JPH04210490A - Method for recovering silver - Google Patents

Method for recovering silver

Info

Publication number
JPH04210490A
JPH04210490A JP2341138A JP34113890A JPH04210490A JP H04210490 A JPH04210490 A JP H04210490A JP 2341138 A JP2341138 A JP 2341138A JP 34113890 A JP34113890 A JP 34113890A JP H04210490 A JPH04210490 A JP H04210490A
Authority
JP
Japan
Prior art keywords
silver
photographic processing
electrolytic
cathode
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2341138A
Other languages
Japanese (ja)
Inventor
Nobutaka Goshima
伸隆 五嶋
Shigeharu Koboshi
重治 小星
Masayuki Kurematsu
雅行 榑松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2341138A priority Critical patent/JPH04210490A/en
Publication of JPH04210490A publication Critical patent/JPH04210490A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To make the amt. of silver electrodeposited per unit time almost constant and to prevent a side reaction by keeping the cathode current density in an electrolytic cell almost constant. CONSTITUTION:The main body 1 of an electrolytic cell is divided by a diaphragm 2 into a central cathode chamber 3 and a doughnut anode chamber 4 around the cathode chamber, and a doughnut anode 5 is placed in the chamber 4. A constant-current control rectifier 11 is connected between a feeder cathode 10 and the anode 5, and a silver recovery reaction is conducted in the main body 1 with an almost constant electrolytic current. A fixer contg. silver ion is supplied to the main body 1 as an electrolyte. The silver ion is reduced on a three-dimensional cathode 6 and deposited on the cathode 6 as metallic silver, or the silver ion is suspended in the electrolyte or deposited on the bottom face of the diaphragm 2. Since an almost constant current flows in the electrolyte, the amt. of silver deposited per unit time is almost constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銀イオンを含有する溶液から定電法制WBム
こ、よる電解により銀を回収する方法りこ関j7、より
詳細には銀イオンを含有する写真処理工程の定着液や漂
白定着液等を定着槽や漂白定着槽から銀回収電解槽に供
給し該電解槽で電解反応により前記銀イオンを電析させ
て回収する際に該電解反応の陰極電流密度を実質的に一
定に維持しながら銀回収を行・う方法に関し2、更に詳
細には前記定着液等を定着槽等から前記銀回収電解槽に
供給し7該電解槽で電解反応により前記銀イオンを電析
させて回収した後、該電解槽内の実質的に全ての写真処
理液を前記定着槽等に循環させるいわゆるインライン処
理により硫化銀等の生成を伴うことなく写真処理液から
銀を回収する際に、同様に前記電解反応の陰極電流密度
を実質的に一定に維持しながら銀回収を行う方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for recovering silver from a solution containing silver ions by electrolysis using a constant voltage WB method, more specifically, a method for recovering silver from a solution containing silver ions. The fixing solution, bleach-fixing solution, etc. in the photographic processing process containing 2. A method for recovering silver while maintaining a cathode current density of the reaction substantially constant; 2, more specifically, supplying the fixing solution etc. from a fixing tank etc. to the silver recovery electrolytic cell; 7. In the electrolytic cell. After the silver ions are electrodeposited and recovered by an electrolytic reaction, substantially all of the photographic processing solution in the electrolytic cell is circulated to the fixing tank, etc. Through so-called in-line processing, photographs can be taken without producing silver sulfide, etc. The present invention also relates to a method of recovering silver from a treatment solution while maintaining the cathode current density of the electrolytic reaction substantially constant.

(従来技術) 感光材料は画像露光の後、例えばペーパー感光材料処理
においては、発色現像、漂白定着、水洗及び/又は安定
化の処理工程を経て処理される。
(Prior Art) After image exposure, a photosensitive material is processed through the processing steps of color development, bleach-fixing, washing and/or stabilization, for example in paper photosensitive material processing.

そしてこのような写真処理工程は、発色現像工程、漂白
工程、漂白定着工程、定着工程、安定化工程、水洗工程
等の工程を含み、各工程は別個の処理槽において行われ
る。各処理工程における処理液中には感光材料の乳剤中
等から溶解した銀イオンが存在し処理時間の経過に従っ
て該銀イオン濃度は徐々に上昇する。特に写真処理は感
光材料中のハロゲン化銀と処理液のいわゆる不均一系反
応であり、処理液中の各種処理薬剤がゼラチン膜中を移
動してはしめて反応が起こり、その副生成物が前記ゼラ
チン膜中を移動して処理液中に拡散していくという条件
の下で行われる。従って処理液中に反応副生成物が多量
に存在してくると、写真処理性能にも影響が生してくる
ため、特に処理液中に銀イオンが蓄積した劣化処理液の
処理は、新規処理液の補充により、あるいは該劣化処理
液の抜出や交換、あるいは銀成分回収を目的とする電解
設備を処理槽に連絡し、該電解設備の電解槽での電解反
応により前記処理液中の銀イオンを回収し除去する諸方
法を用いて行われることが主流である。
Such photographic processing steps include steps such as a color development step, a bleaching step, a bleach-fixing step, a fixing step, a stabilizing step, and a washing step, and each step is performed in a separate processing tank. Silver ions dissolved from the emulsion of the light-sensitive material are present in the processing solution in each processing step, and the silver ion concentration gradually increases as processing time progresses. In particular, photographic processing is a so-called heterogeneous reaction between silver halide in a light-sensitive material and a processing solution, and various processing chemicals in the processing solution move through the gelatin film, causing a reaction, and the by-products are This is carried out under the condition that it moves through the gelatin membrane and diffuses into the processing solution. Therefore, if a large amount of reaction by-products are present in the processing solution, it will affect the photographic processing performance. By replenishing the solution, or by withdrawing or replacing the deteriorated treatment solution, or by connecting an electrolytic equipment for the purpose of silver component recovery to the treatment tank, the silver in the treatment solution is removed by an electrolytic reaction in the electrolytic tank of the electrolysis equipment. The mainstream is to use various methods to collect and remove ions.

(発明が解決しようとする問題点) 従来の電解による銀回収方法では、電圧を一定値に維持
して電解を行う定電圧制御が行われている。該定電圧制
御による銀回収では、電圧が一定であるため、銀イオン
濃度の増減に応じて電流値が増減して銀回収量が一定し
ないという欠点がある。更に電流値の増減が大きいと電
流−電圧曲線に大きな変化が生じ、好ましくない副反応
が起きることがある。
(Problems to be Solved by the Invention) In the conventional silver recovery method using electrolysis, constant voltage control is performed in which electrolysis is performed while maintaining the voltage at a constant value. Silver recovery using constant voltage control has the drawback that since the voltage is constant, the current value increases or decreases in accordance with the increase or decrease in silver ion concentration, and the amount of silver recovered is not constant. Furthermore, if the current value increases or decreases significantly, a large change will occur in the current-voltage curve, and undesirable side reactions may occur.

更に前記電解回収法によるとかなりの効率で銀成分の回
収を行うことが出来るが、電解法による銀回収では電解
時間の継続につれて銀析出量が増加し従って写真処理液
中の銀イオン濃度が減少する。写真処理液には銀イオン
の他にチオ硫酸イオンが含有され銀イオン濃度が減少し
た該写真処理液の電解を継続すると銀イオンと前記チオ
硫酸イオンとの反応により硫化銀生成が生じ始める。該
硫化銀は感光材料へ悪影響を与えるため写真処理液中で
の硫化銀生成は回避しなければならない。
Furthermore, according to the electrolytic recovery method described above, silver components can be recovered with considerable efficiency; however, in silver recovery using the electrolytic method, the amount of silver precipitated increases as the electrolysis time continues, and therefore the silver ion concentration in the photographic processing solution decreases. do. The photographic processing solution contains thiosulfate ions in addition to silver ions, and when electrolysis of the photographic processing solution whose silver ion concentration has been reduced is continued, silver sulfide begins to be produced due to the reaction between the silver ions and the thiosulfate ions. Since silver sulfide has an adverse effect on light-sensitive materials, the formation of silver sulfide in photographic processing solutions must be avoided.

