JPH04210409A - Production of fine metal or alloy powder - Google Patents

Production of fine metal or alloy powder

Info

Publication number
JPH04210409A
JPH04210409A JP41040690A JP41040690A JPH04210409A JP H04210409 A JPH04210409 A JP H04210409A JP 41040690 A JP41040690 A JP 41040690A JP 41040690 A JP41040690 A JP 41040690A JP H04210409 A JPH04210409 A JP H04210409A
Authority
JP
Japan
Prior art keywords
molten metal
fluid
powder
sheet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP41040690A
Other languages
Japanese (ja)
Inventor
Tadashi Fukuda
匡 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP41040690A priority Critical patent/JPH04210409A/en
Publication of JPH04210409A publication Critical patent/JPH04210409A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce fine metal powder made uniform in size in large quantities at a low cost by jetting fluid from plural nozzles in the form of sheets so that the sheets intersect each other and feeding a molten metal to a long cross region along the intersection in the form of a film. CONSTITUTION:Gas, liq. or other fluid jetted at a high flow rate is collided against a flow of a molten metal or alloy to obtain fine metal or alloy powder. In this atomizing method, the fluid 12 is jetted from plural nozzles in the form of sheets so that the sheets intersect each other and the molten metal or alloy 10 as starting material is fed to a long cross region along the intersection 18 in the form of a sheet so that this sheet is allowed to coincide with the intersection 18. In order to feed the molten metal 10 in the form of a sheet, a molten metal nozzle is made rectangular and magnetism is preferably allowed to act on the flow of the molten metal by arranging electromagnets around a feed pipe. Fine spherical metal or alloy powder of about 10-20mum particle size can be efficiently and stably obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

[00011 [00011

【産業上の利用分野]本発明は、高温の溶融状態にある
金属ないしは合金材料流に高流速のガスあるいは液体の
噴射流体を衝突させて金属ないしは合金材料を微細化し
て微粉末を得るいわゆるアトマイズ方法の改良に関する
。 [0002] 【従来の技術】金属微粉末を用いた射出成形では流動性
かつ焼結性の良好な粒径10〜201I11程度の微細
でかつ清浄な球状粉末が必要である。 [0003]また溶解鋳造によった製品の製造では偏析
が発生し易く加工性の劣悪な材料についても粉末冶金法
を使えば良好に成形できる場合の多いことが分かってき
ている。 [0004]これらの分野に必要な粉末の製造方法とし
ては従来から次のような方法があった。 [0005]アトマイズ法は、高温の溶融金属材料を棒
状あるいはシート状に流下させてこれにある角度をもっ
て高流速の流体を噴射・衝突させることにより当該溶融
金属材料を微細化するとともに冷却することにより金属
粉末を大量に生産できる方法である。使用する流体の種
類によってガスアトマイズ法および液体アトマイズ法と
呼ばれることもある。 [0006]また、別の方法として溶融状態の金属材料
に溶解度が液相状態と固相状態とで著しく異なる気体、
具体的には水素、−酸化炭素あるいは窒素を液相状態で
大量に溶解しておきこれを常温のタンクに吹き上げるか
、あるいはアトマイズしてガスが放出される作用で金属
材料を微粉化する方法が知られている。 [0007]これらの改良法として、特開平2−198
620号公報には、逆円錐状膜状流体流れの中に微粉化
しようとする溶融体流を複数本の流れとして供給し、ア
トマイズすることが記載されている。この技術では、溶
融体流を1カ所に集中させず、分散させることによって
粉砕場所での蒸気発生量を減らし、かつその蒸気を下方
に持ち去らせるようにしている。 [0008]
[Industrial Application Field] The present invention is directed to so-called atomization, in which a stream of metal or alloy material in a high-temperature molten state is made to collide with a high-velocity jet of gas or liquid to atomize the metal or alloy material to obtain fine powder. Concerning improvements in methods. [0002] Injection molding using fine metal powder requires a fine and clean spherical powder with a particle size of about 10 to 201I11, which has good fluidity and sinterability. [0003] Furthermore, it has been found that in many cases materials that are prone to segregation and have poor workability when manufacturing products by melting and casting can be molded satisfactorily by using powder metallurgy. [0004] Conventionally, there have been the following methods for producing powders required in these fields. [0005] In the atomization method, high-temperature molten metal material is made to flow down in the form of a rod or sheet, and a high-velocity fluid is injected and collided with it at a certain angle, thereby making the molten metal fine and cooling it. This is a method that can produce metal powder in large quantities. Depending on the type of fluid used, this method is sometimes called a gas atomization method or a liquid atomization method. [0006] Another method is to use a gas whose solubility in the molten metal material is significantly different between the liquid phase state and the solid phase state.
Specifically, there is a method of dissolving a large amount of hydrogen, carbon oxide, or nitrogen in a liquid phase and blowing it up into a tank at room temperature, or atomizing it and pulverizing the metal material by releasing gas. Are known. [0007] As an improved method of these, JP-A-2-198
No. 620 describes that a plurality of flows of melt to be atomized are supplied into an inverted conical film-like fluid flow and atomized. This technique reduces the amount of steam generated at the grinding site by dispersing the melt flow instead of concentrating it in one location, and also allows the steam to be carried away downward. [0008]

