JPH04210102A - Oil-hydraulic circuit - Google Patents

Oil-hydraulic circuit

Info

Publication number
JPH04210102A
JPH04210102A JP34114690A JP34114690A JPH04210102A JP H04210102 A JPH04210102 A JP H04210102A JP 34114690 A JP34114690 A JP 34114690A JP 34114690 A JP34114690 A JP 34114690A JP H04210102 A JPH04210102 A JP H04210102A
Authority
JP
Japan
Prior art keywords
pressure
valve
load
passage
load pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34114690A
Other languages
Japanese (ja)
Inventor
Tadao Karakama
唐鎌 忠雄
Teruo Akiyama
照夫 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP34114690A priority Critical patent/JPH04210102A/en
Publication of JPH04210102A publication Critical patent/JPH04210102A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the cost by furnishing a pressure compensation valve with an internal load pressure sensing circuit, connecting this sensing circuit to a load pressure lead-in path, and providing possibility of sending the load pressure from the inlet side of the compensation valve. CONSTITUTION:A pressure compensation valve 18 is pushed by the pressure oil of No.1 pressure receiving part 19 and the force of a spring 20 into the shut position A and pushed by the pressure oil of No.2 pressure receiving part 21 into the communicative position B. This No.2 pressure receiving part 21 is connected with the inlet to the compensation valve 18 to supply the inlet side pressure, while the No.1 pressure receiving part 19 is connected to a main load pressure lead-in path 23 via a load pressure lead-in path 22, to supply the highest load pressure. An internal load pressure sensing circuit 50 is composed of a passage 53 leading from the internal inlet side of the pressure compensation valve 18 to its internal outlet side, another passage 54 connected to the middle between No.1 throttle 51 and No.2 throttle 52 in the first named passage 53, and a check valve 55 installed in the later named passage 54.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、1つの油圧ポンプの吐出圧油を複数の油圧ア
クチュエータに供給する油圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydraulic circuit that supplies pressure oil discharged from one hydraulic pump to a plurality of hydraulic actuators.

〔従来の技術〕[Conventional technology]

1つの油圧ポンプの吐出圧油を複数の油圧アクチュエー
タに供給するには、油圧ポンプの吐出路に複数の操作弁
を設け、その操作弁を切換えることで各油圧アクチュエ
ータに圧油を供給すれば良いが、このようにすると複数
の油圧アクチュエータに圧油を同時に供給する際に、負
荷の小さな油圧アクチュエータにのみ圧油が供給されて
負荷の大きな油圧アクチュエータに圧油が供給されなく
なってしまう。
In order to supply pressure oil discharged from one hydraulic pump to multiple hydraulic actuators, it is sufficient to provide multiple operating valves in the discharge path of the hydraulic pump and supply pressure oil to each hydraulic actuator by switching the operating valves. However, in this case, when pressure oil is supplied to a plurality of hydraulic actuators at the same time, pressure oil is supplied only to the hydraulic actuators with a small load, and no pressure oil is supplied to the hydraulic actuators with a large load.

このことを解消する油圧回路として、例えば特公平2−
49405号公報に示すものが提案されている。
As a hydraulic circuit to solve this problem, for example,
The method shown in Japanese Patent No. 49405 has been proposed.

かかる油圧回路を模式的に示すと第8図に示すようにな
る。
Such a hydraulic circuit is schematically shown in FIG.

つまり、油圧ポンプ1の吐出路1aに複数の操作弁2を
設け、各操作弁2と各油圧アクチュエータ3を接続する
回路4に圧力補償弁5をそれぞれ設けると共に、各回路
4の圧力、つまり負荷圧における最も高い圧力をチェッ
ク弁6で検出し、その検出した負荷圧を各圧力補償弁5
に作用してその負荷圧に見合う圧力にセットし、各操作
弁2の出口側圧力を等しくして各操作弁2を同時操作し
た時に各操作弁の開口面積に比例した分流比で各油圧ア
クチュエータ3に圧油を供給できるようにしである。
That is, a plurality of operation valves 2 are provided in the discharge path 1a of the hydraulic pump 1, and pressure compensation valves 5 are provided in the circuits 4 connecting each operation valve 2 and each hydraulic actuator 3, and the pressure in each circuit 4, that is, the load The highest pressure in the pressure is detected by the check valve 6, and the detected load pressure is applied to each pressure compensation valve 5.
When the pressure on the outlet side of each operating valve 2 is equalized and each operating valve 2 is operated simultaneously, each hydraulic actuator is divided at a flow division ratio proportional to the opening area of each operating valve. 3 to be able to supply pressure oil.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