硫化銀生成の銀イオン臨界濃度は約0.5〜Ig/βで
あり、従来の電解銀回収では銀イオン濃度がこの値に近
くなると電解を停止し、写真処理液を廃棄して硫化銀が
写真処理液中に往成することを防止している。しかし銀
を含む写真処理液を廃棄するのは環境衛生上及び経済上
の理由から好ましくなく、銀の廃棄を回避しながら銀回
収を行う方法が望まれている。
The critical concentration of silver ions for silver sulfide production is approximately 0.5 to Ig/β, and in conventional electrolytic silver recovery, when the silver ion concentration approaches this value, electrolysis is stopped, the photographic processing solution is discarded, and the silver sulfide is removed. This prevents it from contaminating the photographic processing solution. However, it is undesirable to discard photographic processing solutions containing silver from environmental and economical reasons, and a method of recovering silver while avoiding disposal of silver is desired.

(発明の目的) 本発明は、写真処理液から銀イオンを電解により回収す
る際に、定電流制御による電解を行うことにより単位時
間当たりの銀電析量がほぼ一定であり副反応が生ずるこ
とのない銀回収方法を提供することを目的とする。
(Purpose of the Invention) The present invention provides that when silver ions are recovered from a photographic processing solution by electrolysis, the amount of silver deposited per unit time is almost constant and side reactions occur by performing electrolysis using constant current control. The purpose is to provide a silver recovery method that does not require

(問題点を解決するための手段) 本発明は、写真処理槽と銀回収用電解槽を連結し、該写
真処理槽内の銀イオンを含有する写真処理液を前記銀回
収用電解槽に供給して該電解槽内で銀を電析させ回収し
、銀イオンを全て電析させる前に前記電解槽で処理した
実質的に全ての写真処理液を前記写真処理槽に循環させ
るる方法において、実質的に陰極電流密度を一定に維持
しながら銀を電析させることを特徴とする銀回収方法で
ある。
(Means for Solving the Problems) The present invention connects a photographic processing tank and an electrolytic tank for silver recovery, and supplies a photographic processing solution containing silver ions in the photographic processing tank to the electrolytic tank for silver recovery. in the electrolytic bath, and before all the silver ions are electrodeposited, substantially all of the photographic processing solution processed in the electrolytic bath is circulated to the photographic processing bath, This is a silver recovery method characterized by electrodepositing silver while maintaining a substantially constant cathode current density.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、定着槽等の写真処理槽と銀回収用電解槽を連
結し、写真処理槽内の銀イオン濃度の増加した写真処理
液を前記電解槽に供給し通常の銀回収電解反応により銀
を回収する際に、電解槽内を流れる電流の陰極電流密度
の値をほぼ一定に維持することにより単位時間当たりの
銀回収量をほぼ一定にし、かつ副反応を抑制することを
特徴とする特 本発明の対象とする写真処理液の種類は特に限定されず
、現像液、漂白液、定着液、漂白定着液及び安定化液等
を使用することが出来るが、銀イオン濃度の高い漂白液
、定着液、漂白定着液及び安定化液等とすることが好ま
しい。
The present invention connects a photographic processing tank such as a fixing tank and an electrolytic tank for silver recovery, supplies a photographic processing solution with an increased concentration of silver ions in the photographic processing tank to the electrolytic tank, and carries out a normal silver recovery electrolytic reaction. When recovering silver, by maintaining the value of the cathode current density of the current flowing in the electrolytic cell almost constant, the amount of silver recovered per unit time is made almost constant, and side reactions are suppressed. The type of photographic processing solution targeted by the present invention is not particularly limited, and developer solutions, bleaching solutions, fixing solutions, bleach-fixing solutions, stabilizing solutions, etc. can be used, but bleaching solutions with high silver ion concentration, bleaching solutions with high silver ion concentration, It is preferable to use a fixing solution, a bleach-fixing solution, a stabilizing solution, etc.

本発明方法に使用する銀回収装置は、通常それぞれ1又
は2以上の現像槽、漂白槽、定着槽(又は漂白定着槽)
、安定化槽及び水洗槽が一体化した写真処理槽に近接さ
せて銀回収用電解槽を設置し、該電解槽を前記写真処理
槽のいずれかの槽と連結して形成することが好ましい。
The silver recovery device used in the method of the present invention usually includes one or more developing tanks, bleaching tanks, and fixing tanks (or bleach-fixing tanks).
It is preferable to install an electrolytic cell for silver recovery in close proximity to a photographic processing tank in which a stabilizing tank and a washing tank are integrated, and to connect the electrolytic tank to any one of the photographic processing tanks.

該電解槽は写真処理槽のどの処理槽に連結してもよく、
又例えば複数の定着槽等を有する写真処理槽を使用する
場合には複数の電解槽を該定着槽の全部又は一部に連結
することができる。
The electrolytic cell may be connected to any photographic processing tank,
For example, when a photographic processing tank having a plurality of fixing tanks is used, a plurality of electrolytic tanks can be connected to all or part of the fixing tank.

本発明に使用出来る電解槽は特に限定されず、任意の銀
回収用電解槽を使用することが出来、従来汎用されてい
る回転陰極式(ボックス型)電解槽も使用出来るが、電
極面積の大きい三次元電極式電解槽や処理容量を大きく
出来る板状、多孔板状等の電極を使用する比較的大型の
電解槽を使用することも出来、特に回収速度を速めるた
めに前記三次元電極式電解槽を使用することが望ましい
The electrolytic cell that can be used in the present invention is not particularly limited, and any silver recovery electrolytic cell can be used, and the conventionally widely used rotating cathode type (box type) electrolytic cell can also be used, but it has a large electrode area. It is also possible to use a three-dimensional electrode type electrolytic cell or a relatively large electrolytic cell using plate-shaped or perforated plate-shaped electrodes that can increase the processing capacity. It is preferable to use a tank.

いずれのタイプの電解槽を使用するにしても銀が電析す
る陰極として表面積の大きい電極を使用することが好ま
しく、該電極は例えば粒状、球状、フェルト状、織布状
、多孔質ブロック状等の形状を有する活性炭、グラファ
イト、炭素繊維等の炭素系材料、同形状を有するニッケ
ル、銅、ステンレス、鉄、チタン等の金属材料、更にそ
れら金属材料に貴金属のコーティングを施した材料等か
ら選択される三次元電極を使用することが望ましい。
Whichever type of electrolytic cell is used, it is preferable to use an electrode with a large surface area as the cathode on which silver is deposited, and the electrode may be shaped, for example, in the form of granules, spheres, felts, woven fabrics, porous blocks, etc. carbon-based materials such as activated carbon, graphite, and carbon fiber, which have the same shape, and metal materials such as nickel, copper, stainless steel, iron, and titanium, which have the same shape, and materials that are coated with precious metals on these metal materials. It is desirable to use three-dimensional electrodes.

しかしながら前述の回転陰極式銀回収用電解槽で使用さ
れている棒状、板状及び多孔状の電極を使用することも
出来る。
However, it is also possible to use the rod-shaped, plate-shaped, and porous electrodes used in the above-mentioned rotating cathode electrolytic cell for silver recovery.

対極つまり陽極については特に限定されないが、前記陰
極との間での電流の授受を円滑に行う形状と配置を有す
ることが望ましく、例えば電解槽として円筒形の電解槽
本体の中央に炭素繊維から成る円柱形の三次元陰極を収
容した電解槽の場合には、陽極を、該三次元電極を取り
囲む円筒形とし、かつ電解液の流通を円滑にするためメ
ツシュ状とすることが望ましい。その材質は、グラファ
イト材、炭素材、白金族金属酸化物被覆チタン材(寸法
安定性電極)、白金被覆チタン材、ニッケル材等を使用
することが出来る。
The counter electrode, that is, the anode, is not particularly limited, but it is desirable that it has a shape and arrangement that allows smooth transfer of current between it and the cathode. In the case of an electrolytic cell containing a cylindrical three-dimensional cathode, it is desirable that the anode be cylindrical to surround the three-dimensional electrode and mesh-shaped to ensure smooth flow of the electrolyte. As the material, graphite material, carbon material, platinum group metal oxide coated titanium material (dimensionally stable electrode), platinum coated titanium material, nickel material, etc. can be used.