【発明が解決しようとする課題】ところが、粒径1o〜
20μm以下程度の微細でかつ清浄な金属球形粉末、特
に合金の清浄微粉末は工業的収率が悪いため、非常に高
価であった。 [0009]また粉末冶金法の場合も、原料粉末は微細
であることが必要であるにも拘わらず、従来は工業採算
性が成立するような粉末材料の供給は困難であった。 [00101さらに、ガスアトマイズ法ないしは液体ア
トマイズ法によって微細粉末を得ようとする場合、高速
度・大流量の流体を噴射するが、流体の噴射によって上
向きの流体流を生じて溶湯流が不安定となり、溶融金属
材料が効果的に微粒化できなかったり、あるいは溶湯金
属材料が流体噴射ノズルに付着して閉塞するという問題
が生じることがあった。 [00111そして前記公知技術では、アトマイズされ
る部分において大量の蒸気が発生するのを分散させるた
め、溶融体流を分割させているが、溶融体流の分割を多
数の細いノズルに通すことによって行うため、ノズルが
閉塞し易く確実に微粉末の製造を行う上で問題があった
[Problem to be solved by the invention] However, the particle size of 10~
Fine and clean metal spherical powders of about 20 μm or less, especially clean fine powders of alloys, have poor industrial yields and are therefore very expensive. [0009] Also in the case of powder metallurgy, although the raw material powder needs to be fine, it has conventionally been difficult to supply powder materials that are industrially profitable. [00101Furthermore, when attempting to obtain fine powder by gas atomization or liquid atomization, fluid is injected at high speed and large flow rate, but the fluid injection causes an upward fluid flow, making the molten metal flow unstable. Problems have arisen in that the molten metal material cannot be effectively atomized, or that the molten metal material adheres to and blocks the fluid injection nozzle. [00111] In the above-mentioned known technology, the melt flow is divided in order to disperse the large amount of steam generated in the atomized part, but the melt flow is divided by passing it through a large number of thin nozzles. Therefore, the nozzle is easily clogged, which poses a problem in reliably producing fine powder.

【001−2]本発明は、前記した公知技術における問
題点をM消し、アトマイズ法によって安価かつ大量に金
属ないしは合金材料の微粉末を得る方法を提供すること
を目的とするものである。 [0013] 【課題を解決するための手段】前記目的を達成するため
、本発明者は鋭意研究を重ねた結果、微粉砕すべき溶融
流体流と噴射流体流の双方をシート状として接触させる
ことが得られる粉末の微細化と整粒化に有効なことを知
見し、本発明を完成するに至った。 [0014]すなわち本発明は、アトマイズ法により、
金属または合金の粉末を製造するにあたり、溶融金属材
料流を微細化する噴射流体の流れがシート状で交差する
ように好ましくは対称位置にある複数の噴射孔から噴射
すると共に、前記シート状の噴射流体の長く伸びた交差
領域へ、前記溶融金属材料を予めシート状に形成して供
給することよりなる微粉末を製造する方法に係る。 [0015]また、本発明によれば、溶融金属材料流を
シート状に形成するため電磁石を溶融金属材料供給管で
ある溶湯管の廻りに配して磁界をかけ該溶湯の形状をシ
ート状に制御しながらシート状に噴出して互いに交差す
る噴射流体によって粉砕することにより微粉末を製造す
る方法がより効果的である。 [0016]
[001-2] The object of the present invention is to eliminate the problems in the known techniques described above and to provide a method for obtaining fine powder of a metal or alloy material in large quantities at low cost by an atomization method. [0013] [Means for Solving the Problems] In order to achieve the above-mentioned object, the inventor of the present invention has conducted extensive research and found that both the molten fluid stream to be pulverized and the jetted fluid stream are brought into contact in the form of a sheet. The present inventors have found that this is effective in refining and sizing the obtained powder, and have completed the present invention. [0014] That is, the present invention uses the atomization method,
In producing metal or alloy powder, the flow of jetting fluid that atomizes the flow of molten metal material is jetted from a plurality of jetting holes preferably located at symmetrical positions so that the flow of jetting fluid intersects in a sheet shape, and the sheet-like jetting The present invention relates to a method for producing fine powder, which comprises supplying the molten metal material, previously formed into a sheet, to an elongated intersection region of fluids. [0015] Further, according to the present invention, in order to form the molten metal flow into a sheet shape, an electromagnet is arranged around a molten metal pipe that is a molten metal material supply pipe, and a magnetic field is applied to change the shape of the molten metal into a sheet shape. A more effective method is to produce a fine powder by jetting it out in a sheet-like manner in a controlled manner and pulverizing it with jet fluids that intersect with each other. [0016]