かかる油圧回路であると、圧力補償弁5の機能によって
各油圧アクチュエータ3の負荷の大小に無関係に操作弁
2の開口面積に比例した流量分配ができるから、1つの
油圧ポンプ1の吐出圧油を操作弁2の操作量に比例して
各油圧アクチュエータ3にそれぞれ供給できる。
With such a hydraulic circuit, the function of the pressure compensating valve 5 makes it possible to distribute the flow rate in proportion to the opening area of the operating valve 2, regardless of the magnitude of the load on each hydraulic actuator 3. It can be supplied to each hydraulic actuator 3 in proportion to the amount of operation of the operation valve 2.

しかしながら、油圧アクチュエータ3の負6j圧を圧力
補償弁5の出口側から検出して比較することで最高圧を
圧力補償弁5のセット圧を高くする受圧部5aに導入し
ているので、その検出した圧力P、は圧力補償弁5を流
通する際の圧力損失分だけ入口側圧力P、より低くなく
なり、圧力補償弁5を流通する流量がその圧力損失分だ
け誤差となって流量分配誤差が生じる。
However, by detecting and comparing the negative 6j pressure of the hydraulic actuator 3 from the outlet side of the pressure compensating valve 5, the highest pressure is introduced into the pressure receiving part 5a that increases the set pressure of the pressure compensating valve 5. The resulting pressure P is no lower than the inlet side pressure P by the pressure loss when flowing through the pressure compensating valve 5, and the flow rate flowing through the pressure compensating valve 5 becomes an error by the pressure loss, resulting in a flow rate distribution error. .

つまり、低負荷圧側の圧力補償弁5を流通する流m Q
 1、高負荷圧側の圧力補償弁5を流通する流jl Q
 2は g2−ca2’%τ〒7 ただし、Cは常数、al、alは操作弁開口面積、Pl
は油圧ポンプの吐出圧となり、圧力補償弁5の圧力損失
(p、−p、)だけ誤差となる。
In other words, the flow mQ flowing through the pressure compensation valve 5 on the low load pressure side
1. Flow flowing through the pressure compensation valve 5 on the high load pressure side Q
2 is g2-ca2'%τ〒7 However, C is a constant, al, al are the operating valve opening area, Pl
is the discharge pressure of the hydraulic pump, and the error is the pressure loss (p, -p,) of the pressure compensating valve 5.

なお、負荷圧を圧力補償弁5の入口側より検出すれば前
述の課題を解消できるが、圧力補償弁5のセット圧高側
受圧部とセット圧低側受圧部とに同一圧力P2が作用す
るので、バネ7のために圧力補償弁5が閉じた状態とな
って油圧アクチュエータ3に圧油が供給されなくなって
しまう。
Note that the above problem can be solved by detecting the load pressure from the inlet side of the pressure compensation valve 5, but the same pressure P2 acts on the set pressure high side pressure receiving part and the set pressure low side pressure receiving part of the pressure compensation valve 5. Therefore, the pressure compensation valve 5 is closed due to the spring 7, and pressure oil is no longer supplied to the hydraulic actuator 3.

