JPH0413884A - Regenerating method for electrolyzer for recovering silver - Google Patents

Regenerating method for electrolyzer for recovering silver

Info

Publication number
JPH0413884A
JPH0413884A JP11659190A JP11659190A JPH0413884A JP H0413884 A JPH0413884 A JP H0413884A JP 11659190 A JP11659190 A JP 11659190A JP 11659190 A JP11659190 A JP 11659190A JP H0413884 A JPH0413884 A JP H0413884A
Authority
JP
Japan
Prior art keywords
silver
sulfur
electrolytic cell
photographic processing
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11659190A
Other languages
Japanese (ja)
Inventor
Masayuki Kurematsu
槫松 雅行
Takeshi Kajiya
加治屋 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP11659190A priority Critical patent/JPH0413884A/en
Publication of JPH0413884A publication Critical patent/JPH0413884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly regenerate an electrolyzer by electrodepositing metallic silver from photographic processing liquid in the electrolyzer by electrolysis and thereafter substituting the aq. soln. of substance which is allowed to react with silver sulfide and/or sulfur to produce soluble sulfur compd. for the photographic processing liquid. CONSTITUTION:The inside of an electrolyzer main body 1 is comparted into an anodic chamber 4 and a cathodic chamber 3 by a diaphragm 2. Metallic silver is electrodeposited and recovered by conducting electricity to anodes 5, a power supply cathode 10 formed of a base piece and side pieces and three- dimensional cathodes 9, and by electrolyzing photographic processing liquid. When electrolysis is completed, an aq. soln. contg. substance described hereunder e.g. alkali hydroxide having >=10pH is substituted for photographic processing liquid and voltage is impressed. The substance is allowed to react with silver sulfide and/or sulfur to produce soluble sulfur compd. Thereby, sulfur and silver sulfide deposited on the diaphragm 2 and the electrodes 5, 9, 10 are rapidly removed and the electrolyzer main body 1 is regenerated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、銀イオンを含有する溶液から電解により銀を
回収ために使用する電解槽の再生方法に関し、より詳細
には銀イオンを含有する写真処理工程の定着液や漂白定
着液等の写真処理液を定着槽や漂白定着槽から銀回収電
解槽に供給し該電解槽て電解反応により前記銀イオンを
電析させて回収する際に、前記写真処理液中に含有され
るチオ硫酸塩に起因して前記電解槽中に生成する硫黄や
硫化銀を再生剤を含有する水溶液で処理して前記硫黄や
硫化銀を可溶性物質に変換し迅速に溶解して電解槽を再
生するだめの方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for regenerating an electrolytic cell used for recovering silver from a solution containing silver ions by electrolysis, and more specifically, When a photographic processing solution such as a fixing solution or a bleach-fixing solution in a photographic processing process is supplied from a fixing tank or a bleach-fixing tank to a silver recovery electrolytic tank, and the silver ions are electrodeposited and recovered by an electrolytic reaction in the electrolytic tank, The sulfur and silver sulfide generated in the electrolytic cell due to thiosulfate contained in the photographic processing solution are treated with an aqueous solution containing a regenerating agent to quickly convert the sulfur and silver sulfide into soluble substances. This invention relates to a method for regenerating an electrolytic cell by dissolving it in a liquid.

(従来技術) 感光材料は画像露光の後、例えばペーパー感光材料処理
においては、発色現像、漂白定着、水洗及び/又は安定
化の処理工程を経て処理される。
(Prior Art) After image exposure, a photosensitive material is processed through the processing steps of color development, bleach-fixing, washing and/or stabilization, for example in paper photosensitive material processing.

そしてこのような写真処理工程は、発色現像工程、漂白
工程、漂白定着工程、定着工程、安定化工程、水洗工程
等の工程を含み、各工程は別個の処理槽において行われ
る。各処理工程における処理液中には感光材料の乳剖中
等から溶解した銀イオンが存在し処理時間の経過に従っ
て該銀イオン濃度は徐々に上昇する。特に写真処理は感
光材料中のハロゲン化銀と処理液のいわゆる不均一系反
応であり、処理液中の各種処理薬剤がゼラチン膜中を移
動してはしめて反応が起こり、その副生成物が前記ゼラ
チン膜中を移動して処理液中に拡散していくという条件
の下で行われる。従って処理液中に反応副生成物が多量
に存在してくると、写真処理性能にも影響が生じてくる
ため、特に処理液中に銀イオンが蓄積した劣化処理液の
処理は、新規処理液の補充により、あるいは該劣化処理
液の抜出や交換、あるいは銀成分回収を目的とする電解
設備を処理槽に連絡し、該電解設備の電解槽での電解反
応により前記処理液中の銀イオンを回収し除去する諸方
法を用いて行われることが主流である。
Such photographic processing steps include steps such as a color development step, a bleaching step, a bleach-fixing step, a fixing step, a stabilizing step, and a washing step, and each step is performed in a separate processing tank. Silver ions dissolved from the processing of the photosensitive material are present in the processing solution in each processing step, and the concentration of silver ions gradually increases as processing time progresses. In particular, photographic processing is a so-called heterogeneous reaction between silver halide in a light-sensitive material and a processing solution, and various processing chemicals in the processing solution move through the gelatin film, causing a reaction, and the by-products are This is carried out under the condition that it moves through the gelatin membrane and diffuses into the processing solution. Therefore, if a large amount of reaction by-products are present in the processing solution, it will affect the photographic processing performance. By replenishing the deterioration treatment solution, or by connecting electrolysis equipment for the purpose of withdrawing or replacing the deteriorated treatment solution, or recovering silver components, to the treatment tank, silver ions in the treatment solution are removed by an electrolytic reaction in the electrolysis tank of the electrolysis equipment. The mainstream is to use various methods to collect and remove.

(発明が解決しようとする問題点) 前記電解回収法によるとかなりの効率で銀成分の回収を
行うことが出来るが、電解法による銀回収では電解時間
の継続につれて銀析出量が増加し従って写真処理液中の
銀イオン濃度が減少する。
(Problems to be Solved by the Invention) According to the electrolytic recovery method described above, silver components can be recovered with considerable efficiency. The silver ion concentration in the processing solution decreases.