【作用】本発明の構成と作用を説明する。本発明による
微粉末の製造は、基本的にはアトマイズ法である。 [001,7]アトマイズ法によって合金微粉末を製造
するとき原料溶湯のサイズ(例えば溶湯流の直径)が小
さい程生成する粉末径は小さい。アトマイズ法によって
生成する粉末の平均粒子径についてはルバンスカが報告
した実験式がよく適合するが、この関係式によれば、溶
湯流の径の平方根に比例して粉末粒子径は減少する。 [0018]また粉末の生産性を向上し、同時に溶湯の
低温化に伴うノズルでの固化閉塞を防ぎつつ、溶湯の径
を減少させる方法としては、溶湯をシート状にしこれと
複数の噴射流体との交線とが一致するよう噴射流体を噴
射することが適している。溶湯をシート状に流下させる
には溶融金属の表面張力が大きいことがら溶湯出口を長
方形にすることのみでは不十分てあり、磁石による磁界
作用によって溶融金属流をシー1〜状化する磁力を併用
することが有効である。 [00191本発明では前記アトマイズ法を利用するも
ので、図1にその概念を示すように、微粉砕しようとす
る原料溶湯10を磁界によりシート状に形成し、これを
噴射流体の流れ12の交線18で示される長く伸びた交
差領域に供給する。 [00201通常用いられるノズルから流下する円柱状
溶湯流においては、噴射流体の作用が表面と内部とで差
があり、溶湯流の内部は噴射流体があまり作用せず、溶
湯流が変形しにくいために相対的に粗粒が生成し、目的
とする微粉末の収率が低いこと、ならびに粉末の粒度範
囲が広く分布する結果となる。これに対して、本発明に
よれば溶湯流をシート状にして供給することにより、溶
湯を変形・分裂させる噴射流体が溶湯全体に対し均一に
作用する。シート状溶湯の幅は噴射流体のシート状幅よ
りわずかに狭い位が良いが、十分に噴射流体によりアト
マイズされるものであれば特に制限はない。ここで溶湯
用のノズル形状は、スリットノズルを用いてもよいが余
り狭いスリット幅では細管の場合と同様に閉塞の問題が
生じる恐れがあるため、例えばノズル形状は孔型とし、
その周囲に設けた電磁石のいわゆるピンチ作用を利用し
てシート状に成形してもよい。 [00213さらに、噴射流体をシート状に噴射する噴
射孔を対称的に配置し、一対の各噴射孔からシート状に
媒体を噴射させである交線上で衝突させ交差領域を形成
する。この交差領域の長く伸びた交線上に前記のシート
状に流下する溶湯を供給することにより、噴射流体の溶
湯に対する変形、分裂の作用が強力かつ均一になって微
粉末ならびに整粒粉末を生成することができる。噴射流
体をシート状に吹き出すためのノズル形状は、例えばス
リットノズル、多数の微細孔を一線上に並べたもの等多
くを例示できる。 [0022]図2は特公昭52−19181号公報等に
開示されている噴射流体が逆円錐状となるアトマイズ法
(同(1))と本発明方法で用いた噴射流体膜の垂直断
面がV字状となるアトマイズ法(同(2))について、
同一条件下で噴射流体が溶湯と衝突する位置、つまり本
発明に云う交差領域での流速分布を測定したものである
。この結果、V字状噴射流体では流速分布が遥かに平坦
であり、溶湯に作用する噴射流体の力が均一となって整
粒粉末を生成するのに有利であることが分かる。 [0023]
[Operation] The structure and operation of the present invention will be explained. The production of fine powder according to the present invention is basically an atomization method. [001,7] When producing fine alloy powder by the atomization method, the smaller the size of the raw material molten metal (for example, the diameter of the molten metal flow), the smaller the diameter of the generated powder. Regarding the average particle size of powder produced by the atomization method, the experimental formula reported by Lubanska fits well, but according to this relational expression, the powder particle size decreases in proportion to the square root of the diameter of the molten metal flow. [0018] In addition, as a method of reducing the diameter of the molten metal while improving the productivity of powder and simultaneously preventing solidification and clogging in the nozzle due to the temperature of the molten metal, it is possible to form the molten metal into a sheet and combine it with a plurality of jetting fluids. It is suitable to inject the injection fluid so that the lines of intersection of the two coincide with each other. In order to make the molten metal flow down in a sheet shape, it is not enough to make the molten metal outlet rectangular because the surface tension of the molten metal is large, so magnetic force is used in combination to form the molten metal flow into a sheet shape by the magnetic field action of a magnet. It is effective to do so. [00191 The present invention utilizes the atomization method, and as shown in the concept in FIG. The elongated intersection area shown by line 18 is fed. [00201 In a cylindrical molten metal stream flowing down from a commonly used nozzle, the action of the injection fluid is different between the surface and the inside, and the injection fluid does not act much on the inside of the molten metal flow, making it difficult for the molten metal flow to deform. Relatively coarse particles are produced, resulting in a low yield of the desired fine powder and a wide distribution of powder particle size ranges. In contrast, according to the present invention, by supplying the molten metal flow in the form of a sheet, the jetting fluid that deforms and splits the molten metal acts uniformly on the entire molten metal. The width of the sheet-shaped molten metal is preferably slightly narrower than the sheet-shaped width of the jetting fluid, but there is no particular restriction as long as it can be sufficiently atomized by the jetting fluid. Here, a slit nozzle may be used as the nozzle shape for the molten metal, but if the slit width is too narrow, there is a risk of clogging problems as in the case of a thin tube, so for example, the nozzle shape may be a hole type.
It may also be formed into a sheet by utilizing the so-called pinch effect of electromagnets provided around it. [00213] Furthermore, the injection holes for ejecting the injection fluid in the form of a sheet are arranged symmetrically, and the medium is ejected in the form of a sheet from each of the pair of injection holes to collide on a certain intersection line to form an intersection area. By supplying the molten metal flowing down in the form of a sheet onto the long intersection line of this intersection area, the deformation and splitting action of the jet fluid on the molten metal becomes strong and uniform, producing fine powder and sized powder. be able to. Examples of the nozzle shape for blowing out the jetting fluid in the form of a sheet include a slit nozzle, a nozzle in which a large number of fine holes are arranged in a line, and the like. [0022] FIG. 2 shows the atomization method in which the jetted fluid has an inverted conical shape ((1)) disclosed in Japanese Patent Publication No. 52-19181 and the like, and the vertical cross section of the jetted fluid film used in the method of the present invention is V. Regarding the atomization method ((2)) that results in a letter shape,
The flow velocity distribution was measured under the same conditions at the position where the injected fluid collides with the molten metal, that is, the intersection area referred to in the present invention. As a result, it can be seen that the V-shaped injection fluid has a much flatter flow velocity distribution, and the force of the injection fluid acting on the molten metal becomes uniform, which is advantageous for producing sized powder. [0023]