また、操作弁2を中立位置とした時に油圧アクチュエー
タ3の保持圧がチェック弁6より油圧ポンプ1の容量制
御部8に供給され、保持圧に見合うように油圧ポンプ1
の吐出圧を上昇させようとして油圧ポンプ1の容量が大
となるから、油圧ポンプ1の駆動馬力が無駄に消費され
てしまう。このため負荷圧を容量制御部に導入する回路
を絞り9を介してタンクへ接続して油圧ポンプ1の容量
が増大しないようにすると、保持圧が絞り9を経てタン
クに流れるから油圧アクチュエータの自然降下がきわめ
て大きくなり、油圧アクチュエータの保持が不能となる
Further, when the operation valve 2 is set to the neutral position, the holding pressure of the hydraulic actuator 3 is supplied from the check valve 6 to the capacity control unit 8 of the hydraulic pump 1, and the hydraulic pump 1 is adjusted to match the holding pressure.
Since the capacity of the hydraulic pump 1 increases in an attempt to increase the discharge pressure of the hydraulic pump 1, the driving horsepower of the hydraulic pump 1 is wasted. Therefore, if the circuit that introduces the load pressure into the capacity control section is connected to the tank via the throttle 9 to prevent the capacity of the hydraulic pump 1 from increasing, the holding pressure will flow to the tank via the throttle 9, so the hydraulic actuator's natural The drop becomes so large that it becomes impossible to hold the hydraulic actuator.

そのため従来の油圧回路においてはカウンターバランス
弁を設けて油圧アクチュエータ3の保持圧がチェック弁
6に流入しないようにしているので、それだけ回路が複
雑で部品点数が多くなってコストが高くなる。
Therefore, in the conventional hydraulic circuit, a counterbalance valve is provided to prevent the holding pressure of the hydraulic actuator 3 from flowing into the check valve 6, which increases the complexity of the circuit and the number of parts, which increases the cost.

そこで、本発明は前述の課題を解決できるようにした油
圧回路を提供することを目的とする。
Therefore, an object of the present invention is to provide a hydraulic circuit that can solve the above-mentioned problems.

〔課題を解決するための手段及び作用〕圧力補償弁に、
その内部入口側圧力と内部出口側圧力の間の中間の圧力
を検出する内部負荷圧検出回路を設け、この内部負荷圧
検出回路を負荷圧導入路に接続して、圧力補償弁の入口
側から負荷圧を検出できるようにしたものである。
[Means and effects for solving the problem] In the pressure compensation valve,
An internal load pressure detection circuit is provided to detect the intermediate pressure between the internal inlet side pressure and the internal outlet side pressure, and this internal load pressure detection circuit is connected to the load pressure introduction path, so that the internal pressure is detected from the inlet side of the pressure compensation valve. It is designed to detect load pressure.

〔実 施 例〕〔Example〕

第1図に示すように、油圧ポンプ10は斜板11の角度
を変更することで容量、つまり1回転当り吐出流量が変
化する可変容量型の油圧ポンプとなり、その斜板11は
大径ピストン12で容量減方向に傾動し、小径ピストン
13で容量増方向に傾動する。
As shown in FIG. 1, the hydraulic pump 10 is a variable displacement hydraulic pump in which the displacement, that is, the discharge flow rate per rotation, is changed by changing the angle of the swash plate 11. The small diameter piston 13 tilts in the capacity decreasing direction, and the small diameter piston 13 tilts in the capacity increasing direction.

前記大径ピストン12の受圧室12gは切換弁14で油
圧ポンプ10の吐出路10gに連通・遮断され、小径ピ
ストン13の受圧室13gは前記吐出路10aに接続し
である。
The pressure receiving chamber 12g of the large diameter piston 12 is communicated with and cut off from the discharge passage 10g of the hydraulic pump 10 by a switching valve 14, and the pressure receiving chamber 13g of the small diameter piston 13 is connected to the discharge passage 10a.

前記油圧ポンプ10の吐出路10aには複数・の操作弁
15が設けてあり、各操作弁15と油圧アクチュエータ
16を接続する回路17に圧力補償弁18がそれぞれ設
けてあり、該圧力補償弁18は第1受圧部19の圧油と
バネ20のバネ力で遮断位置A側に押され、第2受圧部
2Nの圧油て連通位置B側に押される構成としてあり、
第2受圧部21は圧力補償弁18の入口側に接続されて
入口側圧力が供給され、第1受圧部19は負荷圧導入路
22を経て主負荷圧導入路23に接続されて最も高い負
荷圧が供給される。
A plurality of operation valves 15 are provided in the discharge passage 10a of the hydraulic pump 10, and a pressure compensation valve 18 is provided in a circuit 17 connecting each operation valve 15 and the hydraulic actuator 16. is pushed towards the blocking position A by the pressure oil of the first pressure receiving part 19 and the spring force of the spring 20, and is pushed towards the communicating position B by the pressure oil of the second pressure receiving part 2N,
The second pressure receiving part 21 is connected to the inlet side of the pressure compensating valve 18 and is supplied with the inlet side pressure, and the first pressure receiving part 19 is connected to the main load pressure introducing path 23 via the load pressure introduction path 22 and is connected to the main load pressure introduction path 23 for the highest load. pressure is supplied.