写真処理液には銀イオンの他にチオ硫酸イオンが含有さ
れ銀イオン濃度が減少した該写真処理液の電解を継続す
ると銀イオンと前記チオ硫酸イオンとの反応により硫化
銀や硫黄が生成し始める。この硫黄や硫化銀は感光材料
へ悪影響を与える恐れがあるため写真処理液中での硫化
銀生成は回避するごとが望ましい。硫黄や硫化銀生成の
銀イオン1m W ?74度は約0.5〜Ig/ffで
あり、従来の電解銀回収では銀イオン濃度がこの値に近
くなると電解を停止し、写真処理液を廃棄して硫黄や硫
化銀が写真処理液中に生成することを防止している。
The photographic processing solution contains thiosulfate ions in addition to silver ions, and if the electrolysis of the photographic processing solution whose concentration of silver ions has decreased is continued, silver sulfide and sulfur will begin to be produced due to the reaction between the silver ions and the thiosulfate ions. . Since this sulfur and silver sulfide may have an adverse effect on the photosensitive material, it is desirable to avoid producing silver sulfide in the photographic processing solution. Silver ions produced by sulfur and silver sulfide 1 m W ? 74 degrees is approximately 0.5 to Ig/ff, and in conventional electrolytic silver recovery, when the silver ion concentration approaches this value, electrolysis is stopped, the photographic processing solution is discarded, and sulfur and silver sulfide are removed from the photographic processing solution. This prevents the generation of

しかし銀を含む写真処理液を廃棄するのは環境衛生上及
び経済上の理由から好ましくないため、引き続き長期間
電解を継続すると硫黄や硫化銀等の不溶性硫黄含有物質
が生成する。これらの物質は通常微粉末であり、電極の
構造にも依るが例えばフェルト状の炭素繊維等から成る
三次元電極を使用すると該電極の穴が前記微粉末物質に
より閉塞されて口詰まりが生じ、電解効率の大幅な低下
をもたらすことになる。
However, since it is undesirable to discard photographic processing solutions containing silver from environmental and economical reasons, if electrolysis is continued for a long time, insoluble sulfur-containing substances such as sulfur and silver sulfide will be produced. These substances are usually fine powders, and depending on the structure of the electrode, for example, when a three-dimensional electrode made of felt-like carbon fiber is used, the holes in the electrode are blocked by the fine powder substances, causing clogging. This results in a significant decrease in electrolytic efficiency.

(発明の目的) 本発明は、電解槽を使用してチオ硫酸塩を含有する写真
処理液から銀イオンを電解により回収する際に生成する
硫黄や硫化銀等の不溶性硫黄含有物質に起因する目詰ま
りにより電解効率の低下等を来した前記銀回収用電解槽
を迅速に再生する方法を提供することを目的とする。
(Purpose of the Invention) The present invention aims to solve problems caused by insoluble sulfur-containing substances such as sulfur and silver sulfide produced when silver ions are electrolytically recovered from a photographic processing solution containing thiosulfate using an electrolytic bath. It is an object of the present invention to provide a method for quickly regenerating the silver recovery electrolytic cell which has suffered from a decrease in electrolytic efficiency due to clogging.

(問題点を解決するための手段) 本発明は、チオ硫酸塩を含有する写真処理液を電解槽に
供給して金属銀を電解回収する方法において、電解が終
了し電析した銀を回収した後の前記写真処理液を、硫化
銀及び/又は硫黄と反応して可溶性硫黄化合物を生成す
る物質の水溶液と置換し前記電解槽を再生することを特
徴とする銀回収用電解槽の再生方法である。
(Means for Solving the Problems) The present invention provides a method for electrolytically recovering metallic silver by supplying a photographic processing solution containing thiosulfate to an electrolytic cell, in which the electrodeposited silver is recovered after electrolysis is completed. A method for regenerating an electrolytic cell for silver recovery, characterized in that the electrolytic cell is regenerated by replacing the photographic processing solution with an aqueous solution of a substance that reacts with silver sulfide and/or sulfur to produce a soluble sulfur compound. be.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、硫黄や硫化銀等の微粉末の不溶性硫黄含有物
質により銀回収用電解槽の部材が閉塞されて目詰まりが
生じた該電解槽を、該硫黄含有物質と反応し可溶性硫黄
化合物を生成出来る物質を溶解させた水溶液で処理し前
記電解槽の再生を行う方法である。
The present invention aims to remove soluble sulfur compounds by reacting with the sulfur-containing substances in an electrolytic cell for silver recovery whose members are clogged with finely powdered insoluble sulfur-containing substances such as sulfur and silver sulfide. This is a method of regenerating the electrolytic cell by treating it with an aqueous solution in which the substances that can be generated are dissolved.

本発明の対象とする電解槽は特に限定されず、現像液、
漂白液、定着液、漂白定着液、安定化液、水洗水等のチ
オ硫酸塩を含有する写真処理液が供給されて銀回収が行
われるとともに、前記チオ硫酸塩に起因して硫黄や硫化
銀が微粉末として析出し電極等を閉塞して目詰まりを生
じさせ電解効率の低下した任意の銀回収用電解槽とする
ことが出来るが、チオ硫酸塩及び高濃度の銀イオン含有
することの多い漂白液、定着液、漂白定着液及び安定化
液等に使用する銀回収用電解槽であることが好ましい。
The electrolytic cell targeted by the present invention is not particularly limited, and includes a developer solution,
Photographic processing solutions containing thiosulfate such as bleach, fixer, bleach-fix solution, stabilizing solution, and washing water are supplied to recover silver, and sulfur and silver sulfide are also removed due to the thiosulfate. can be used for any silver recovery electrolytic cell in which it precipitates as a fine powder and clogs the electrodes and reduces electrolytic efficiency, but it often contains thiosulfate and high concentrations of silver ions. Preferably, it is an electrolytic cell for recovering silver used for bleaching solution, fixing solution, bleach-fixing solution, stabilizing solution, etc.

該銀回収用電解槽の構造も特乙こ限定されず、任意の構
造の電解槽を使用することが出来、従来汎用されている
回転陰極式(ボックス型)電解槽の他に、電極面積の大
きい三次元電極式電解槽や処理容量を大きく出来る板状
、多孔板状等の電極を使用する比較的大型の電解槽を使
用することが出来る。特に前記三次元電極式電解槽では
三次元電極が微粉末状の硫黄や硫化銀により閉塞し易い
ため本発明方法を有効に使用するごとが出来る。更に電
解槽を隔膜を使用して陽極室と陰極室とに区画する隔膜
型電解槽の場合には、前記電析する硫黄や硫化銀により
該隔膜の閉塞が起こり易く、通常前記回転陰極式電解槽
は隔膜型電解槽であるため、該回転陰極式電解槽にも本
発明方法を効率良く適用することが出来る。
The structure of the electrolytic cell for silver recovery is not limited to any particular structure, and an electrolytic cell of any structure can be used. It is possible to use a relatively large electrolytic cell using a large three-dimensional electrode type electrolytic cell or a plate-like or perforated plate-like electrode that can increase the processing capacity. In particular, in the three-dimensional electrode type electrolytic cell, the three-dimensional electrode is easily clogged with finely powdered sulfur or silver sulfide, so the method of the present invention can be effectively used. Furthermore, in the case of a diaphragm type electrolytic cell in which the electrolytic cell is divided into an anode chamber and a cathode chamber using a diaphragm, the diaphragm is likely to be clogged by the electrodeposited sulfur and silver sulfide. Since the cell is a diaphragm type electrolytic cell, the method of the present invention can be efficiently applied to the rotating cathode type electrolytic cell.