定電流制御を行うためには前記陽極及び陰極間に通常使
用される定電流制御用整流器を接続すればよい。
In order to perform constant current control, a commonly used constant current control rectifier may be connected between the anode and the cathode.

又銀回収電解反応では水素ガスや酸素ガスが発生するこ
とが多いが、これらのガスが電解槽から写真処理槽へ写
真処理液とともに循環すると写真処理槽内の写真処理液
に組成変化が生じる恐れがあるため、前記電解槽から前
記写真処理槽への循環ラインにガス分離手段を設置する
ことが望ましい。
In addition, hydrogen gas and oxygen gas are often generated in the silver recovery electrolytic reaction, but if these gases circulate together with the photographic processing solution from the electrolytic bath to the photographic processing bath, there is a risk that the composition of the photographic processing solution in the photographic processing bath may change. Therefore, it is desirable to install a gas separation means in the circulation line from the electrolytic tank to the photographic processing tank.

更に写真処理液の循環による不純物又は写真処理時に写
真処理槽で混入する不純物を除去するために前記電解槽
から前記写真処理槽への循環ラインに濾過手段を設置す
ることも望ましい。
Furthermore, it is desirable to install a filtration means in the circulation line from the electrolytic cell to the photographic processing tank in order to remove impurities due to circulation of the photographic processing solution or impurities mixed in the photographic processing tank during photographic processing.

又本発明方法では、写真処理槽と電解槽が連結され該連
結は通常導電性材料から成る配管により行われる。従っ
て前記電解槽で生ずる漏洩電流が該配管を通して前記写
真処理槽に流れ込み写真処理液に不要な反応を生じさせ
たり前記電流がヒータ等の部材に損傷を与えたりする恐
れがある。そのため本発明では、前記漏洩電流を系外に
取り出す手段を設置することが望ましい。該手段として
は例えば、写真処理液より導電性の高い部材を、その一
端が写真処理液に接触するように電解槽と写真処理槽を
連結する配管内あるいは電解槽内で陽陰極が相対してい
ない写真処理液中に設置し、他端を直接接地して前記漏
洩電流を地面に放散させるか、あるいは他端をコンデン
サに接続して漏洩電流を一旦該コンデンサの充電に使用
しその後適宜の方法で放散させる間接的な手段等がある
が、設置及び操作の簡便性から前者の直接接地する方法
を採用することが好ましい。
Further, in the method of the present invention, the photographic processing tank and the electrolytic tank are connected, and the connection is usually made by piping made of an electrically conductive material. Therefore, there is a risk that leakage current generated in the electrolytic bath may flow into the photographic processing bath through the piping, causing unnecessary reactions in the photographic processing solution, or that the current may damage components such as the heater. Therefore, in the present invention, it is desirable to install means for extracting the leakage current outside the system. As an example of such means, a member having higher conductivity than the photographic processing solution may be placed in a pipe connecting the electrolytic bath and the photographic processing bath or in the electrolytic bath such that one end of the member is in contact with the photographic processing solution, so that the anode and cathode are facing each other. Either connect the other end to a capacitor and use the leakage current to charge the capacitor, and then use the appropriate method. Although there are indirect means to dissipate the heat, it is preferable to adopt the former method of direct grounding for ease of installation and operation.

通常の電解による銀回収方法における写真処理槽から電
解槽への写真処理液の供給方式として、一定速度で写真
処理液を前記電解槽に供給して供給量と同量を取り出す
一過式と、一定量の写真処理液を一度に電解槽に供給し
て一定時間電解した後、該写真処理液を一度に前記電解
槽から取り出すバッチ式がある。本発明はいずれの供給
方式に対しても適用することが出来るが、前記電解槽か
ら取り出される写真処理液の実質的に全量を前記写真処
理槽に循環させるいわゆるインライン方式を採用する。
As a method for supplying a photographic processing solution from a photographic processing tank to an electrolytic tank in a conventional silver recovery method by electrolysis, there is a one-time method in which the photographic processing solution is supplied to the electrolytic tank at a constant rate and the same amount as the supplied amount is taken out; There is a batch type method in which a certain amount of photographic processing solution is supplied to an electrolytic cell at one time, electrolyzed for a certain period of time, and then the photographic processing liquid is taken out from the electrolytic cell all at once. Although the present invention can be applied to any supply method, a so-called in-line method is adopted in which substantially the entire amount of photographic processing liquid taken out from the electrolytic bath is circulated to the photographic processing bath.

通常の写真処理工程の定着液中の銀イオン濃度は3〜6
g/!であり、電解槽内で電解を続けるにつれて前記濃
度は徐々に減少する。オームの法則に従って(電圧)−
(電流)×(抵抗)であり、定電圧制御の場合に電解継
続により銀イオン濃度が減少するとつまり抵抗が増加す
ると、電流が減少して銀の電析量も減少する。しかしな
がら定電流制御によると電解継続により抵抗が増加する
と電圧が増加することにより電流値はほぼ一定に維持さ
れるため単位時間当たりの銀電析量もほぼ一定値に維持
される。従って副反応が生ずることもなく、所望の銀回
収反応を高い電流効率が行うことが出来る。
The silver ion concentration in the fixing solution in normal photographic processing is 3 to 6.
g/! The concentration gradually decreases as electrolysis continues in the electrolytic cell. According to Ohm's law (voltage) −
(Current) x (Resistance) In the case of constant voltage control, if the silver ion concentration decreases due to continued electrolysis, that is, if the resistance increases, the current decreases and the amount of silver deposited also decreases. However, according to constant current control, when the resistance increases due to continued electrolysis, the voltage increases and the current value is maintained at a substantially constant value, so that the amount of silver deposited per unit time is also maintained at a substantially constant value. Therefore, side reactions do not occur, and the desired silver recovery reaction can be carried out with high current efficiency.

しかし銀イオン濃度が大きく減少すると前述の通り電流
−電圧曲線に変化が生じて、不要な副反応が起きること
がある。従って銀イオン濃度の増減は出来るだけ小さい
範囲内乙こ維持することが好ましく、そのためには前述
の両供給方式のうちの一過式を採用することが好ましく
、更に前述のインライン方式とすることにより副反応を
より効果的に抑制しかつ銀イオンのほぼ全量を回収する
ことができる。つまり写真処理液中の銀イオン濃度が0
.5 g / f以下になると銀イオンと写真処理液中
に存在する千オ硫酸イオンとの間の反応で硫化銀が生成
し、該硫化銀は感光材1上特に乳剤上に析出して画像の
不鮮明化等の悪影響を与えるため写真処理液中での硫化
銀生成は回避しなければならない。従って本発明ではイ
ンライン処理を行うことにより銀イオン濃度の大幅な減
少を抑制して銀電析量をほぼ一定にするとともに硫化銀
の生成も抑制することが可能になる。
However, when the silver ion concentration decreases significantly, the current-voltage curve changes as described above, and unnecessary side reactions may occur. Therefore, it is preferable to maintain the increase/decrease in silver ion concentration within a range as small as possible, and for this purpose, it is preferable to adopt the transient type of the above-mentioned two supply methods, and furthermore, by adopting the above-mentioned in-line method. Side reactions can be suppressed more effectively and almost the entire amount of silver ions can be recovered. In other words, the silver ion concentration in the photographic processing solution is 0.
.. When the concentration is below 5 g/f, silver sulfide is produced by the reaction between silver ions and periosulfate ions present in the photographic processing solution, and this silver sulfide precipitates on the photosensitive material 1, especially on the emulsion, and deteriorates the image quality. The formation of silver sulfide in photographic processing solutions must be avoided because it causes negative effects such as blurring. Therefore, in the present invention, by performing the in-line treatment, it is possible to suppress a significant decrease in the silver ion concentration, to keep the amount of silver deposited almost constant, and to suppress the generation of silver sulfide.

