宜適
当なものを選択すればよい。
In order to separate and purify the target substance using this separation membrane, the method is basically the same as that of conventional membrane affinity chromatography. A separation sample solution containing the target substance is supplied and passed through the membrane while applying an appropriate pressure, and the target substance is adsorbed onto the separation membrane. Next, impurities remaining in the separation membrane body are washed out with an appropriate buffer, and then the target substance bound to the ligand is dissociated and eluted with an appropriate eluent and recovered. In order to actually use the separation membrane body, a purification device incorporating the tubular separation membrane body shown in Fig. 2 or a purification device incorporating the plate-shaped separation membrane body shown in Fig. 3, as described later, is required. A device or the like may be used. Further, the above buffer solution and eluate may be appropriately selected according to the target substance as in the past.

分離膜体を用いて目的の物質を分離、精製するための方
法は、一般的な文献、たとえばS、 Brandt e
t at 、、 Bio/lechnology、 v
ol 6゜P779(1988)、などを参照すること
ができるが、本発明における具体例については後記実験
例に詳細に示されている。
Methods for separating and purifying target substances using separation membranes are described in general literature, such as S. Brandt et al.
t at,, Bio/technology, v
ol 6°P779 (1988), etc., and specific examples of the present invention are shown in detail in Experimental Examples below.

〈精製装置〉 本発明による物質の精製装置は、目的とする物質に対し
て適度な親和性を有するリガンドを担体に結合させて構
成した分離膜体を、分離用試料液の供給用ケーシング内
に保持させて成る物質の精製装置であって、上記担体を
、多孔質ガラスを管状またはプレート状に成形して構成
したことを特徴とするものであることは前記したところ
であり、上述の本発明による精製方法を基本原理とする
ものである。本発明による精製装置は、分離膜体以外の
構成については、この種の目的に用いられている公知の
ものを採用することができる。
<Purification Apparatus> The substance purification apparatus according to the present invention includes a separation membrane body constituted by bonding a ligand having an appropriate affinity for the target substance to a carrier in a casing for supplying a sample liquid for separation. As described above, there is provided an apparatus for purifying a substance by holding a substance, in which the carrier is formed by molding porous glass into a tube shape or a plate shape. The basic principle is the purification method. The purification apparatus according to the present invention may employ any known structure used for this type of purpose, except for the separation membrane body.

第2図には、分離膜体として管状に成形されたちの1を
組み込んだ精製装置の基本構成の例か、また第3図には
、プレート状に成形された分離膜体1′を組み込んた精
製装置の基本構成の例がそれぞれ示されている。これら
の分離膜体については精製方法の項ですてに詳細に説明
されている。
Fig. 2 shows an example of the basic configuration of a purification device that incorporates a separation membrane body 1 formed into a tubular shape, and Fig. 3 shows an example of the basic configuration of a purification device incorporating a separation membrane body 1' formed into a plate shape. Examples of basic configurations of purification devices are shown. These separation membrane bodies have already been explained in detail in the section on purification methods.

また、分離膜体の多孔質ガラスを担体として実際に使用
する時の大きさは、メツシュのような適当な支持体によ
って膜面を支持して用いる場合には特に制限はないが、
支持体を用いない場合には、強度の点から管状担体ては
内径が2〜15mm程度、長さが50〜500 mm程
度か好ましく、プレート状担体では面積が3〜100c
−程度のものか好ましい。
In addition, there is no particular limit to the size of the porous glass of the separation membrane when it is actually used as a carrier, as long as the membrane surface is supported by a suitable support such as a mesh.
When a support is not used, from the viewpoint of strength, a tubular carrier preferably has an inner diameter of about 2 to 15 mm and a length of about 50 to 500 mm, and a plate-shaped carrier has an area of 3 to 100 mm.
- is preferable.

第2図の精製装置は、複数の管状の分離膜体1を軸方向
に平行に配置した状態で筒状に形成した試料液供給用ケ
ーシング2内にその両端部において開口aを維持させて
固定したものである。ケーシング2はポリプロピレン、
ポリカーボネート、テフロンなどの一般に用いられてい
る合成樹脂、あるいはステンレスなとの一般に用いられ
ている金属などが使用できる。
In the purification device shown in FIG. 2, a plurality of tubular separation membrane bodies 1 are arranged in parallel in the axial direction and fixed in a cylindrical sample liquid supply casing 2 with openings a maintained at both ends thereof. This is what I did. Casing 2 is made of polypropylene,
Commonly used synthetic resins such as polycarbonate and Teflon, or commonly used metals such as stainless steel can be used.