いずれのタイプの電解槽を使用するにしても銀が電析す
る陰極として表面積の大きい電極を使用することが好ま
しく、該電極は例えば粒状、球状、フェルト状、織布状
、多孔質ブロック状等の形状を有する活性炭、グラファ
イト、炭素繊維等の炭素系材料、同形状を有するニッケ
ル、銅、ステンレス、鉄、チタン等の金属材料、更にそ
れら金属材料に貴金属のコーティングを施した材料等か
ら選択される三次元電極を使用することが望ましい。
Whichever type of electrolytic cell is used, it is preferable to use an electrode with a large surface area as the cathode on which silver is deposited, and the electrode may be shaped, for example, in the form of granules, spheres, felts, woven fabrics, porous blocks, etc. carbon-based materials such as activated carbon, graphite, and carbon fiber, which have the same shape, and metal materials such as nickel, copper, stainless steel, iron, and titanium, which have the same shape, and materials that are coated with precious metals on these metal materials. It is desirable to use three-dimensional electrodes.

しかしながら前述の回転陰極式銀回収用電解槽で使用さ
れている棒状、板状及び多孔状の電極を使用することも
出来る。
However, it is also possible to use the rod-shaped, plate-shaped, and porous electrodes used in the above-mentioned rotating cathode electrolytic cell for silver recovery.

対極つまり陽極については特に限定されないが、前記陰
極との間での電流の授受を円滑(こ行う形状と配置を有
することが望ましく、例えば電解槽として円筒形の電解
槽本体の中央に炭素繊維から成る円柱形の三次元陰極を
収容した電解槽の場合には、陽極を、該三次元電極を取
り囲む円筒形とし、かつ電解液の流通を円滑にするため
メソシュ状とすることが望ましい。その材質は、グラフ
ァイト利、炭素材、白金族金属酸化物被覆チタン材(寸
法安定性電極)、白金被覆チタン材、ニッケル材等を使
用することが出来る。
The counter electrode, that is, the anode, is not particularly limited, but it is desirable that it has a shape and arrangement that allows smooth transfer of current between it and the cathode. In the case of an electrolytic cell containing a cylindrical three-dimensional cathode, it is preferable that the anode is cylindrical to surround the three-dimensional electrode and mesoche-shaped in order to facilitate the flow of the electrolyte. Graphite, carbon material, platinum group metal oxide coated titanium material (dimensionally stable electrode), platinum coated titanium material, nickel material, etc. can be used.

本発明方法に使用する銀回収用電解槽は、通常それぞれ
1又は2以上の現像槽、漂白槽、定着槽(又は漂白定着
槽)、安定化槽及び水洗槽が一体化した写真処理槽に近
接させて設置し、該電解槽を前記写真処理槽のいずれか
の槽と連結して形成することが好ましい。該電解槽は写
真処理槽のどの処理槽に連結してもよく、又例えば複数
の定着槽等を有する写真処理槽を使用する場合には複数
の電解槽を該定着槽の全部又は一部に連結することがで
きる。
The electrolytic cell for silver recovery used in the method of the present invention is usually located close to a photographic processing tank, each of which has one or more integrated developing tank, bleaching tank, fixing tank (or bleach-fixing tank), stabilizing tank, and washing tank. It is preferable that the electrolytic cell be connected to one of the photographic processing tanks. The electrolytic cell may be connected to any of the photographic processing tanks. For example, when using a photographic processing tank having a plurality of fixing tanks, the plurality of electrolytic cells may be connected to all or part of the fixing tank. Can be connected.

前記写真処理槽中の写真処理液を前記構成から成る銀回
収用電解槽に供給して電解を行う。この写真処理液の供
給方式として、一定速度で写真処理液を前記電解槽に供
給して供給量と同量を取り出す一過式と、一定量の写真
処理液を一度に電解槽に供給し゛ζ一定時間電解した後
、該写真処理液を一度に前記電解槽から取り出すハツチ
式があり、いずれの供給方式を使用してもよいが、特に
ハツチ式の場合には銀濃度低下が生じ易く硫黄や硫化銀
生成が顕著なため、本発明はハツチ式の銀回収方式に対
してより有効である。供給される写真処理液中の銀イオ
ン濃度が高い間は電流が銀イオンの還元による金属銀の
電析に使用されて硫黄や硫化銀の電析は起こらないが、
銀イオン濃度が低くなると銀の電析と同時に前記写真処
理液中に含有されるチオ硫酸塩の還元Gこよる前記硫黄
や硫化銀の電析が生じしかもごれらは通常微粉末となっ
て電析して徐々に電解槽内の部材特に電極を閉塞し目詰
まりさせて電解効率を低下させる。
The photographic processing solution in the photographic processing tank is supplied to the electrolytic tank for silver recovery having the above-mentioned structure to perform electrolysis. As for the supply method of this photographic processing solution, there is a one-time method in which the photographic processing solution is supplied to the electrolytic cell at a constant rate and the same amount as the supplied amount is taken out, and a one-time method in which a fixed amount of the photographic processing solution is supplied to the electrolytic cell at once. There is a hatch type in which the photographic processing solution is taken out of the electrolytic bath at once after electrolysis for a certain period of time, and either supply method may be used, but especially in the case of the hatch type, silver concentration tends to decrease and sulfur and Because of the significant silver sulfide formation, the present invention is more effective for hatch-type silver recovery systems. While the silver ion concentration in the supplied photographic processing solution is high, the current is used to reduce the silver ions and deposit metallic silver, and no sulfur or silver sulfide is deposited.
When the silver ion concentration becomes low, the sulfur and silver sulfide are deposited simultaneously with the electrodeposition of silver due to reduction G of the thiosulfate contained in the photographic processing solution, and the dirt usually becomes fine powder. Electrodeposition gradually clogs and clogs the members in the electrolytic cell, especially the electrodes, reducing electrolytic efficiency.

電解効率が経済的操業を行えない程度に低下した際には
通電を停止し前記電解槽内の写真処理液を、硫化銀及び
/又は硫黄と反応して可溶性硫黄化合物を生成する物質
の水溶液と置換する。該水溶液は硫化銀等が電析した電
解槽内を流すだけでもよいが、例えば前述の回転陰極式
電解槽の場合には置換された水溶液を攪拌して該水溶液
と電析した硫化銀等との接触効率を高めることが望まし
い。
When the electrolytic efficiency has decreased to such an extent that economical operation cannot be carried out, the electricity supply is stopped and the photographic processing solution in the electrolytic cell is replaced with an aqueous solution of a substance that reacts with silver sulfide and/or sulfur to produce soluble sulfur compounds. Replace. The aqueous solution may simply flow through the electrolytic cell in which silver sulfide, etc. has been electrodeposited, but, for example, in the case of the above-mentioned rotating cathode electrolytic cell, the substituted aqueous solution may be stirred to mix the aqueous solution with the electrodeposited silver sulfide, etc. It is desirable to increase the contact efficiency.