例えば定着槽に電解槽を連結した場合には、該定着槽内
の定着液の一部を前記電解槽に供給し該電解槽内で定着
液(電解液)の銀イオン濃度が0.5g / l好まし
くは1g/!以下にならない範囲で定電流制御による電
解を行って電解槽の陰極上に銀イオンを金属銀とし、で
電析させ、又は陰極室中に微粒子として浮遊させ又は陰
極室の底板上に沈澱させて回収する。特にバッチ式処理
の場合には銀イオン濃度が前記値つまり0.5g/l好
ましくは1g/lに近付いたときに前記定着液を前記定
着槽に循環させる必要があり銀イオン濃度の経時変化を
把握しなければならない。銀イオン濃度の減少は写真処
理液の電解槽内での滞留時間にほぼ比例するが、−過式
の場合には滞留時間は写真処理液の供給速度により決定
され、バッチ式の場合には滞留時間は電解時間に等しく
なる。
For example, when an electrolytic tank is connected to a fixing tank, a part of the fixing solution in the fixing tank is supplied to the electrolytic tank so that the silver ion concentration of the fixing solution (electrolyte) in the electrolytic tank is 0.5 g / Preferably 1g/! Electrolysis is carried out using constant current control within a range that does not lead to the following: silver ions are converted into metallic silver on the cathode of the electrolytic cell, and are deposited as fine particles, suspended in the cathode chamber as fine particles, or precipitated on the bottom plate of the cathode chamber. to recover. Particularly in the case of batch-type processing, it is necessary to circulate the fixing solution into the fixing tank when the silver ion concentration approaches the above value, that is, 0.5 g/l, preferably 1 g/l, to prevent changes in the silver ion concentration over time. Must be understood. The decrease in silver ion concentration is approximately proportional to the residence time of the photographic processing solution in the electrolytic cell; The time will be equal to the electrolysis time.

従って一過式処理の場合には、予備的に写真処理液の供
給速度と電解槽から取り出される写真処理液の銀イオン
濃度の関係を測定して該電解槽から取り出される写真処
理液の銀イオン濃度が所望値になるように写真処理液を
電解槽に供給するか、前記電解槽から取り出される銀イ
オン濃度を経時的に測定して所望値より高い場合には供
給速度を低下させ低い場合には供給速度を上昇させて所
望値に近付けるようにすることが好ましい。
Therefore, in the case of one-time processing, the relationship between the supply rate of the photographic processing solution and the silver ion concentration of the photographic processing solution taken out from the electrolytic bath is measured in advance, and the silver ions in the photographic processing solution taken out from the electrolytic bath are measured. Either the photographic processing solution is supplied to the electrolytic cell so that the concentration becomes a desired value, or the silver ion concentration taken out from the electrolytic cell is measured over time, and if it is higher than the desired value, the supply rate is reduced and if it is low, It is preferable to increase the supply rate so that it approaches the desired value.

又ハツチ式処理の場合には、他の電解条件を一定にして
電解時間と銀イオン濃度の関係を予め測定して所定時間
経過後に電解槽中の写真処理液を取り出して写真処理槽
に循環させるか、あるいは電解槽内の写真処理液の銀イ
オン濃度を経時的に測定して該濃度が所定値に達したと
きに電解槽中の写真処理液を取り出して写真処理槽に循
環させるようにすることが好ましい。
In the case of hatch type processing, the relationship between electrolysis time and silver ion concentration is measured in advance with other electrolytic conditions kept constant, and after a predetermined period of time, the photographic processing solution in the electrolytic bath is taken out and circulated into the photographic processing bath. Alternatively, the silver ion concentration of the photographic processing solution in the electrolytic bath is measured over time, and when the concentration reaches a predetermined value, the photographic processing solution in the electrolytic bath is taken out and circulated to the photographic processing bath. It is preferable.

以下に本発明に使用出来る電解槽及び該電解槽を使用す
る銀回収方法を添付図面を参照しながら例示するが、こ
れらは本発明を限定するものではない。
The electrolytic cell that can be used in the present invention and the silver recovery method using the electrolytic cell will be illustrated below with reference to the accompanying drawings, but these are not intended to limit the present invention.

第1図は、三次元電極構成物質として繊維状陰極を使用
し銀回収用に適用した本発明に使用出来る単極式電解槽
の一例を示す縦断面図、第2図は第1図の電解槽と写真
処理槽との連結状態を示す概略図である。
Figure 1 is a vertical cross-sectional view showing an example of a monopolar electrolytic cell that can be used in the present invention, which uses a fibrous cathode as a three-dimensional electrode constituent material and is applied to silver recovery. FIG. 2 is a schematic diagram showing a connected state of a tank and a photographic processing tank.

塩化ビニル樹脂等で成型された有底円筒形の電解槽本体
】は、その内部に位置する有底円筒形のイオン交換膜等
の隔膜2により、中心側の陰極室3とその周囲のドーナ
ツ状の陽極室4に区画されている。該ドーナツ状の陽極
室4には、前記本体1内壁と前記隔膜2の外面間に位置
するドーナツ状で炭素質材料や白金族金属酸化物被覆チ
タン材で形成された陽極5が収容されている。
A cylindrical electrolytic cell body made of vinyl chloride resin, etc. has a diaphragm 2 such as a cylindrical ion exchange membrane with a bottom located inside it, which separates the cathode chamber 3 in the center and the donut-shaped area around it. It is divided into an anode chamber 4. The donut-shaped anode chamber 4 accommodates a donut-shaped anode 5 located between the inner wall of the main body 1 and the outer surface of the diaphragm 2 and made of a carbonaceous material or a titanium material coated with a platinum group metal oxide. .

前記隔膜2内には、フェルト状等の炭素繊維等を円柱形
に成形した三次元陰極6が収容され、該三次元陰極6に
は、中央部の基片7及び該基片7の基端の近傍において
側方に分岐しかつ下向きに折曲された1対の側方片8か
ら成り、該基片7及び側方片8の下端に拡径段部を介し
て尖頭状とされた鈷状先端保合部9が形成された給電用
陰極10により電流が供給される。該給電用陰極10と
前記ドーナツ状陽極5間には定電流制御用整流器11が
接続され、電解槽本体1内の銀回収反応をほぼ一定の電
解電流で行・)ようにしている。
A three-dimensional cathode 6 formed of felt-like carbon fiber or the like into a cylindrical shape is accommodated in the diaphragm 2, and the three-dimensional cathode 6 includes a base piece 7 at the center and a base end of the base piece 7. It consists of a pair of side pieces 8 that branch laterally and are bent downward near the base piece 7 and the side piece 8, and the lower ends of the base piece 7 and the side piece 8 are formed into a pointed shape via an enlarged diameter step. A current is supplied by a power feeding cathode 10 on which a hook-shaped tip retaining portion 9 is formed. A constant current control rectifier 11 is connected between the power feeding cathode 10 and the donut-shaped anode 5, so that the silver recovery reaction within the electrolytic cell body 1 is carried out with a substantially constant electrolytic current.

この電解槽本体1の陰極室3の左上方には電解液供給管
12が、又該陰極室の右方の隔膜2の近傍乙こは電解液
り接して電解液取出管13がそれぞれ設置されている。
An electrolyte supply pipe 12 is installed at the upper left of the cathode chamber 3 of the electrolytic cell body 1, and an electrolyte outlet pipe 13 is installed near the diaphragm 2 on the right side of the cathode chamber in contact with the electrolyte. ing.

この電解槽本体1は第2図に示すように、順に2個の発
色現像槽(CD )、1個の漂白槽(BL、)2個の定
着槽(F I X)及び3個の水洗槽から成る写真処理
槽の前記2個の定着槽のそれぞれに各1個ずつ連結し、
該定着槽内の定着液を前記電解槽本体に供給し一過式処
理を行うように構成することが出来る。
As shown in Fig. 2, this electrolytic cell body 1 consists of two color developing tanks (CD), one bleaching tank (BL), two fixing tanks (FIX), and three washing tanks. one each connected to each of the two fixing tanks of the photographic processing tank consisting of;
The fixing solution in the fixing tank can be configured to be supplied to the electrolytic cell main body to perform a one-time process.