この精製装置によって目的物質を分離、精製するには、
試料液を適当な圧力を加えなから一端側の分離膜体1の
管内に供給して不要の液を管外(ケーシング2の筒内)
に流出させ、流出入口3から排出するか、またはこの流
出入口3から試料液を供給して分離膜体2の管外から管
内に流出させ、その後、試料液と同様にして洗浄用の緩
衝液および溶出液を供給し、流出口3側または他端側か
ら目的物質を回収する。この場合、開口a側端部には試
料の供給または目的物質回収のための供給口(または回
収口)を有する適当な長さの筒部をケーシング2に延設
しておけばよい。
To separate and purify the target substance using this purification device,
The sample liquid is supplied into the tube of the separation membrane body 1 at one end without applying appropriate pressure, and unnecessary liquid is removed from the tube (inside the cylinder of the casing 2).
Either the sample solution is allowed to flow out from the outside of the tube of the separation membrane body 2 and discharged from the outflow port 3, or the sample solution is supplied from the outflow port 3 to flow from outside the tube of the separation membrane body 2 into the tube, and then, in the same manner as the sample solution, a buffer solution for washing is added. and eluate are supplied, and the target substance is collected from the outlet 3 side or the other end side. In this case, a cylindrical portion of an appropriate length having a supply port (or collection port) for supplying a sample or recovering a target substance may be provided in the casing 2 at the end on the side of the opening a.

第3図の精製装置は、プレート状の分離膜体1′を1対
のケーシング2′、  2’ に挟持状態で内設したも
のである。このような精製装置の場合は、図示されてい
るように、複数の分離膜体1′を、同心円状にかつ放射
状に流路溝5,5′が設けられ中心に流通孔6を設けた
複数のデイストリビューター4、およびメツシュ状のス
ペーサー7と共に対称的に配置して重ねた状態でケーシ
ング2’、2’ に内設することかより望ましい。ケー
シング2′、デイストリビューター4、スペーサ7は、
ポリプロピレン、ポリカーボネート、テフロンなどの一
般に用いられている合成樹脂等によって成形することか
できる。この精製装置によって目的物質を分離、精製す
るには、試料液を適当な圧力を加えながら一方のケーシ
ング2′の供給口8から供給して不要の液を他方の流出
口8′から排出し、その後試料液と同様にして洗浄用の
緩衝液および溶出液を供給し、流出口8′から目的物質
を回収する。
The purification apparatus shown in FIG. 3 has a plate-shaped separation membrane 1' sandwiched between a pair of casings 2', 2'. In the case of such a purification device, as shown in the figure, a plurality of separation membrane bodies 1' are arranged in a plurality of membranes having concentrically and radially channel grooves 5, 5' and a communication hole 6 in the center. It is more preferable that the distributor 4 and the mesh-like spacer 7 be arranged symmetrically and stacked in the casings 2', 2'. The casing 2', the distributor 4, and the spacer 7 are
It can be molded from commonly used synthetic resins such as polypropylene, polycarbonate, and Teflon. To separate and purify a target substance using this purification device, a sample liquid is supplied from the supply port 8 of one casing 2' while applying an appropriate pressure, and unnecessary liquid is discharged from the other outlet 8'. Thereafter, a washing buffer and an eluate are supplied in the same manner as the sample solution, and the target substance is recovered from the outlet 8'.

〔実 施 例〕〔Example〕

以下は、本発明の実施例を示すものであるか、これによ
って本発明は限定されるものではない。
The following is intended to be illustrative of the present invention and is not intended to limit the invention thereto.