この可溶性硫黄化合物を生成する物質の水溶液としては
、高濃度の水酸化アルカリ水溶液例えば好ましくはp)
110以上より好ましくはpH12以上の水酸化すトリ
ウムや水酸化カリウムの水溶液、あるいは0.05モル
/I1以上の亜硫酸す1・りうム、亜硫酸カリウム、亜
硫酸アンモニウム等の亜硫酸塩がある。
The aqueous solution of the substance that produces this soluble sulfur compound is a highly concentrated aqueous alkali hydroxide solution, preferably p)
Examples include an aqueous solution of thorium hydroxide or potassium hydroxide with a pH of 110 or more, preferably 12 or more, or a sulfite such as sulfite, potassium sulfite, or ammonium sulfite with a pH of 0.05 mol/I1 or more.

前記水酸化アルカリ例えば水酸化ナトリウムは析出した
硫黄や硫化銀と反応して硫黄や硫化銀を可溶性の硫黄化
合物に変換すると考えられる。
It is believed that the alkali hydroxide, such as sodium hydroxide, reacts with the precipitated sulfur and silver sulfide to convert the sulfur and silver sulfide into soluble sulfur compounds.

S + Na0II  =  NazS (NaSH)
 + 1120AgS  +  Na0tl    →
  NazS  十 八gzo  +  1120又前
記亜硫酸塩例えば亜硫酸す1−リウムは析出した硫黄や
硫化銀と次式の通り反応して硫黄や硫化銀を可溶性の硫
黄化合物に変換する。
S + Na0II = NazS (NaSH)
+ 1120AgS + Na0tl →
NazS 18 gzo + 1120 Also, the sulfite, such as 1-lium sulfite, reacts with the precipitated sulfur and silver sulfide according to the following formula to convert the sulfur and silver sulfide into soluble sulfur compounds.

S + Na25O:+ −NazSzOs八gS+N
aへ5O3−Na2S203+Ag長時間操業により硫
黄や硫化銀の析出が生じた電解槽の運転を停止し該電解
槽中の写真処理液を、前述の水酸化アルカリ水溶液や亜
硫酸塩水溶液に置換することにより析出した硫黄や硫化
銀を溶解させる。このときに前記銀回収時の電圧印加方
向と同じ方向にト0.5〜+2V程度の陽極電位を印加
すると硫黄や硫化銀の陽極が促進され1〜2時間でほぼ
完全に析出物を溶解させることが出来る。
S + Na25O: + -NazSzOs8gS+N
5O3-Na2S203+AgBy stopping the operation of the electrolytic cell in which sulfur and silver sulfide have been deposited due to long-term operation and replacing the photographic processing solution in the electrolytic cell with the alkali hydroxide aqueous solution or sulfite aqueous solution described above. Dissolves precipitated sulfur and silver sulfide. At this time, if an anode potential of about 0.5 to +2 V is applied in the same direction as the voltage application direction during silver recovery, the anodic formation of sulfur and silver sulfide is promoted, and the precipitates are almost completely dissolved in 1 to 2 hours. I can do it.

次に図面に示ず電解槽を参照して本発明による電解槽再
生方法を詳細に説明する。
Next, a method for regenerating an electrolytic cell according to the present invention will be described in detail with reference to an electrolytic cell not shown in the drawings.

第1図は、本発明を適用出来る単極式電解槽の一例を示
す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a monopolar electrolytic cell to which the present invention can be applied.

塩化ビニル樹脂等で成型された有底円筒形の電解槽本体
1は、その内部に位置する有底円筒形のイオン交換膜等
の隔膜2により、中心側の陰極室3とその周囲のドーナ
ツ状の陽極室4に区画されている。該ドーナツ状の陽極
室4には、前記本体1内壁と前記隔膜2の外面間に位置
するドーナツ状で炭素質材料や白金族酸化物被覆チタン
材で形成された陽極5が収容されている。
A cylindrical electrolytic cell body 1 made of vinyl chloride resin or the like has a diaphragm 2 such as a cylindrical ion exchange membrane with a bottom located inside it, which separates a cathode chamber 3 in the center and a donut-shaped area around it. It is divided into an anode chamber 4. The donut-shaped anode chamber 4 accommodates a donut-shaped anode 5 located between the inner wall of the main body 1 and the outer surface of the diaphragm 2 and made of a carbonaceous material or a platinum group oxide-coated titanium material.

前記隔膜2内には、炭素vk糺等をフェルI・状の円柱
形に成形した三次元陰極6が収容され、該三次元陰極6
には、中央部の基片7及び該基片7の基端の近傍におい
て側方に分岐しかつ下向きに折曲された1対の側方片8
から成り、該基片7及び側方片8の下端に拡径段部を介
して尖頭状とされ1ま た粘状先端係合部9が形成された中実状又は中空状の給
電用陰極10により電流が供給される。
A three-dimensional cathode 6 made of carbon VK glue or the like is housed in the diaphragm 2 into a cylindrical Fel I shape, and the three-dimensional cathode 6
includes a base piece 7 in the center and a pair of side pieces 8 that branch laterally and are bent downward near the base end of the base piece 7.
A solid or hollow power feeding cathode 10 is formed with a pointed end 1 and a viscous tip engaging part 9 at the lower ends of the base piece 7 and the side pieces 8 via an enlarged diameter step. The current is supplied by