【実施例】本発明を図3に示す装置を使用した実施例に
基づいて説明する。図3はガスアトマイズ法による粉末
製造装置の概略図である。図3で37は粉末回収タンク
であって、粉末回収タンク37の上部には真空チャンバ
ー31が設置され、その内部において粉末回収タンクと
の接続部に高圧ガス配管36より噴射流体が供給される
アトマイズノズル35が設置されている。アトマイズノ
ズル35の中央部上方に設置された溶融金属材料容器3
2の底部には、溶融金属をアトマイズノズル35に流下
注入するための溶湯管34が設けられており、この溶湯
管34を通って、溶融金属材料33がアトマイズノズル
35に供給され、高圧ガス配管36よりの噴射流体によ
ってアトマイズされた溶湯が粉末となって前記の粉末回
収タンク37に集められる。38はサイクロン分離器で
ある。本例で使用した溶湯化学成分の分析値は表1のと
おりであった。 [0024]
EXAMPLE The present invention will be explained based on an example using the apparatus shown in FIG. FIG. 3 is a schematic diagram of a powder manufacturing apparatus using the gas atomization method. In FIG. 3, 37 is a powder recovery tank, and a vacuum chamber 31 is installed in the upper part of the powder recovery tank 37, and inside the vacuum chamber 31, an atomizer is supplied with injection fluid from a high-pressure gas pipe 36 to a connection part with the powder recovery tank. A nozzle 35 is installed. Molten metal material container 3 installed above the center of the atomizing nozzle 35
2 is provided with a molten metal pipe 34 for injecting molten metal into the atomizing nozzle 35. Through this molten metal pipe 34, the molten metal material 33 is supplied to the atomizing nozzle 35, and the molten metal material 33 is supplied to the atomizing nozzle 35. The molten metal atomized by the fluid jetted from 36 becomes powder and is collected in the powder recovery tank 37 . 38 is a cyclone separator. The analytical values of the chemical components of the molten metal used in this example are as shown in Table 1. [0024]