実施例 以下の実施例は、多孔質ガラス膜として、旭硝子(株)
製の管状膜を使用した例を示すものである。内径2mm
、内厚0. 3mm、長さ100mmの多孔質ガラス膜
チューブを3本使用し、分離精製実験に供した。多孔質
ガラス膜の細孔径は1.0μm、膜面積は外径基準で2
1.7c4、膜容積は0 、 304 cIllのもの
を使用した。膜の活性化は、次のような手順によって実
施した。まず、多孔質ガラス膜をγ−アミノプロピルト
リエトキシシランのトルエン溶液(10%v / v)
中で3時間還流し、その後メタノールを用いて過剰のシ
ランを洗浄除去することによりアルキルアミノガラスを
得た。ここでは、さらにこのアルキルアミノガラスを下
記のような反応により2種の誘導体、すなわち、芳香族
アミノ誘導体(1)およびカルボン酸誘導体(2)を得
た。
Examples The following examples use porous glass membranes made by Asahi Glass Co., Ltd.
This example shows the use of a tubular membrane manufactured by Inner diameter 2mm
, inner thickness 0. Three porous glass membrane tubes each having a diameter of 3 mm and a length of 100 mm were used for the separation and purification experiment. The pore diameter of the porous glass membrane is 1.0 μm, and the membrane area is 2 based on the outer diameter.
1.7 c4, membrane volume 0, 304 cIll was used. Activation of the membrane was performed by the following procedure. First, a porous glass membrane was prepared using a toluene solution of γ-aminopropyltriethoxysilane (10% v/v).
The mixture was refluxed for 3 hours, and then excess silane was washed away using methanol to obtain alkylamino glass. Here, this alkylamino glass was further subjected to the following reaction to obtain two types of derivatives, namely, an aromatic amino derivative (1) and a carboxylic acid derivative (2).

(1)芳香族アミノ誘導体 (2)カルボン酸誘導体 担体HH ↓ 分離精製のケースとして、本実施例ではプロティンAを
リガンドとしたヒトIgGの群特異的アフィニティクロ
マトグラフィーによる分離、精製を行なった。、なお、
プロティンAとしては黄色ブドウ球菌Cowan 1株
由来のプロティン産生遺伝子を組み込んだ組換え大腸菌
産生のものを使用した。
(1) Aromatic amino derivative (2) Carboxylic acid derivative carrier HH ↓ As a case of separation and purification, in this example, human IgG was separated and purified by group-specific affinity chromatography using protein A as a ligand. ,In addition,
As protein A, one produced by recombinant E. coli into which a protein production gene derived from Staphylococcus aureus Cowan 1 strain was incorporated was used.

一連の分離・精製試験の流れは次の様なものである。The flow of a series of separation and purification tests is as follows.

脱吸着体の平衡化 ↓ プロティンAの固定化 ↓ 脱吸着体のブロキッング ↓ 洗  浄 ↓ 平衡化 ↓ IgGフラクションの吸着 ↓ 洗浄 ↓ IgGの溶出 なお、この一連の操作は、第1図に示す様なプロセスフ
ロー図によって実施することができる。
Equilibration of deadsorbent ↓ Immobilization of protein A ↓ Blocking of deadsorbent ↓ Washing ↓ Equilibration ↓ Adsorption of IgG fraction ↓ Washing ↓ Elution of IgG Note that this series of operations can be performed as shown in Figure 1. It can be implemented by a process flow diagram.

まず、2種の脱吸着体を活性化させる。吸着体(1)の
場合は、0.2.5%のグルタルアルデヒドを含む0.
1Mホウ酸緩衝液(pH8,2)を循環(2時間)させ
ることにより活性化膜を作製した。同じ緩衝液で過剰の
グルタルアルデヒドを洗浄後、プロティンA (5mg
 / ml )を同じ緩衝液に溶解したリガンド溶液を
5時間循環させ、プロティンAを固定化させた。その後
、N a B H4で還元し、1%グリシンエチルエス
テルハイドロクロライド(pi(8,1)で過剰の活性
基をブロッキングした。この操作は1.0時間継続した
First, two types of desorbents are activated. In the case of adsorbent (1), 0.2.5% of glutaraldehyde was used.
An activated membrane was prepared by circulating 1M borate buffer (pH 8,2) (for 2 hours). After washing excess glutaraldehyde with the same buffer, protein A (5 mg
/ml) dissolved in the same buffer was circulated for 5 hours to immobilize protein A. It was then reduced with NaB H4 and excess active groups were blocked with 1% glycine ethyl ester hydrochloride (pi(8,1)). This operation continued for 1.0 h.