この電解槽に例えば銀イオンを含有する写真処理液を電
解液として供給すると、該銀イオンは二次元陰極6上で
還元されて金属銀として該三次元陰極6上に析出しある
いは電解液中に浮遊し又は前記隔膜2の底面に堆積する
。操作開始後一定時間が経過すると、前記三次元陰極6
上Gこ十分な量の金属銀が析出して電解効率が低下する
とともに析出した銀を槽外に取り出すことや隔膜や給電
用電極−Lに析出する硫黄や硫化銀を除去するごとが必
要になる。析出銀の取り出しには通電を停止した後、前
記給電用陰極10を上方に引き上げて前記本体1から取
り出すと該給電用陰極10の先端の3個の係合部9がそ
れぞれ三次元陰極6の内部に係合して前記給電用陰極1
0とともに該三次元陰極6も槽外に取り出される。そし
て代替の三次元陰極を、又は前記三次元陰極6を洗浄し
て析出銀を除去して後の該三次元陰極を再度前記給電用
陰極10に係合させて第1図に示すような電解槽に組み
立てることが出来る。そして隔膜2や再給電用電極5.
10に析出した硫黄や硫化銀を除去するためには電解槽
中の写真処理液を高濃度の水酸化アルカリ水溶液や亜硫
酸塩の水溶液と置換してそのまま2〜3日放置するか、
あるいは再給電用電極5.10間に正方向の電圧を印加
して1〜2時間放置することにより前記析出硫黄や硫化
銀が前記水溶液中に溶解して前記隔膜や電極上から除去
されて口詰まり等を防止することが出来る。
For example, when a photographic processing solution containing silver ions is supplied as an electrolyte to this electrolytic cell, the silver ions are reduced on the two-dimensional cathode 6 and deposited as metallic silver on the three-dimensional cathode 6 or in the electrolyte. It floats or is deposited on the bottom surface of the diaphragm 2. After a certain period of time has passed after the start of the operation, the three-dimensional cathode 6
When a sufficient amount of metallic silver is precipitated in the upper G, the electrolytic efficiency decreases, and it becomes necessary to take out the precipitated silver out of the tank and to remove the sulfur and silver sulfide deposited on the diaphragm and the power supply electrode-L. Become. To take out the deposited silver, after stopping the current supply, the power feeding cathode 10 is pulled upward and taken out from the main body 1, and the three engaging portions 9 at the tip of the power feeding cathode 10 engage with the three-dimensional cathode 6, respectively. The power supply cathode 1 is engaged with the inside of the power supply cathode 1.
0 and the three-dimensional cathode 6 are also taken out of the tank. Then, a substitute three-dimensional cathode or the three-dimensional cathode 6 is cleaned to remove the deposited silver, and the three-dimensional cathode is again engaged with the power supply cathode 10 to perform electrolysis as shown in FIG. It can be assembled into a tank. and a diaphragm 2 and a repowering electrode 5.
In order to remove the sulfur and silver sulfide deposited in step 10, you can either replace the photographic processing solution in the electrolytic cell with a highly concentrated alkali hydroxide aqueous solution or sulfite aqueous solution and leave it as is for 2 to 3 days.
Alternatively, by applying a positive voltage between the repowering electrodes 5 and 10 and leaving it for 1 to 2 hours, the precipitated sulfur and silver sulfide are dissolved in the aqueous solution and removed from the diaphragm and the electrodes. It is possible to prevent clogging, etc.

第2図は、本発明を適用出来る袋状隔膜付銀回収用電解
槽を例示する縦断面図である。
FIG. 2 is a longitudinal sectional view illustrating an electrolytic cell for silver recovery with a bag-like diaphragm to which the present invention can be applied.

壁面が電気絶縁歪の有機高分子材料例えば塩化ビニル樹
脂から成る箱型の電解槽11の側壁に近接して板状のグ
ラファイト製陽極15が設置され、該陽極15を収容す
る陽極室13は前記側壁と側面視コ字状の隔膜12によ
り陰極室14と区画されている。
A plate-shaped graphite anode 15 is installed close to the side wall of a box-shaped electrolytic cell 11 whose wall surface is made of an organic polymer material with electrically insulating strain, such as vinyl chloride resin. It is separated from a cathode chamber 14 by a side wall and a diaphragm 12 that is U-shaped in side view.

電解槽11中火には円筒状のステンレス製回転陰極16
が設置され該陰極16はモータの回転力を回転軸及び連
結板を介して受は取ることにより回転する。
A cylindrical stainless steel rotating cathode 16 is used for medium heat in the electrolytic tank 11.
is installed, and the cathode 16 rotates by receiving the rotational force of the motor via the rotating shaft and the connecting plate.

前記陽極室13及び陰極室14の少なくとも一方には、
] 3 処理液供給パイプ(図示路)によりヂオ硫酸塩及び銀イ
オンを含有する定着工程等の処理力が電解液18として
供給される。前記回転陰極16t;L前記陰極室14の
電解液18を攪拌し該陰極16と電解液18中の銀イオ
ンとの接触を促進している。ν】銀イオンは前記イオン
16上で還元されて金属銀粒子として該陰極16上に析
出し又は陰極室14内にi$ 苛りあン。
At least one of the anode chamber 13 and the cathode chamber 14 includes:
] 3 Processing power for the fixing process, etc. containing diosulfate and silver ions is supplied as an electrolytic solution 18 through a processing liquid supply pipe (path shown). The rotating cathode 16t; L stirs the electrolyte 18 in the cathode chamber 14 to promote contact between the cathode 16 and silver ions in the electrolyte 18. ν] The silver ions are reduced on the ions 16 and deposited as metallic silver particles on the cathode 16 or in the cathode chamber 14.

いは陰極室14の底板上に堆積し適宜回収されろ。Alternatively, it may be deposited on the bottom plate of the cathode chamber 14 and collected as appropriate.

(実施例) 以下に本発明による銀回収用電解槽の再住方法を記載す
るが、該実施例は本発明を限定するものではない。
(Example) A method for repopulating an electrolytic cell for silver recovery according to the present invention will be described below, but the present invention is not limited to the examples.

実施例1 第1図に示す電解槽を使用して定着液からの銀回収を行
った。
Example 1 Silver was recovered from a fixer using the electrolytic cell shown in FIG.

電解槽本体は内径150+m、深さ1501mの有底円
筒形の塩化ビニル製とし、該電解槽本体の内壁C,嘗イ
)って、外径130mm、内径125韻、高さ120n
のノソシュ状酸化イリジウム被覆チタン材から成るF’
 −ナラ状の陽極を設置した。該ドーナツ状陽極の内部
に、外径120■で厚さ3龍のポリプロピレン製の有底
円筒状の隔膜をその周縁部を、前記電解槽本体の底板に
溶着で固定するごとにより設置した。
The electrolytic cell body is made of vinyl chloride and has a bottomed cylindrical shape with an inner diameter of 150+ m and a depth of 1501 m, and the inner wall of the electrolytic cell body has an outer diameter of 130 mm, an inner diameter of 125 mm, and a height of 120 nm.
F' is made of titanium material coated with iridium oxide.
- A oak-shaped anode was installed. A bottomed cylindrical diaphragm made of polypropylene having an outer diameter of 120 cm and a thickness of 3 cm was installed inside the donut-shaped anode by fixing its peripheral edge to the bottom plate of the electrolytic cell body by welding.

該隔膜内にはフェルト状炭素繊維を円柱形に成形した直
径1101ffi、高さ1201、開孔率50%の三次
元陰極を収容した。該三次元陰極の上面には、3個の粘
状先端係合部を有するチタン製給電用陰極を、該先端係
合部を三次元陰極内に進入させることにより接続した。
A three-dimensional cathode formed from felt carbon fiber into a cylindrical shape and having a diameter of 1101ffi, a height of 1201 mm, and a porosity of 50% was housed in the diaphragm. A titanium power supply cathode having three viscous tip engaging parts was connected to the upper surface of the three-dimensional cathode by inserting the tip engaging parts into the three-dimensional cathode.