銀イオンを含有する定着槽内の定着液を電解液としてポ
ンプ14により電解液供給管12を通して前記電解槽本
体1に供給すると、該銀イオンは三次元陰極6上で還元
されて金属銀として該三次元陰極6」二に析出しあるい
は電解液中に浮遊し又は前記隔膜2の底面に堆積する。
When the fixing solution in the fixing tank containing silver ions is supplied as an electrolyte to the electrolytic cell main body 1 through the electrolyte supply pipe 12 by the pump 14, the silver ions are reduced on the three-dimensional cathode 6 and converted into metallic silver. It is deposited on the three-dimensional cathode 6, floating in the electrolyte, or deposited on the bottom surface of the diaphragm 2.

電解液である前記定着液は前記電解液供給管12から供
給されて電解液取出管13から取り出されるまで電解さ
れるが、この間における電解液中にはほぼ一定の電解電
流が流れるため単位時間当たりに電析する銀の量もほぼ
一定となり、更に電流がほぼ一定であるため銀回収反応
のみがほぼ選択的に行われる。更に電解液の滞留時間と
銀イオン濃度の減少の相関関係を測定して所定の供給速
度で定着液を前記電解槽本体1に供給すると、電解液取
出管13から取り出される定着液の銀イオン濃度が硫化
銀生成を起こさない濃度以下に達することがなく、該定
着液が循環供給される定着工程で感光材料へ悪影響が及
ぶことがない。
The fixing solution, which is an electrolytic solution, is supplied from the electrolytic solution supply pipe 12 and electrolyzed until it is taken out from the electrolytic solution take-out pipe 13. During this time, a nearly constant electrolytic current flows through the electrolytic solution, so that the electrolytic current flows at a constant rate per unit time. Since the amount of silver deposited is also approximately constant, and the current is approximately constant, only the silver recovery reaction is performed almost selectively. Furthermore, by measuring the correlation between the residence time of the electrolytic solution and the decrease in silver ion concentration, and supplying the fixing solution to the electrolytic cell main body 1 at a predetermined supply rate, the silver ion concentration of the fixing solution taken out from the electrolytic solution extraction pipe 13 will increase. does not reach a concentration below which silver sulfide formation does not occur, and the photosensitive material is not adversely affected during the fixing process in which the fixing solution is circulated and supplied.

なお銀回収用電解槽では、陰極上に電析し、陰極室内に
浮遊し又は堆積する金属銀を槽外に取り出す必要がある
が、第1図に示した電解槽では、通電を停止した後、前
記給電用陰極10を上方に引き上げて前記本体1から取
り出すと該給電用陰極10の先端の3個の保合部9がそ
れぞれ三次元陰極6の内部に係合して前記給電用陰極1
0とともに酸三次元陰極6も槽外に取り出される。そし
て代替の三次元陰極を、又は前記三次元陰極6を洗浄し
て析出銀を除去して後の該三次元陰極を再度前記給電用
陰極10に係合させて第1図に示すような電解槽に組み
立てることが出来る。従って第1図の電解槽を使用する
と従来のように電解槽全体を分解して銀回収を行う必要
がなくなる。
In addition, in an electrolytic cell for silver recovery, it is necessary to take out the metallic silver that is deposited on the cathode and floating or depositing in the cathode chamber, but in the electrolytic cell shown in Figure 1, after the electricity is turned off, When the power feeding cathode 10 is pulled upward and taken out from the main body 1, the three retaining portions 9 at the tip of the power feeding cathode 10 engage with the inside of the three-dimensional cathode 6, and the power feeding cathode 1 is removed.
0 and the acid three-dimensional cathode 6 are also taken out of the tank. Then, a substitute three-dimensional cathode or the three-dimensional cathode 6 is cleaned to remove the deposited silver, and the three-dimensional cathode is again engaged with the power supply cathode 10 to perform electrolysis as shown in FIG. It can be assembled into a tank. Therefore, when the electrolytic cell shown in FIG. 1 is used, there is no need to disassemble the entire electrolytic cell to recover silver as in the conventional case.

第3図は、三次元電極構成物質としてヒーーズ状物質を
使用した本発明に使用出来る単極式電解槽の他の例を示
す樅断面図であり、この電解槽でも第1図の電解槽と同
様に任意の写真処理槽に連結することが出来る。
FIG. 3 is a cross-sectional view of a fir showing another example of a monopolar electrolytic cell that can be used in the present invention using a heath-like material as a three-dimensional electrode constituent material, and this electrolytic cell is similar to the electrolytic cell shown in FIG. 1. Similarly, it can be connected to any photographic processing tank.

有底円筒形の電解槽本体21には、その内壁に沿ってド
ーナツ状で炭素質材料やニッケlし材等で形成された陽
極22が収容されている。該ドーナツ状陽極22の内周
側には、有底円筒形で比較的細かし1メツシユを有し電
析する金属銀が透過しな0、合成樹脂等により成形され
た竜状体23が設置され、該篭状体23の上縁部の所定
の2箇所間には半円状の旧都24が架は渡されている。
A bottomed cylindrical electrolytic cell body 21 houses along its inner wall a donut-shaped anode 22 made of carbonaceous material, nickel metal, or the like. On the inner circumferential side of the donut-shaped anode 22, there is installed a dragon-shaped body 23 formed of synthetic resin or the like, which has a cylindrical shape with a bottom, has a relatively fine mesh, and is impermeable to the metal silver to be deposited. A semicircular old capital 24 is placed between two predetermined locations on the upper edge of the basket-like body 23.

該篭状体234こより前記電解槽本体21は該篭状体2
3より内部の陰極室25と外部の陽極室26とに区画さ
れる。前記篭状体23の内部には炭素質材料等の導電性
材料から成る多数の小径の微粒子である三次元陰極27
が収容され、該三次元陰極27には、前記陽極22がら
隔膜を兼ねる竜状体23を通して電流が供給され、更に
電流は篭状体23の細部24の中央やや下方から吊支さ
れた給電用陰極28へ供給される。該給電用陰極28と
前記ドーナツ状陽極22間には定電流制御用整流器29
が接続され、電解槽本体21内の銀回収反応をほぼ一定
の電解電流で行うようにしている。
The electrolytic cell main body 21 is connected to the cage-shaped body 234 from the cage-shaped body 234.
3 into an inner cathode chamber 25 and an outer anode chamber 26. Inside the cage-like body 23, there is a three-dimensional cathode 27, which is a large number of small-diameter fine particles made of a conductive material such as a carbonaceous material.
A current is supplied to the three-dimensional cathode 27 through the anode 22 and a dragon-shaped body 23 that also serves as a diaphragm, and the current is supplied to a power feeding device suspended from slightly below the center of the detail 24 of the cage-shaped body 23. is supplied to the cathode 28. A constant current control rectifier 29 is provided between the power feeding cathode 28 and the donut-shaped anode 22.
is connected so that the silver recovery reaction within the electrolytic cell body 21 is carried out with a substantially constant electrolytic current.

この電解槽でも同様に銀イオンを含有する写真処理液が
供給されると、該写真処理液中の銀イオンが三次元陰極
27上で還元されて金属銀として該三次元陰極27上に
析出しあるいは電解液中に浮遊し又は前記篭状体23の
底面に堆積し、電解液中にはほぼ一定の電解電流が流れ
るため単位時間当たりに電析する銀の量もほぼ一定とな
り、更に電流がほぼ一定であるため銀回収反応のみがほ
ぼ選択的に行われる。この電解槽では、通電を停止し前
記細部24を上方に引き上げて前記篭状体23を外部に
取り出し、該篭状体23内を三次元陰極27ととも乙こ
洗浄しかつ必要乙こ応して三次元陰極27を交換じて再
度前記電解槽本体21の所定位置乙こ再設置して銀回収
を再開することが出来る。
Similarly, when a photographic processing solution containing silver ions is supplied to this electrolytic cell, the silver ions in the photographic processing solution are reduced on the three-dimensional cathode 27 and deposited as metallic silver on the three-dimensional cathode 27. Alternatively, silver floats in the electrolytic solution or is deposited on the bottom surface of the cage-like body 23, and since a substantially constant electrolytic current flows in the electrolytic solution, the amount of silver deposited per unit time is also substantially constant; Since it is almost constant, only the silver recovery reaction is performed almost selectively. In this electrolytic cell, the electricity is turned off, the detail 24 is pulled upward, the cage-like body 23 is taken out, and the inside of the cage-like body 23 is cleaned together with the three-dimensional cathode 27, and as necessary. Then, the three-dimensional cathode 27 can be replaced and reinstalled at a predetermined position in the electrolytic cell main body 21, and silver recovery can be restarted.