さらに、0.05Mリン酸緩衝液(pH7,6,0,2
5MNaC1含有)、0.2Mグリシン−HC1緩衝液
(pH12,3)で洗浄し、最終的に0.05Mリン酸
緩衝液(pH7,6,0,25MNaC1含有)で平衡
化し、IgGの吸着、溶出試験に供した。
Furthermore, 0.05M phosphate buffer (pH 7, 6, 0, 2
5M NaCl (containing), washed with 0.2M glycine-HC1 buffer (pH 12, 3), and finally equilibrated with 0.05M phosphate buffer (pH 7, 6, 0, containing 25M NaCl) for adsorption and elution of IgG. Tested.

吸着体(2)の場合は、次の様に分離を実施した。プロ
ティンAを5 a+g / mlとなるよう蒸留水に溶
解し、0.1MHClにてpH4,5に調整する。
In the case of adsorbent (2), separation was carried out as follows. Protein A was dissolved in distilled water to a concentration of 5 a+g/ml, and the pH was adjusted to 4.5 with 0.1M HCl.

一方、1−エチル−3−(3−ジメチルアミノプロピル
)カルボジイミド塩酸塩を10mg/mlとなるように
蒸留水に溶解し、pH4,5とする。これら2種の溶液
を混合し、循環させることにより、プロティンAの固定
化を行なう。さらに、吸着体(1)と同様に、ブロッキ
ング洗浄および平衡化操作を行なった。
On the other hand, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride was dissolved in distilled water to a concentration of 10 mg/ml, and adjusted to pH 4.5. Protein A is immobilized by mixing and circulating these two types of solutions. Furthermore, blocking washing and equilibration operations were performed in the same manner as for adsorbent (1).

ヒト血清を部分精製したIgGフラクションは、10m
1/分の流量で循環させ、IgGの吸着を行なった。ま
た、IgGの溶出はグリシン−HCl緩衝液(pH2,
3)で実施した。なお、タンパク質量はローリ−(Lo
vry)法(循環中はOD    )280n匝 で測定した。また溶出されたIgGの純度検定は、5D
S−PAGEにより行なった。
The IgG fraction obtained by partially purifying human serum is 10 m
IgG was adsorbed by circulating at a flow rate of 1/min. In addition, for elution of IgG, glycine-HCl buffer (pH 2,
3) was carried out. In addition, the protein amount is Lory (Lo
vry) method (OD during circulation) was measured using a 280n box. In addition, the purity of eluted IgG was tested using 5D
This was done by S-PAGE.

吸着体(1)と(2)で得られたプロティンAの吸着f
fi (mg  ProtcinA/cJ−膜)および
IgGの回収率の結果を表1および表2に示す。なお、
5DS−PAGEにより、溶出されるタンパク質は98
%以上かIgGであることが確認された。
Adsorption f of protein A obtained with adsorbents (1) and (2)
The results of the recovery rates of fi (mg ProtcinA/cJ-membrane) and IgG are shown in Tables 1 and 2. In addition,
By 5DS-PAGE, 98 proteins were eluted.
% or more was confirmed to be IgG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は分離膜によるアフィニティクロマトグラフィー
システムの概要を示す説明図である。 第2図は、管状に成形した分離膜体を用いた、本発明に
よる精製装置の基本構成の一例を示す一部切欠図である
。 第3図は、プレート膜状に成形した分離膜体を用いた、
本発明による精製装置の基本構成の一例を示す構成図で
ある。
FIG. 1 is an explanatory diagram showing an outline of an affinity chromatography system using a separation membrane. FIG. 2 is a partially cutaway view showing an example of the basic configuration of a purification apparatus according to the present invention using a separation membrane body formed into a tubular shape. Figure 3 shows a method using a separation membrane body formed into a plate membrane shape.
FIG. 1 is a configuration diagram showing an example of the basic configuration of a purification apparatus according to the present invention.