ごの電解槽本体内に、下記組成の定着ランニング液を1
01/分の速度で供給し、かつ電解電流2Aの定電流制
御の電解条件で循環式処理による銀回収を行ったとごろ
、電解電圧は2.5〜5.0vに維持された。電解開始
20間経過後から硫化銀に起因すると思われる黒色の粒
子の析出が三次元電極上、両供給用電極上及び隔膜上に
見られ始めた。なお定盾液中の銀濃度は0.5g/jl
’に減少していた。
Add 1 cup of fixing running liquid with the following composition into the electrolytic cell body.
When silver was recovered by circulating treatment under the electrolytic conditions of supplying at a rate of 0.01/min and constant current control of an electrolytic current of 2 A, the electrolytic voltage was maintained at 2.5 to 5.0 V. After 20 minutes from the start of electrolysis, precipitation of black particles believed to be caused by silver sulfide began to be observed on the three-dimensional electrode, both supply electrodes, and the diaphragm. The silver concentration in the fixed shield liquid is 0.5g/jl
' had decreased.

(定着ランニング液の組成) 千オ硫酸アンモニウム       100 g / 
ff無水重亜硫酸す1−リウム      18g/l
メク亜硫酸すI・リウム        3g/(!E
DTA  F e (II[) NH−4塩  50g
1llIE D ”FA−4,H1g / A炭酸すト
リウム           L4g/l4銀イオン 
          5.63 g /βpI−I  
               7.4電解開始後30
時間で循環液量が初期の10p/分から0.567分に
低下し、黄色の硫黄化合物と思われる沈澱が多品に観察
された。
(Composition of fixer running liquid) Ammonium 1000 sulfate 100 g /
ff Anhydrous sodium bisulfite 1-lium 18g/l
Mek sulfite I/Rium 3g/(!E
DTA Fe (II[) NH-4 salt 50g
1llIE D "FA-4, H1g/A sthorium carbonate L4g/l4 silver ion
5.63 g/βpI-I
7.4 30 minutes after starting electrolysis
Over time, the amount of circulating fluid decreased from the initial 10 p/min to 0.567 min, and many yellow precipitates thought to be sulfur compounds were observed.

前記定着液に代えて電解槽に50g/βの亜硫酸すI・
リウ1、水溶液を水酸化す1−リウムでp l(を14
に調整した水溶液を加え、5時間運転を行った。
In place of the above fixer, 50 g/β of sulfite was added to the electrolytic bath.
Liu 1, 1-lium hydroxide aqueous solution p l (14
An aqueous solution adjusted to the above was added, and the operation was continued for 5 hours.

その結果循環液量は101/分に回復し、黄色の沈澱の
95%程度が消失した。又液中の銀濃度は0.1p p
 m以下であり、銀を溶解せずに硫黄成分のめを効率的
に溶解していることが判る。
As a result, the circulating fluid volume recovered to 101/min, and about 95% of the yellow precipitate disappeared. Also, the silver concentration in the liquid is 0.1 p p
It can be seen that the sulfur component is efficiently dissolved without dissolving the silver.

なおこの亜硫酸す1−リウム水溶液を再度前記定着液と
置換し銀回収を行ったところ運転開始後2゜時間までは
前述の運転時と同様に非常に良好に銀回収を行うことが
出来た。
When this aqueous solution of 1-lium sulfite was again replaced with the fixing solution and silver was recovered, silver could be recovered very well until 2 hours after the start of operation, as in the above-mentioned operation.

去j11て 実施例1と同じ条件で目詰まり直前の状態を形成し、電
解槽内の定着液を、第1表に示すように亜硫酸す1−リ
ウム及び/又は水酸化ナトリウムを含有し水酸化すトリ
ウムで表中のp Hに調節した再生液で置換し、通電を
伴いあるいは伴わずに運転した場合の1時間及び5時間
経過後の循環液量を測定したところ、第1表Qこ示ず結
果が得られた。
The fixing solution in the electrolytic cell was heated to a state immediately before clogging under the same conditions as in Example 1, and the fixing solution in the electrolytic cell was hydrated by containing 1-lium sulfite and/or sodium hydroxide as shown in Table 1. When the circulating fluid volume was measured after 1 hour and 5 hours when the tank was replaced with a regenerating fluid whose pH was adjusted to the pH shown in the table with thorium and operated with or without energization, Table 1 Q shows: The results were obtained.

第1表から、亜硫酸す1〜リウムを添加しない場合はp
 Hが10以上で循環液量の回復が見られ、亜硫酸すト
リウムを添加するとp Hが10未満でも循環液量の回
復が見られ特にI) Hが10以上であると顕著な循環
液量の回復が見られることが判る。
From Table 1, if sulfite is not added, p
Recovery of circulating fluid volume is observed when H is 10 or more, and when thorium sulfite is added, recovery of circulating fluid volume is seen even when pH is less than 10. It can be seen that recovery is occurring.

更に同一条件下では再生液で置換した後、通電を行いな
がら運転を継続すると迅速に循環液量が回復することも
判る。
Furthermore, it can be seen that under the same conditions, if the operation is continued while energizing after replacing with the regeneration liquid, the amount of circulating liquid is quickly recovered.

実施例3 下記Oこ示ず仕様を有する回転陰極型電解槽を写真処理
槽の漂白定着槽に電解液供給管及び電解液取出管を介し
て連結し、次の組成の漂白定着ランフ 1 ε) 第 表 E D  ゴA    F  e−NH4150g/ 
 E銀イオン           8.32g/にの
ランニング液のp Hを酢酸とアンモニア水(28%)
で7.4に調整した。
Example 3 A rotating cathode type electrolytic cell having the specifications shown below was connected to a bleach-fixing tank of a photographic processing tank via an electrolyte supply pipe and an electrolyte take-out pipe, and a bleach-fixing lamp 1 ε) having the following composition was prepared. Table E D Go A F e-NH4150g/
Adjust the pH of the running liquid of E silver ion 8.32g/to acetic acid and aqueous ammonia (28%).
I adjusted it to 7.4.

電解当初は陰極に銀が析出し銀回収が円滑に行われてい
たが、電解開始後約30時間経過時から陽極側の隔膜内
に黄色の硫黄が主成分と考えられるスラッジが蓄積して
陰極上の銀が黒色に変化し、銀回収べ′の低下、硫化水
素臭等の発生が見られた。
At the beginning of electrolysis, silver was deposited on the cathode and silver recovery was performed smoothly, but after about 30 hours after the start of electrolysis, yellow sludge, which is thought to be mainly composed of sulfur, accumulated in the diaphragm on the anode side and the cathode The silver on top turned black, the silver recovery rate decreased, and a hydrogen sulfide odor was observed.

ごの漂白定着液を実施例2の再生液No、 6と置換し
2時間通電を行った。その結果黄色のスラッジはその約
80%が消失し、陰極表面の黒色も銀色に変化した。そ
の後再度前記組成の漂白定着液で置換し通電を行ったと
ころ、非常に良好に銀回収を行うことが出来た。
The bleach-fix solution was replaced with regeneration solution No. 6 of Example 2, and electricity was applied for 2 hours. As a result, about 80% of the yellow sludge disappeared, and the black surface of the cathode changed to silver. Thereafter, when the bleach-fix solution having the above composition was substituted again and electricity was applied, silver could be recovered very well.