(実施例) 次に本発明方法による定着液からの銀回収処理に関する
実施例を記載するが、該実施例は本発明を限定するもの
ではない。
(Example) Next, an example regarding silver recovery treatment from a fixer by the method of the present invention will be described, but the present invention is not limited to this example.

1例」− 第1図に示す電解槽を第2図に示すように配置して定着
液からの銀回収を行った。
Example 1 - The electrolytic cell shown in FIG. 1 was arranged as shown in FIG. 2 to recover silver from a fixer solution.

電解槽本体は内径120mm、深さ180mmの有底円
筒形の塩化ビニル樹脂製とし、該電解槽本体の内壁に沿
って、外径110mm、内径108mm、高さ150a
nのメソシュ状酸化イリジウム被覆チタン材から成るド
ーナツ状の陽極を設置した。該ドーナツ状陽極の内部に
、外径80mmで厚さ2rImのポリプロピレン製繊維
焼結体の有底円筒状の隔膜をその周縁部を、前記電解槽
本体の下部に溶着により固定することにより設置した。
The electrolytic cell body is made of vinyl chloride resin and has a bottomed cylindrical shape with an inner diameter of 120 mm and a depth of 180 mm.
A donut-shaped anode made of a titanium material coated with n mesodic iridium oxide was installed. Inside the donut-shaped anode, a bottomed cylindrical diaphragm made of a sintered polypropylene fiber having an outer diameter of 80 mm and a thickness of 2 rIm was installed by fixing its peripheral edge to the lower part of the electrolytic cell body by welding. .

該隔膜内にはノエルト状炭素繊維を円柱形に成形した直
径76m、高さ130M、開孔率55%の三次元陰極を
収容した。該三次元陰極の上面には、3個の話状先端保
合部を有する5US316製給電用陰極を、該先端保合
部を三次元陰掻内に進入させることにより接続した。
Inside the diaphragm, a three-dimensional cathode made of Noelt-like carbon fiber formed into a cylindrical shape and having a diameter of 76 m, a height of 130 m, and a porosity of 55% was housed. A power feeding cathode made of 5US316 having three conical tip retaining parts was connected to the upper surface of the three-dimensional cathode by inserting the tip retaining parts into the three-dimensional cathode.

この電解槽本体内に、下記組成の定着ランニング液を4
1/分の速度で供給し、かつ電解電流s 、 。
Into this electrolytic cell body, four times the fixing running liquid with the following composition was added.
1/min and the electrolytic current s, .

Aの定電流制御の電解条件で一過式処理による銀回収を
行ったところ、電解電圧は2.7〜2.9■に維持され
、電解液取出管における銀イオン濃度は0.85g/l
でほぼ一定であり、該濃度から逆算した単位時間当たり
の銀電析量は19.2 g /分でほぼ一定であり、前
記電解液取出管中の電解液中に硫化銀は検出されなかっ
た。
When silver was recovered by a one-time process under the constant current control electrolytic conditions of A, the electrolytic voltage was maintained at 2.7 to 2.9 ■, and the silver ion concentration in the electrolyte extraction tube was 0.85 g/l.
The amount of silver deposited per unit time calculated back from the concentration was almost constant at 19.2 g/min, and no silver sulfide was detected in the electrolyte in the electrolyte outlet tube. .

(定着ランニング液の組成) チオ硫酸アンモニウム      200g/l無水重
亜硫酸ナトリウム      18 g / fメタ亜
硫酸ナトリウム        3g/2EDTA−2
Na          0.8g/l炭酸ナトリウム
           14 g / f銀イオン  
          5.63 g / fpH7,4 止較■ 実施例1の電解槽本体を写真処理槽の定よ槽に連結し、
電解電圧を2.8■に設定して定電圧制御による銀回収
反応を行ったところ、陰極電流密度は0.8〜2.5A
/d+++”の範囲で変動し、単位時間当たりの銀電析
量も一定せず硫化銀を多量に生成した。
(Composition of fixer running liquid) Ammonium thiosulfate 200 g/l Anhydrous sodium bisulfite 18 g/f Sodium metasulfite 3 g/2 EDTA-2
Na 0.8g/l Sodium carbonate 14g/f Silver ion
5.63 g/fpH7.4 Stop comparison■ Connect the electrolytic cell body of Example 1 to the fixed tank of the photographic processing tank,
When the electrolysis voltage was set to 2.8■ and a silver recovery reaction was carried out by constant voltage control, the cathode current density was 0.8 to 2.5A.
/d+++'', and the amount of silver deposited per unit time was not constant, producing a large amount of silver sulfide.

実1貫I 第3図に示す電解槽を使用して定着液からの銀回収を行
った。
Silver was recovered from the fixer using the electrolytic cell shown in Figure 3.

電解槽本体は内径120m、深さ180mmの有底円筒
形の塩化ビニル樹脂製とし、該電解槽本体の内壁に沿っ
て、外径110mm、内径108−5高さ150mmの
メツシュ状酸化イリジウム被覆チタン材から成るドーナ
ツ状の陽極を設置しまた。該ドーナツ状陽極の内部に、
外径80mmで厚さ2IIIIIlのポリプロピレン製
の旧都付有底円筒状の篭状体を設置し、該壷状体内に5
10gの粒径5〜10mmのグラファイト粒子を収容し
、該壷状体内の中心にニッケル材から成る棒状の給電用
陰極を設置しまた。
The electrolytic cell main body is made of vinyl chloride resin and has a bottomed cylindrical shape with an inner diameter of 120 m and a depth of 180 mm. Along the inner wall of the electrolytic cell main body, a mesh-shaped iridium oxide-coated titanium plate with an outer diameter of 110 mm, an inner diameter of 108-5 and a height of 150 mm is placed. A donut-shaped anode made of wood was also installed. Inside the donut-shaped anode,
A cylindrical cage-like body made of polypropylene with an outer diameter of 80 mm and a thickness of 2III1 mm is installed, and 5
10 g of graphite particles with a particle size of 5 to 10 mm were accommodated, and a rod-shaped power supply cathode made of nickel material was installed at the center of the pot-shaped body.

この電解槽本体内に、実施例1と同一組成の定着ランニ
ング液520m1を供給し、電解電流3.5への定電流
制御の電解条件でハンチ式で銀回収を行った。
520 ml of a fixing running liquid having the same composition as in Example 1 was supplied into the electrolytic cell body, and silver was recovered using a haunch method under electrolytic conditions of constant current control to an electrolytic current of 3.5.

該電解槽本体内の定着ランニング液中の銀イオン濃度の
測定を継続し、3時間経過後に該濃度が13g/l!、
になったところで全定着ランニング液を定着槽に循環さ
せた。電解電圧は2.6〜3.2■の範囲で変動し、銀
電析量は電解初期の16.4 g /分から15.7g
/分に僅かOこ減少した。
Continuing to measure the silver ion concentration in the fixing running liquid in the electrolytic cell body, the concentration was 13 g/l after 3 hours! ,
At that point, all of the fixing running liquid was circulated through the fixing tank. The electrolysis voltage varied in the range of 2.6 to 3.2■, and the amount of silver deposited increased from 16.4 g/min at the initial stage of electrolysis to 15.7 g/min.
/min decreased slightly.