【表1】 [0025][Table 1] [0025]

【実施例1】図3の溶湯管34において溶湯ノズルの出
口の形状・寸法(mu)として図4に示すものを用いて
表1の化学成分を有する溶湯を表2の条件でアトマイズ
し粉末の粒度分布を測定した結果を図6に示す。噴射流
体の噴射形状はV字形であり、交差領域の幅寸法は20
mmであった。 [0026]
[Example 1] Molten metal having the chemical components shown in Table 1 was atomized under the conditions shown in Table 2 using the shape and dimensions (mu) of the outlet of the molten metal nozzle shown in FIG. The results of measuring the particle size distribution are shown in FIG. The injection shape of the injection fluid is V-shaped, and the width dimension of the intersection area is 20
It was mm. [0026]

【表2】 [0027]比較のため従来より実施されている溶湯管
すなわち溶湯出口の形状・寸法(mm)として図5に示
すものを用いて同じく表2の条件で生成した粉末の粒塵
分布も図6に示す。噴射流体の噴射形状、条件は上述の
本発明方法に同じであった。図6に示した結果から、従
来法と比較して本発明方法は微細かつ粒度が揃った粉末
の生成に有効であることが明らかである。流動性を流動
度指数で示すと本発明法で12.5、従来法では14.
8であったので、本発明法で生成した粉末の流動性が優
れていることが分かった。 [0028]さらに溶湯管出口の形状が長方形であって
も溶湯金属の表面張力は一般に高いため、溶湯流が円柱
状に変形する。また、一般に溶湯管出口の形状を長方形
にすることは薄肉部ができるため耐火物の強度が低下す
ること、アスペクト比の大きな形状には成形困難である
ことが問題である。 [0029]
[Table 2] [0027] For comparison, particle dust distribution of powder generated under the same conditions in Table 2 using the shape and dimensions (mm) of the molten metal pipe, that is, the molten metal outlet shown in FIG. is also shown in FIG. The injection shape and conditions of the injection fluid were the same as in the method of the present invention described above. From the results shown in FIG. 6, it is clear that the method of the present invention is more effective in producing fine powder with uniform particle size than the conventional method. When the fluidity is expressed as a fluidity index, it is 12.5 for the method of the present invention and 14. for the conventional method.
8, indicating that the powder produced by the method of the present invention has excellent fluidity. [0028] Furthermore, even if the shape of the molten metal pipe outlet is rectangular, the surface tension of the molten metal is generally high, so the molten metal flow is deformed into a cylindrical shape. Further, generally, making the shape of the outlet of the molten metal pipe rectangular has problems in that the strength of the refractory is reduced due to the formation of a thin walled portion, and that it is difficult to form the refractory into a shape with a large aspect ratio. [0029]