(発明の効果) 本発明は、チオ硫酸塩を含有する写真処理液を電解槽Q
こ供給して金属銀を電解回収する方法において、電解が
終了し電析した銀を回収した後の前記′ワ真処理液を、
硫化銀及び/又は硫黄と反応しニング液を前記電解槽に
供給し、下記に示す電解条件で銀回収を行った後、前記
漂白定着槽に循環させた。
(Effects of the Invention) The present invention provides a photographic processing solution containing thiosulfate in an electrolytic bath Q.
In the method of electrolytically recovering metallic silver by supplying this, the above-mentioned 'wax treatment solution' after the electrolysis is completed and the electrodeposited silver is recovered,
A solution reacting with silver sulfide and/or sulfur was supplied to the electrolytic cell, silver was recovered under the electrolysis conditions shown below, and then circulated to the bleach-fixing tank.

(電解槽仕様) 電解槽サイズ:縦500maX横500imx高さ70
0鶴陽極: 縦250鰭×横500mmx厚さIon■
である市販のグラファイト板4枚を隔膜である袋状テト
ロン織布で包囲し使用 陰極: 直径35Qn+x高さ500mmのステンレス
鋼板(S U 3316)を200回/分の回転数で使
用隔膜: テトロン(商品名)織布 (電解条件) 印加電流: 直流50A(定電流) 陽極電流密度:  1.11A/dm2陰極電流密度−
1,QIA/dm2 電解液星ニア電解液全ニア0n槽内に供給するハツチ方
式を採用) (漂白定名ランニング液の組成) チオ硫酸アンモニウム       70g/j!亜硫
酸アンモニウム        18g/(1て可溶性
硫黄化合物を生成する物質の水溶液と置換し前記電解槽
を再生することを特徴とする銀回収用電解槽の再生方法
である(請求項1)。
(Electrolytic cell specifications) Electrolytic cell size: Vertical 500 ma x Width 500 im x Height 70
0 Tsuru anode: length 250 fins x width 500 mm x thickness Ion■
Cathode: A stainless steel plate (S U 3316) with a diameter of 35Qn+ x height of 500 mm was used at a rotation speed of 200 times/min. Diaphragm: Tetron ( Product name) Woven fabric (electrolytic conditions) Applied current: DC 50A (constant current) Anode current density: 1.11A/dm2 Cathode current density -
1, QIA/dm2 Electrolyte Hatch method is used to supply electrolyte to all near 0n tanks) (Composition of bleach constant running solution) Ammonium thiosulfate 70g/j! A method for regenerating an electrolytic cell for silver recovery, characterized in that the electrolytic cell is regenerated by replacing 18 g of ammonium sulfite/(1) with an aqueous solution of a substance that generates a soluble sulfur compound (Claim 1).

銀の電解回収法では電解の継続に従って写真処理液中の
銀イオン濃度が低下し、該濃度の低下した銀イオンとヂ
オ硫酸イオンとの反応により硫黄や硫化銀が生成し易く
なり、この硫黄や硫化銀は電極や隔膜の口詰まりを生じ
させて電解条件に悪影きを及ぼずことが多い。従来の電
解銀回収では該硫化銀や硫黄による電解条件の悪化を回
避するため、かなりの濃度の銀イオンを含む写真処理液
をそのまま廃棄していた。しかしながら電極や隔膜の目
詰まりを生じさせ易い硫黄や硫化銀が生じても、高濃度
水酸化アルカリ水溶液や亜硫酸塩水溶液を使用する本発
明方法により前記硫黄や硫化銀を該水溶液中に溶解させ
て容易に電解槽の再生を行・うごとが出来るため、写真
処理液中の銀イオンの全部あるいは殆どを析出させ回収
しても、電解槽に劣化等を生しさせることなく再生を行
い更に銀回収を継続することが出来る。
In the silver electrolytic recovery method, as electrolysis continues, the concentration of silver ions in the photographic processing solution decreases, and the reaction between the decreased concentration of silver ions and diosulfate ions makes it easier to generate sulfur and silver sulfide. Silver sulfide often causes clogging of electrodes and diaphragms and does not affect electrolytic conditions adversely. In conventional electrolytic silver recovery, photographic processing solutions containing a considerable concentration of silver ions are discarded as is in order to avoid deterioration of electrolytic conditions due to silver sulfide and sulfur. However, even if sulfur and silver sulfide, which easily cause clogging of electrodes and diaphragms, are generated, the sulfur and silver sulfide can be dissolved in the aqueous solution by the method of the present invention using a highly concentrated alkali hydroxide aqueous solution or sulfite aqueous solution. Since the electrolytic cell can be easily regenerated and cleaned, even if all or most of the silver ions in the photographic processing solution are precipitated and recovered, the electrolytic cell can be regenerated without causing any deterioration, and further silver can be recovered. Collection can continue.

本発明方法に使用する硫化銀及び/又は硫黄と反応して
可溶性硫黄化合物を生成する物質の水)溶液としては、
po1o以上の水酸化アルカリ水i8 ?&(請求項2
)あるいは亜硫酸塩の水溶液(請求項3)を使用するこ
とが望ましく、後者の水溶液ではそのp Hが10以上
のとき く請求項4)、又はその濃度が0.05モル/
p以」二のときに(請求項5)その効果が顕著になる。
The aqueous solution of a substance that reacts with silver sulfide and/or sulfur to produce a soluble sulfur compound used in the method of the present invention includes:
Alkaline hydroxide water i8 with po1o or higher? &(Claim 2
) or an aqueous solution of sulfite (claim 3), and the latter aqueous solution has a pH of 10 or more (claim 4), or a concentration of 0.05 mol/min.
The effect becomes remarkable when p or less (Claim 5).

いずれの水溶液を使用ずろ場合でも正方向の電圧を印加
しながら硫黄や硫化銀の溶解を行・うと、印加しない場
合と比較しでり迅速に前記硫黄や硫化銀等の溶解を行っ
て循環液研を回復さ−Uろことが出来る(請求項6)。
No matter which aqueous solution you use, if you dissolve sulfur and silver sulfide while applying a positive voltage, the sulfur and silver sulfide will be dissolved more quickly than when no voltage is applied, and the circulating fluid will be dissolved. It is possible to recover the sharpness (claim 6).