実施側−1 下記に示す仕様を有する回転陰極型電解槽を写真処理槽
の漂白定着槽に電解液供給管及び電解液取出管を介して
連結し、次の組成の漂白定着ランニング液を前記電解槽
に前記電解液供給管を通して供給し、下記に示す電解条
件で銀回収を行った後、前記漂白定着槽に循環させた。
Implementation side-1 A rotating cathode electrolytic cell having the specifications shown below is connected to a bleach-fixing tank of a photographic processing tank via an electrolyte supply pipe and an electrolyte take-out pipe, and a bleach-fixing running liquid having the following composition is added to the electrolysis tank. The electrolytic solution was supplied to the tank through the electrolytic solution supply pipe, silver was recovered under the electrolytic conditions shown below, and then circulated to the bleach-fix tank.

(電解槽仕様) 電解槽サイズ:縦500腫×横500mmX高さ700
胴陽極: 緬250唾×横500皿×厚さ10睡である
重しのグラファイト板4枚を隔膜である袋状テl−ロン
織布で包囲し使用 陰極: 直径350闘×高さ500皿のステンレス鋼板
(S U 3316)を200回/分の回転数で使用(
電解条件) 印加電流: 直流50A(定電流) 陽極電流密度:  1.11A/di2陰極電流密度:
  1.01 A / dm”電解液量ニア0ff(全
量を電解槽内に供給するバッチ方式を採用) (漂白定着ランニング液の組成) チオ硫酸アンモニウム       70 g / 1
2亜硫酸アンモニウム        18 g / 
fEDTA  F e  NH4150g/ 1銀イオ
ン           8.32 g / fこのラ
ンニング液のp Hを酢酸とアンモニア水(28%)で
7.4に調整1=な。
(Electrolytic cell specifications) Electrolytic cell size: 500mm long x 500mm wide x 700mm high
Body anode: 4 weighted graphite plates measuring 250 mm in diameter x 500 mm in width x 10 mm in thickness are surrounded by a sack-like TEL fabric as a diaphragm. Cathode used: 350 mm in diameter x 500 plates in height. stainless steel plate (S U 3316) at a rotation speed of 200 times/min (
Electrolysis conditions) Applied current: DC 50A (constant current) Anode current density: 1.11A/di2 Cathode current density:
1.01 A/dm” Electrolyte amount near 0ff (A batch method is adopted in which the entire amount is supplied into the electrolytic cell) (Composition of bleach-fix running liquid) Ammonium thiosulfate 70 g / 1
Ammonium disulfite 18 g /
fEDTA Fe NH4 150 g/1 Silver ion 8.32 g/f Adjust the pH of this running solution to 7.4 with acetic acid and aqueous ammonia (28%).

電解槽内の漂白定着液中の銀イオン濃度の測定を継続し
、3時間経過後に該濃度が7.88 b / 1に若干
減少した時点で電解液取出管を通して前記漂白定着槽へ
循環させた。
The silver ion concentration in the bleach-fix solution in the electrolytic bath was continued to be measured, and when the concentration slightly decreased to 7.88 b/1 after 3 hours, the silver ion concentration was circulated through the electrolytic solution outlet pipe to the bleach-fix bath. .

(発明の効果) 本発明は、写真処理槽と銀回収用電解槽を連結し、該写
真処理槽内の銀イオンを含有する写真処理液を前記銀回
収用電解槽に供給して該電解槽内で銀を電析させ回収し
実質的に全ての前記写真処理液を前記写真処理槽に循環
させる方法において、実質的に陰極電流密度値を一定に
維持しながら銀を電析させることを特徴とする銀回収方
法である(請求項1)。
(Effects of the Invention) The present invention connects a photographic processing tank and an electrolytic tank for silver recovery, and supplies a photographic processing solution containing silver ions in the photographic processing tank to the electrolytic tank for silver recovery. A method in which silver is electrodeposited and recovered in a photographic processing tank, and substantially all of the photographic processing solution is circulated to the photographic processing tank, characterized in that silver is deposited while maintaining a cathode current density value substantially constant. This is a silver recovery method (Claim 1).

本発明方法では、銀回収反応における陰極電流密度が常
にほぼ一定に維持されるため、単位時間当たりに電析す
る銀の量がほぼ一定となり、更に電流値の大幅な変動に
よる副反応が生ずる恐れもなく、安定した銀回収を行う
ことが出来る。
In the method of the present invention, the cathode current density in the silver recovery reaction is always kept almost constant, so the amount of silver deposited per unit time is almost constant, and there is also the risk of side reactions occurring due to large fluctuations in the current value. Therefore, stable silver recovery can be performed.

しかも本発明では、写真処理液を電解槽に供給して銀回
収を行う際に全ての銀イオンを電析させる前に、前記電
解槽で処理した実質的に全ての前記写真処理液を前記写
真処理液に循、Iさせるため、これにより硫化銀の生成
を効果的に抑制することが出来る。
Moreover, in the present invention, when the photographic processing solution is supplied to the electrolytic bath to recover silver, substantially all of the photographic processing solution processed in the electrolytic bath is removed from the photo-processing solution before all the silver ions are electrodeposited. Since the treatment solution is circulated, the production of silver sulfide can be effectively suppressed.

写真処理液には銀イオンの他ムこチオ硫酸イオンが含有
され低濃度銀イオンの写真処理液を電解すると銀イオン
の電解によりチオ硫酸イオンの電解が優先して硫化銀が
生成する。該硫化銀は感光材料へ悪影響を与えるため、
極力その生成を回避する必要があり、硫化銀生成前に電
解後の写真処理液を写真処理槽へ循環させることにより
前記生成を回避出来る。電解槽において回収されない銀
イオンがあるが、該銀イオンは写真処理槽へ循環するた
め環境汚染の問題が生ずることがなく、又経済的な損失
も生じすることがなく、極めて効果的に銀回収を行うこ
とが可能になる。
The photographic processing solution contains mucothiosulfate ions in addition to silver ions, and when a photographic processing solution containing a low concentration of silver ions is electrolyzed, the electrolysis of thiosulfate ions takes precedence due to the electrolysis of silver ions, and silver sulfide is produced. Since the silver sulfide has an adverse effect on photosensitive materials,
It is necessary to avoid this formation as much as possible, and this formation can be avoided by circulating the photographic processing solution after electrolysis into the photographic processing bath before silver sulfide formation. Although there are silver ions that are not recovered in the electrolytic bath, these silver ions are circulated to the photographic processing bath, so there is no problem of environmental pollution or economic loss, and silver recovery is extremely effective. It becomes possible to do this.

硫化銀生成は銀イオン濃度が0.5g/j2以下で生ず
るため、電解槽における電解液である写真処理液の銀イ
オン濃度が−J二記濃度になる前に写真処理槽へ循環さ
せるよう設定することにより、写真処理液中での硫化銀
生成を防止することが出来る(請求項2)。
Since silver sulfide formation occurs when the silver ion concentration is 0.5 g/j2 or less, it is set to circulate to the photographic processing tank before the silver ion concentration of the photographic processing solution, which is the electrolytic solution in the electrolytic tank, reaches -J2 concentration. By doing so, it is possible to prevent the formation of silver sulfide in the photographic processing solution (Claim 2).

銀回収電解反応−では水素ガスや酸素ガスが発生するこ
とが多いが、これらのガスが電解槽から写真処理槽−2
写真処理液とともに循環すると写真処理槽内の写真処理
液に組成変化が生じる恐れがある。こねを防止するには
例えば電解槽から前記写真処理槽への循環ラインにガス
分離手段を設置して銀回収された写真処理液のガス分離
を行った後、該写真処理液を写真処理槽へ循環さセるこ
とが好ま)−5い(請求項3)。
Silver recovery electrolytic reaction often generates hydrogen gas and oxygen gas, but these gases are transferred from the electrolytic tank to the photographic processing tank 2.
If it circulates together with the photographic processing solution, there is a risk that the composition of the photographic processing solution in the photographic processing tank will change. To prevent kneading, for example, a gas separation means is installed in the circulation line from the electrolytic cell to the photographic processing tank to separate the gas from the photographic processing solution from which the silver has been recovered, and then the photographic processing solution is transferred to the photographic processing tank. (Claim 3)