【実施例2】本例では、従来よ〈実施されている図4に
形状・寸法を示した円形の溶湯出口を有する溶湯管から
流出する溶湯流の周囲に、図7に示すように電磁コイル
を設けて磁場を形成した。図7において溶湯管34を挾
むようにして電磁石70が設置され、一方噴射流体12
は供給管72を経て、シート状にノズルから噴射される
。溶湯管34から流下する溶融金属流れはノズルを出た
直後は円筒状であるが、電磁石70の磁気作用によりシ
ート状に成形されてから噴射流体に衝突する。図示装置
を使って磁橿中央部での最大印加磁束密度は2,1テス
ラとしたとき、溶湯流が平板状に変形することが観察さ
れた。表2の条件で粉末を生成し、その生成粉末の粒度
分布を図8に示す。この結果から電磁コイルを設けて磁
場を形成し、溶湯流をシート状に流下させることによっ
て、粉末の微細化ならびに整粒化の実現が可能であるこ
とが立証できた。図中の従来法は実施例1のそれに同じ
であった。流動性を流動性指数で示すと上記方法で生成
した粉末では11.8であり、図4の溶湯ノズルを用い
た場合とほぼ同じであった。 [00301 【発明の効果]本発明は、以上説明したように構成され
ているから、アトマイズ法によって微細ならびに整粒化
した金属または合金粉末を安価・大量に生成することが
できるという効果が奏さね、産業上きわめて有用である
[Embodiment 2] In this example, as shown in FIG. 7, an electromagnetic coil is installed around the molten metal flow flowing out from a molten metal pipe having a circular molten metal outlet whose shape and dimensions are shown in FIG. was set up to form a magnetic field. In FIG. 7, an electromagnet 70 is installed so as to sandwich the molten metal pipe 34, while the ejected fluid 12
passes through the supply pipe 72 and is sprayed in the form of a sheet from a nozzle. The molten metal flow flowing down from the molten metal pipe 34 has a cylindrical shape immediately after leaving the nozzle, but is formed into a sheet shape by the magnetic action of the electromagnet 70 before colliding with the injection fluid. When the maximum applied magnetic flux density at the center of the magnetic rod was set to 2.1 Tesla using the illustrated apparatus, it was observed that the molten metal flow was deformed into a flat plate shape. Powder was produced under the conditions shown in Table 2, and the particle size distribution of the produced powder is shown in FIG. From this result, it was proved that it is possible to achieve finer powder size and particle size regulation by providing an electromagnetic coil to form a magnetic field and causing the molten metal to flow down in a sheet shape. The conventional method in the figure was the same as that of Example 1. The fluidity index of the powder produced by the above method was 11.8, which was almost the same as that when the molten metal nozzle of FIG. 4 was used. [00301] [Effects of the Invention] Since the present invention is configured as explained above, it has the effect of being able to produce fine and sized metal or alloy powder at low cost and in large quantities by the atomization method. , is extremely useful in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明によるシー1−伏流上溶湯をV字状噴射
流体で噴霧する微粉末製造の概念図である。
FIG. 1 is a conceptual diagram of the production of fine powder by spraying sea 1 underflow upper molten metal with a V-shaped jet fluid according to the present invention.

【図2】図2(1)は噴射流体が溶湯と衝突する位置で
の噴射流体の流速分布説明図である。図2(2)は噴射
流体が溶湯と衝突する位置での噴射流体の流速分布説明
図である。
FIG. 2 (1) is an explanatory diagram of the flow velocity distribution of the injection fluid at the position where the injection fluid collides with the molten metal. FIG. 2(2) is an explanatory diagram of the flow velocity distribution of the injection fluid at the position where the injection fluid collides with the molten metal.

【図3】本発明のガスアトマイズ法による粉末製造装置
の概略図である。
FIG. 3 is a schematic diagram of a powder manufacturing apparatus using the gas atomization method of the present invention.

【図4】本発明のシート状流下用溶腸管出口の形状・寸
法を示す概略図である。
FIG. 4 is a schematic view showing the shape and dimensions of the outlet of the sheet-like dissolving enteric tube of the present invention.

【図5】従来の円孔形状溶湯管出口の形状・寸法を示す
概略図である。
FIG. 5 is a schematic diagram showing the shape and dimensions of a conventional circular hole-shaped molten metal pipe outlet.

【図6】アトマイズ粉末の粒度分布測定結果を示すグラ
フである。
FIG. 6 is a graph showing the results of measuring the particle size distribution of atomized powder.

【図7】電磁コイルによる溶湯のシート状流下を組み合
わせた本発明のアトマイズ法の概念図である。
FIG. 7 is a conceptual diagram of the atomization method of the present invention that combines sheet-like flow of molten metal by an electromagnetic coil.