Claims (1)

【特許請求の範囲】 1、アフィニティクロマトグラフィーを用いた物質の精
製法において、多孔質ガラスを管状またはプレート状に
成形した膜状担体に、目的とする物質に対して適度な親
和性を有するリガンドを結合させてこれを分離膜体とし
、該分離膜体に対して分離用試料液を通過させることを
特徴とする、物質の精製法。 2、担体の細孔容積が0.3〜1.0cc/g、比表面
積が1〜500m^2/g、細孔径が0.05〜50μ
m、膜の厚さが0.3〜4.0mmである、請求項1記
載の精製法。 3、目的とする物質がタンパク質である、請求項1また
は2記載の精製法。 4、目的とする物質に対して適度な親和性を有するリガ
ンドを担体に結合させて構成した分離膜体を、分離用試
料液の供給用ケーシング内に保持させて成る物質の精製
装置であって、上記担体を、多孔質ガラスを管状または
プレート状に成形して構成したことを特徴とする、アフ
ィニティクロマトグラフィーによる物質の精製装置。 5、担体の細孔容積が0.3〜1.0cc/g、比表面
積が1〜500m^2/g、細孔径が0.05〜50p
m、膜の厚さが0.3〜4.0mmである、請求項4記
載の精製装置。 6、目的とする物質がタンパク質である、請求項4また
は5記載の精製装置。
[Claims] 1. In a method for purifying a substance using affinity chromatography, a ligand having an appropriate affinity for the target substance is placed on a membrane carrier made of porous glass in the shape of a tube or plate. 1. A method for purifying a substance, the method comprising: combining the two to form a separation membrane body, and passing a sample liquid for separation through the separation membrane body. 2. The pore volume of the carrier is 0.3 to 1.0 cc/g, the specific surface area is 1 to 500 m^2/g, and the pore diameter is 0.05 to 50 μ
2. The purification method according to claim 1, wherein the membrane has a thickness of 0.3 to 4.0 mm. 3. The purification method according to claim 1 or 2, wherein the target substance is a protein. 4. A substance purification device comprising a separation membrane body, which is composed of a carrier bound to a ligand having an appropriate affinity for the target substance, held in a casing for supplying a sample liquid for separation. . An apparatus for purifying a substance by affinity chromatography, characterized in that the carrier is formed by molding porous glass into a tube shape or a plate shape. 5. The pore volume of the carrier is 0.3 to 1.0 cc/g, the specific surface area is 1 to 500 m^2/g, and the pore diameter is 0.05 to 50 p.
5. The purification apparatus according to claim 4, wherein the membrane thickness is 0.3 to 4.0 mm. 6. The purification device according to claim 4 or 5, wherein the target substance is a protein.
JP2202842A 1990-07-31 1990-07-31 Method for purifying substance by affinity chromatography and apparatus for purification Pending JPH0489500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202842A JPH0489500A (en) 1990-07-31 1990-07-31 Method for purifying substance by affinity chromatography and apparatus for purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202842A JPH0489500A (en) 1990-07-31 1990-07-31 Method for purifying substance by affinity chromatography and apparatus for purification

Publications (1)

Publication Number Publication Date
JPH0489500A true JPH0489500A (en) 1992-03-23

Family

ID=16464097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202842A Pending JPH0489500A (en) 1990-07-31 1990-07-31 Method for purifying substance by affinity chromatography and apparatus for purification

Country Status (1)

Country Link
JP (1) JPH0489500A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005284A (en) * 2005-12-13 2014-01-16 Exthera Medical Corp Method for extracorporeal removal of pathogenic microbe, inflammatory cell or inflammatory protein from blood
US9408962B2 (en) 2009-12-01 2016-08-09 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US9669150B2 (en) 2007-06-18 2017-06-06 Exthera Medical Corporation Device and method for restoration of the condition of blood
US10457974B2 (en) 2013-11-08 2019-10-29 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US10537280B2 (en) 2011-02-15 2020-01-21 Exthera Medical Corporation Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines
US10639413B2 (en) 2013-06-24 2020-05-05 Exthera Medical Corporation Blood filtration system containing mannose coated substrate
US10786615B2 (en) 2016-03-02 2020-09-29 Exthera Medical Corporation Method for treating drug intoxication
US10857283B2 (en) 2014-09-22 2020-12-08 Exthera Medical Corporation Wearable hemoperfusion device
US11266772B2 (en) 2012-06-13 2022-03-08 Exthera Medical Corporation Use of heparin and carbohydrates to treat cancer
US11844895B2 (en) 2014-04-24 2023-12-19 Exthera Medical Corporation Method for removing bacteria from blood using high flow rate
US11911551B2 (en) 2016-03-02 2024-02-27 Exthera Medical Corporation Method for treating drug intoxication