更に写真処理液の循環による不純物又は写真処理時に写
真処理槽で混入する不純物を除去するために前記電解槽
から前記写真処理槽への循環ラインに濾過手段を設置し
、濾過を行った後写真処理槽へ循環させることが出来る
(請求項4)。
Furthermore, in order to remove impurities due to circulation of the photographic processing solution or impurities mixed in the photographic processing tank during photographic processing, a filtration means is installed in the circulation line from the electrolytic tank to the photographic processing tank, and after filtration, the photographic processing is carried out. It can be circulated to the tank (Claim 4).

iFA常の電解では電解槽において漏洩電流が不可避的
に発生j7、該漏洩電流は配管等を通して前記)゛真処
理槽に流れ込め写真処理液Oこ不要な反応を生じさせた
り前記電流がヒータ等の部材に損傷を与えたりする恐れ
がある。そのため本発明では、前記漏洩電流を系外に取
り出す手段を設置することが望ましく (請求項5)、
該丁段乙−より不要な電流の浪費、不要な副反応の抑制
及び部材の損傷等を防止することが出来る。
iFA In normal electrolysis, leakage current inevitably occurs in the electrolytic bath.The leakage current flows into the photographic processing bath through piping, etc., and the photographic processing solution causes unnecessary reactions, or the current leaks into the heater, etc. There is a risk of damaging the components. Therefore, in the present invention, it is desirable to install a means for extracting the leakage current outside the system (Claim 5),
This makes it possible to prevent unnecessary waste of current, suppression of unnecessary side reactions, and damage to components.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に使用出来る単極式電解槽の一例を示
す縦断面図、第2図は第1図の電解槽と写真処理槽との
連結状態を示す概略図、第3図は、本発明に使用出来る
単極式電解槽の他の例を示ず縦断面図である。 l・・・電解槽本体 2・・・隔膜 3・・・陰極室 4・・・陽極室 5・・・陽極 6−・・三次元陰極 7・−・基片 8・・・側方片 9・・・係合部 10・・・給電用陰極11・・・定電
流制御用整流器 12・・・電解液供給管 13・・−電解液取出管14
・・・ポンプ 21・・・電解槽本体 22・・・陽極23・・・篭状
体 24・・・細部 25・・・陰極室 26・・・陽極室 27・・・三次元陰極 28・・ 給電用陰極29 −
 定電流制御用整流器
FIG. 1 is a longitudinal cross-sectional view showing an example of a monopolar electrolytic cell that can be used in the present invention, FIG. 2 is a schematic diagram showing a state in which the electrolytic cell shown in FIG. 1 is connected to a photographic processing tank, and FIG. , is a vertical cross-sectional view showing another example of a monopolar electrolytic cell that can be used in the present invention. l... Electrolytic cell body 2... Diaphragm 3... Cathode chamber 4... Anode chamber 5... Anode 6-... Three-dimensional cathode 7... Base piece 8... Side piece 9 ... Engagement part 10 ... Cathode for power supply 11 ... Rectifier for constant current control 12 ... Electrolyte supply pipe 13 ... - Electrolyte solution extraction pipe 14
...Pump 21...Electrolytic cell body 22...Anode 23...Case-shaped body 24...Details 25...Cathode chamber 26...Anode chamber 27...Three-dimensional cathode 28... Power feeding cathode 29 -
Rectifier for constant current control

Claims (5)

【特許請求の範囲】[Claims] (1)写真処理槽と銀回収用電解槽を連結し、該写真処
理槽内の銀イオンを含有する写真処理液を前記銀回収用
電解槽に供給して該電解槽内で銀を電析させ回収し、銀
イオンを全て電析させる前に前記電解槽で処理した実質
的に全ての写真処理液を前記写真処理槽に循環させる方
法において、実質的に陰極電流密度を一定に維持しなが
ら銀を電析させることを特徴とする銀回収方法。
(1) A photographic processing tank and a silver recovery electrolytic tank are connected, and a photographic processing solution containing silver ions in the photographic processing tank is supplied to the silver recovery electrolytic tank to deposit silver in the electrolytic tank. A method in which substantially all of the photographic processing solution processed in the electrolytic cell is circulated to the photographic processing tank before all silver ions are electrodeposited, while maintaining a substantially constant cathode current density. A silver recovery method characterized by electrodepositing silver.
(2)銀イオン濃度が0.5g/lまで減少する前に電
解槽内の写真処理液を写真処理槽へ循環させる請求項1
に記載の銀回収方法。
(2) Claim 1 in which the photographic processing solution in the electrolytic cell is circulated to the photographic processing tank before the silver ion concentration decreases to 0.5 g/l.
Silver recovery method described in.
(3)銀回収された写真処理液のガス分離を行った後、
該写真処理液を写真処理槽へ循環させる請求項1又は2
に記載の銀回収方法。
(3) After gas separation of the photographic processing solution from which silver was recovered,
Claim 1 or 2, wherein the photographic processing solution is circulated to a photographic processing tank.
Silver recovery method described in.
(4)銀回収された写真処理液の濾過を行った後、該写
真処理液を写真処理槽へ循環させる請求項1から3まで
のいずれかに記載の銀回収方法。
(4) The silver recovery method according to any one of claims 1 to 3, wherein after filtering the photographic processing liquid from which the silver has been recovered, the photographic processing liquid is circulated to a photographic processing tank.
(5)銀回収用電解槽内の給電用陽陰極が相対しない該
給電用電極背面及び/又は前記電解槽の出入口配管内に
、写真処理液より導電性の高い部材をその一端を接地可
能に設置して処理を行う請求項1から4までのいずれか
に記載の銀回収方法。
(5) A member with higher conductivity than the photographic processing solution can be grounded at one end on the back side of the power supply electrode where the power supply anode and cathode in the silver recovery electrolytic cell do not face each other and/or in the entrance/exit piping of the electrolytic cell. The silver recovery method according to any one of claims 1 to 4, wherein the silver recovery method is installed and processed.
JP2341138A 1990-11-30 1990-11-30 Method for recovering silver Pending JPH04210490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2341138A JPH04210490A (en) 1990-11-30 1990-11-30 Method for recovering silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2341138A JPH04210490A (en) 1990-11-30 1990-11-30 Method for recovering silver

Publications (1)

Publication Number Publication Date
JPH04210490A true JPH04210490A (en) 1992-07-31

Family

ID=18343611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2341138A Pending JPH04210490A (en) 1990-11-30 1990-11-30 Method for recovering silver

Country Status (1)

Country Link
JP (1) JPH04210490A (en)

Similar Documents

Publication Publication Date Title
US2073664A (en) Regeneration of photographic developer solutions
JP2989632B2 (en) Silver collection method
JPH04210490A (en) Method for recovering silver
US1937179A (en) Method of recovering silver
US5089097A (en) Electrolytic method for recovering silver from waste photographic processing solutions
JPH06220680A (en) Ph-inductive reference electrode in electrolytic desilverization
US4208258A (en) Method for the recovery of mercury and other heavy metal ions from a liquid stream
EP0329275B1 (en) Method of recovering silver from photographic processing solution and apparatus therefor
JPH0413885A (en) Unipolar type three-dimensional electrode type electrolyzer for recovering silver
US5554270A (en) Electrolytic desilvering method
JP2898039B2 (en) Method and apparatus for recovering silver from photographic processing solution
JP2799607B2 (en) Processing method of photographic processing solution
JPH0413884A (en) Regenerating method for electrolyzer for recovering silver
JP3020549B2 (en) Treatment of liquid to be treated
BG98450A (en) Method for chlor-alkaline electrolysis and cell for its implementation
US5118402A (en) Electrolytic silver recovery system for recovering silver from photographic fixing solutions
JPH03294492A (en) Recovering method for silver from photographic processing liquid
JPH0688276A (en) Method for electrolytically recovering silver
JPH1136099A (en) Plating device and plating method thereby
Sathaiijan et al. Electrolytic recovery of silver from colour bleach fix solution
JPS61270752A (en) Method for desilvering photographic processing solution and photographic processing machine
JP2769579B2 (en) Photosensitive material processing equipment
JPH0417691A (en) Bipolar fixed bed type electrolyzer recovering silver
JPH02306242A (en) Method and device for recovering silver of photographic processing liquid
JPS61232452A (en) Method for desilvering photographic processing solution and photographic processing machine