【図8】図7の装置によるアトマイズ粉末と従来例との
粒度分布測定結果を示すグラフである。
8 is a graph showing the particle size distribution measurement results of the atomized powder and the conventional example using the apparatus of FIG. 7. FIG.

【符号の説明】[Explanation of symbols]

31  真空チャンバー 32  溶湯タンデイシュ 33  溶湯 あ 溶湯管 35  アトマイズノズル 36  高圧ガス配管 37  アトマイズタンク 38  サイクロン分離器 31 Vacuum chamber 32 Molten metal tundish 33 Molten metal A Molten metal pipe 35 Atomize nozzle 36 High pressure gas piping 37 Atomize tank 38 Cyclone separator

【図3】[Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アトマイズ法により、金属または合金の粉
末を製造するにあたり、溶融金属材料流を微細化する噴
射流体の流れがシート状で交差するように該噴射流体を
対になった複数の噴射孔から噴射すると共に、シート状
の前記噴射流体の流れの長く伸びた交差領域へ、前記溶
融金属材料を予めシート状に形成して供給することを特
徴とする金属または合金微粉末の製造方法。
[Claim 1] When manufacturing metal or alloy powder by the atomization method, a plurality of jets of the jet fluid that atomizes the molten metal material flow are arranged in pairs so that the jet fluid flows intersect in a sheet shape. A method for producing fine metal or alloy powder, characterized in that the molten metal material is injected from a hole and the molten metal material is previously formed into a sheet shape and supplied to a long intersection area of the flow of the jetted fluid.
【請求項2】溶融金属材料供給管の周りに配置した電磁
石の磁気作用により、溶融金属材料流を予めシート状に
形成する請求項1記載の金属または合金微粉末の製造方
法。
2. The method for producing fine metal or alloy powder according to claim 1, wherein the molten metal material flow is previously formed into a sheet shape by the magnetic action of an electromagnet disposed around the molten metal material supply pipe.
JP41040690A 1990-12-13 1990-12-13 Production of fine metal or alloy powder Withdrawn JPH04210409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41040690A JPH04210409A (en) 1990-12-13 1990-12-13 Production of fine metal or alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41040690A JPH04210409A (en) 1990-12-13 1990-12-13 Production of fine metal or alloy powder

Publications (1)

Publication Number Publication Date
JPH04210409A true JPH04210409A (en) 1992-07-31

Family

ID=18519575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41040690A Withdrawn JPH04210409A (en) 1990-12-13 1990-12-13 Production of fine metal or alloy powder

Country Status (1)

Country Link
JP (1) JPH04210409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111993A (en) * 2010-11-24 2012-06-14 Kobe Steel Ltd Atomization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012111993A (en) * 2010-11-24 2012-06-14 Kobe Steel Ltd Atomization device

Similar Documents

Publication Publication Date Title
JPS60211005A (en) Apparatus and method for spraying unstable molten liquid stream
JPS60211002A (en) Molten liquid spray method and apparatus reduced in gas flowamount
US4731110A (en) Hydrometallurigcal process for producing finely divided spherical precious metal based powders
US6254661B1 (en) Method and apparatus for production of metal powder by atomizing
US11607732B2 (en) High melting point metal or alloy powders atomization manufacturing processes
JP2017075386A (en) Manufacturing apparatus of metal powder and manufacturing method thereof
US10391558B2 (en) Powder manufacturing apparatus and powder forming method
KR20040067608A (en) Metal powder and the manufacturing method
JP5140342B2 (en) Atomizing nozzle and metal powder production apparatus using atomizing nozzle
US5289975A (en) Method and apparatus for atomizing molten metal
JP2703818B2 (en) Method for spraying a melt and apparatus using the method
JPH0625716A (en) Production of metal powder
EP0292792B1 (en) Hydrometallurgical process for producing finely divided iron based powders
JPH04210409A (en) Production of fine metal or alloy powder
Schade et al. Atomization
KR101507947B1 (en) Water atomizing device for manufacturing metal powders
US4374633A (en) Apparatus for the continuous manufacture of finely divided metals, particularly magnesium
JPS6227058A (en) Molten metal atomizer
JPH04276006A (en) Production of metal powder
JPH05255711A (en) Atomizing method and device for the method
JPH0649512A (en) Device for producing gas-atomized metal powder
JP3002270B2 (en) Production method of metal powder
JPH04173906A (en) Atomizing nozzle device
JPH03193805A (en) Manufacture of metal fine powder
JPH0629446B2 (en) Method and apparatus for atomizing molten material

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980312