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10688239B2 (en) 2005-12-13 2020-06-23 Exthera Medical Corporation Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US9173989B2 (en) 2005-12-13 2015-11-03 Exthera Medical Corporation Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
JP2014005284A (en) * 2005-12-13 2014-01-16 Exthera Medical Corp Method for extracorporeal removal of pathogenic microbe, inflammatory cell or inflammatory protein from blood
US9764077B2 (en) 2005-12-13 2017-09-19 Exthera Medical Corporation Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US11065378B2 (en) 2005-12-13 2021-07-20 Exthera Medical Corporation Method for extracorporeal removal of a pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US10188783B2 (en) 2005-12-13 2019-01-29 Exthera Medical Corporation Method for extracorporeal removal of pathogenic microbe, an inflammatory cell or an inflammatory protein from blood
US9669150B2 (en) 2007-06-18 2017-06-06 Exthera Medical Corporation Device and method for restoration of the condition of blood
US11123466B2 (en) 2009-12-01 2021-09-21 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US10086126B2 (en) 2009-12-01 2018-10-02 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US9408962B2 (en) 2009-12-01 2016-08-09 Exthera Medical Corporation Methods for removing cytokines from blood with surface immobilized polysaccharides
US10537280B2 (en) 2011-02-15 2020-01-21 Exthera Medical Corporation Device and method for removal of blood-borne pathogens, toxins and inflammatory cytokines
US11266772B2 (en) 2012-06-13 2022-03-08 Exthera Medical Corporation Use of heparin and carbohydrates to treat cancer
US10639413B2 (en) 2013-06-24 2020-05-05 Exthera Medical Corporation Blood filtration system containing mannose coated substrate
US10487350B2 (en) 2013-11-08 2019-11-26 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US10457974B2 (en) 2013-11-08 2019-10-29 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US11306346B2 (en) 2013-11-08 2022-04-19 Exthera Medical Corporation Methods for diagnosing infectious diseases using adsorption media
US11844895B2 (en) 2014-04-24 2023-12-19 Exthera Medical Corporation Method for removing bacteria from blood using high flow rate
US10857283B2 (en) 2014-09-22 2020-12-08 Exthera Medical Corporation Wearable hemoperfusion device
US10786615B2 (en) 2016-03-02 2020-09-29 Exthera Medical Corporation Method for treating drug intoxication
US11911551B2 (en) 2016-03-02 2024-02-27 Exthera Medical Corporation Method for treating drug intoxication

Similar Documents

Publication Publication Date Title
CN109569026B (en) Preparation of chromatographic stationary phase with porous frame material as matrix for chiral separation
Mallik et al. Affinity monolith chromatography
US4594135A (en) Process and apparatus for electrically desorbing components selectively sorbed on granules
Josić et al. Application of monoliths as supports for affinity chromatography and fast enzymatic conversion
Klein Affinity membranes: a 10-year review
US7355020B2 (en) Stimulus responsive affinity chromatographic material and separation/purification method
Castilho et al. Comparison of affinity membranes for the purification of immunoglobulins
CA1082625A (en) Pressure-driven affinity sorption membranes
MX2012001172A (en) Specific sorbent for binding proteins and peptides, and separation method using the same.
JP6426503B2 (en) Adsorbent, separation and purification apparatus using the same, and separation and purification method
AU727699B2 (en) Patient-specific immunoadsorbers for the extracorporeal apheresis and methods for their preparation
US4661224A (en) Process and apparatus for electrically desorbing components selectively sorbed on an electrolytically conducting barrier
CA2383955A1 (en) Extracorporeal endotoxin removal method
JPH0489500A (en) Method for purifying substance by affinity chromatography and apparatus for purification
AU2001294253A1 (en) Stimulus responsive affinity chromatographic material and separation/purification method
US8088833B2 (en) Method for purifying an IgG monomer
JP3441496B2 (en) Affinity separation material
Öztürk et al. Silane‐modified magnetic beads: application to immunoglobulin G separation
US5077391A (en) Purification of immunoglobulin M
WO1991010492A1 (en) Apparatus and method for affinity separation
JP2010070490A (en) Method for antibody purification
JPH04210698A (en) Fractionation of biosubstance
Turkova Affinity chromatography
Piskin Potential sorbents for medical and some related applications
JPS6348451A (en) Adsorption carrier for chromatography