更に銀回収用として表面積の大きい三次元電極式電解槽
を使用すると(請求項7)銀回収の効4゛面からは有利
であるが、析出する硫黄や硫化銀による閉塞が生じ易く
なる。本発明方法は該閉塞を効果的に解消するため、銀
回収に最適な三次元電極式電解槽の特性を最大限乙こ活
かすことが可能になる。
Furthermore, if a three-dimensional electrode type electrolytic cell with a large surface area is used for silver recovery (Claim 7), although it is advantageous in terms of silver recovery efficiency, it is likely to be clogged by precipitated sulfur and silver sulfide. Since the method of the present invention effectively eliminates the blockage, it becomes possible to take full advantage of the characteristics of the three-dimensional electrode type electrolytic cell, which is optimal for silver recovery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、三次元電極構成物質として繊維状陰極を使用
した本発明を適用出来る銀回収用電解槽の 例を示す縦
断面図であり、第2図は、本発明を適用出来る他の電解
槽の例を示す縦断面図である。 ・電解槽本体 陰極室 4・ ・陽極 6・・ ・載枠 8・ 先端係合部 ・・電解槽本体 ・陽極室 14・ ・陽極 16・・ 電解液 2・・・隔膜 ・陽極室 三次元陰極 ・側力片 10・・・給電用陰極 12・・・隔膜 ・−陰極室 ・陰極 哨 \↑
FIG. 1 is a vertical cross-sectional view showing an example of an electrolytic cell for silver recovery to which the present invention can be applied, using a fibrous cathode as a three-dimensional electrode constituent material, and FIG. FIG. 3 is a vertical cross-sectional view showing an example of a tank. - Electrolytic cell body cathode chamber 4 - Anode 6... - Mounting frame 8 - Tip engaging part... Electrolytic cell main body/Anode chamber 14... Anode 16... Electrolyte 2... Diaphragm/Anode chamber three-dimensional cathode・Side force piece 10...Power feeding cathode 12...Diaphragm・-Cathode chamber・Cathode guard\↑

Claims (1)

【特許請求の範囲】 (1)チオ硫酸塩を含有する写真処理液を電解槽に供給
して金属銀を電解回収する方法において、電解が終了し
電析した銀を回収した後の前記写真処理液を、硫化銀及
び/又は硫黄と反応して可溶性硫黄化合物を生成する物
質の水溶液と置換し前記電解槽を再生することを特徴と
する銀回収用電解槽の再生方法。 (2)硫化銀及び/又は硫黄と反応して可溶性硫黄化合
物を生成する物質の水溶液が、pHが10以上の水酸化
アルカリ水溶液である請求項1に記載の再生方法。 (3)硫化銀及び/又は硫黄と反応して可溶性硫黄化合
物を生成する物質の水溶液が、亜硫酸塩を含有する水溶
液である請求項1に記載の再生方法。 (4)亜硫酸塩を含有する水溶液のpHが10以上であ
る請求項3に記載の再生方法。 (5)亜硫酸塩の濃度が0.05モル/l以上である請
求項3又は4に記載の再生方法。(6)正方向の電流を
流しながら再生を行う請求項1から5までのいずれかに
記載の再生方法。 (7)電解槽が三次元電極式電解槽である請求項1から
6までのいずれかに記載の再生方法。
[Scope of Claims] (1) In a method for electrolytically recovering metallic silver by supplying a photographic processing solution containing thiosulfate to an electrolytic cell, the photographic processing is performed after electrolysis is completed and the electrodeposited silver is recovered. A method for regenerating an electrolytic cell for silver recovery, characterized in that the electrolytic cell is regenerated by replacing the liquid with an aqueous solution of a substance that reacts with silver sulfide and/or sulfur to produce a soluble sulfur compound. (2) The regeneration method according to claim 1, wherein the aqueous solution of the substance that reacts with silver sulfide and/or sulfur to produce a soluble sulfur compound is an aqueous alkali hydroxide solution having a pH of 10 or more. (3) The regeneration method according to claim 1, wherein the aqueous solution of the substance that reacts with silver sulfide and/or sulfur to produce a soluble sulfur compound is an aqueous solution containing sulfite. (4) The regeneration method according to claim 3, wherein the pH of the aqueous solution containing sulfite is 10 or more. (5) The regeneration method according to claim 3 or 4, wherein the concentration of sulfite is 0.05 mol/l or more. (6) The regeneration method according to any one of claims 1 to 5, wherein the regeneration is performed while flowing a current in a positive direction. (7) The regeneration method according to any one of claims 1 to 6, wherein the electrolytic cell is a three-dimensional electrode type electrolytic cell.
JP11659190A 1990-05-03 1990-05-03 Regenerating method for electrolyzer for recovering silver Pending JPH0413884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11659190A JPH0413884A (en) 1990-05-03 1990-05-03 Regenerating method for electrolyzer for recovering silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11659190A JPH0413884A (en) 1990-05-03 1990-05-03 Regenerating method for electrolyzer for recovering silver

Publications (1)

Publication Number Publication Date
JPH0413884A true JPH0413884A (en) 1992-01-17

Family

ID=14690933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11659190A Pending JPH0413884A (en) 1990-05-03 1990-05-03 Regenerating method for electrolyzer for recovering silver

Country Status (1)

Country Link
JP (1) JPH0413884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690806A (en) * 1993-09-10 1997-11-25 Ea Technology Ltd. Cell and method for the recovery of metals from dilute solutions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690806A (en) * 1993-09-10 1997-11-25 Ea Technology Ltd. Cell and method for the recovery of metals from dilute solutions

Similar Documents

Publication Publication Date Title
US4256559A (en) Method and apparatus for regenerating spent photographic bleach-fixer solution
JPH0413884A (en) Regenerating method for electrolyzer for recovering silver
US4164456A (en) Electrolytic process
US3464904A (en) Method for treating metallic sulfide compounds
EP0699955B1 (en) Process for extracting tin from organic solutions by electrolysis
Hickman et al. Electrolysis of Silver-Bearing Thiosulfate
JP2989632B2 (en) Silver collection method
US5244777A (en) Method of recovering silver from photographic processing solutions
EP0329275B1 (en) Method of recovering silver from photographic processing solution and apparatus therefor
JPH11158681A (en) Treatment of selenium-containing water to be treated
US5554270A (en) Electrolytic desilvering method
JPH06510332A (en) Electrolysis device and method with porous stirring electrode
JP3294678B2 (en) Regeneration method of copper etchant
JP2898039B2 (en) Method and apparatus for recovering silver from photographic processing solution
JPH03294492A (en) Recovering method for silver from photographic processing liquid
JPH0688276A (en) Method for electrolytically recovering silver
JPH04318185A (en) Desilverizing method
JPS61270752A (en) Method for desilvering photographic processing solution and photographic processing machine
JPS61270754A (en) Method for desilvering photographic processing solution and photographic processing machine
JPS61232452A (en) Method for desilvering photographic processing solution and photographic processing machine
JPH04210490A (en) Method for recovering silver
JPS59116654A (en) Reproducer for desilvered photographic fixing liquid
JPH02306242A (en) Method and device for recovering silver of photographic processing liquid
Duisenberg A practical device for the recovery of silver and prolongation of life of fixing baths
JPH0413885A (en) Unipolar type three-dimensional electrode type electrolyzer for recovering silver