前記回路17における圧力補償弁18の出口側にロード
チェック弁24がそれぞれ設けてあり、このロードチェ
ック弁24は圧力補償弁18の出口側圧力で開作動する
A load check valve 24 is provided on the outlet side of the pressure compensation valve 18 in the circuit 17, and the load check valve 24 is opened by the pressure on the outlet side of the pressure compensation valve 18.

前記回路17におけるロードチェック弁24と油圧アク
チュエータ16との間は安全弁25と吸込弁26を経て
ドレーン路27に接続してあり、そのドレーン路27は
タンク28に接続しである。
The load check valve 24 and the hydraulic actuator 16 in the circuit 17 are connected to a drain passage 27 via a safety valve 25 and a suction valve 26, and the drain passage 27 is connected to a tank 28.

前記切換弁14は吐出路10a内の圧力、つまり油圧ポ
ンプ10の吐出圧P1で供給位置Cに押され、バネ29
のバネ力と受圧部14aに作用する前記負荷圧PLSで
ドレーン位&Dに押されて、吐出圧P1と負荷圧PLS
の圧力差(P+  PLS)PLSがバネ29のバネ力
よりも高くなると供給位置Cに押されて大径ピストン1
2の受圧室12aに吐出圧P1を供給して斜板11を容
量減方向に傾動し、前記圧力差△PLSがバネ29のバ
ネ力より低くなると切換弁14がドレーン位iDに押さ
れて大径ピストン12の受圧室12aの圧油をタンク側
に流出して斜板11を容量増方向に傾動する。
The switching valve 14 is pushed to the supply position C by the pressure in the discharge passage 10a, that is, the discharge pressure P1 of the hydraulic pump 10, and the spring 29
is pushed to the drain position &D by the spring force and the load pressure PLS acting on the pressure receiving part 14a, and the discharge pressure P1 and the load pressure PLS
When the pressure difference (P + PLS) PLS becomes higher than the spring force of the spring 29, the large diameter piston 1 is pushed to the supply position C.
The swash plate 11 is tilted in the capacity reduction direction by supplying the discharge pressure P1 to the pressure receiving chamber 12a of No. 2, and when the pressure difference ΔPLS becomes lower than the spring force of the spring 29, the switching valve 14 is pushed to the drain position iD and the swash plate 11 is tilted in the capacity reduction direction. The pressure oil in the pressure receiving chamber 12a of the diameter piston 12 flows out to the tank side, and the swash plate 11 is tilted in the direction of increasing the capacity.

前記操作弁15はパイロット制御弁30よりのパイロッ
ト圧油に比例して開口面積が増大する方向に操作され、
そのパイロット圧油はレバー30aの操作ストロークに
比例する。
The operation valve 15 is operated in a direction in which the opening area increases in proportion to the pilot pressure oil from the pilot control valve 30,
The pilot pressure oil is proportional to the operating stroke of the lever 30a.

すなわち、前記パイロット制御弁30はパイロット用油
圧ポンプ31の吐出圧油をレバー30aの操作ストロー
クに比例して出力する複数の減圧部32を備え、その減
圧部32の出力側が操作弁15の受圧部15aに接続し
、レバー30aを操作して1つの減圧部32より圧油を
出力すると操作弁15が中立位置Nから第1又は第2圧
油供給位置1.IIに切換えられ、その切換えストロー
クは減圧部32よりのパイロット圧油に比例する。
That is, the pilot control valve 30 includes a plurality of pressure reducing parts 32 that output pressure oil discharged from the pilot hydraulic pump 31 in proportion to the operating stroke of the lever 30a, and the output side of the pressure reducing part 32 is connected to the pressure receiving part of the operating valve 15. 15a, and when the lever 30a is operated to output pressure oil from one pressure reducing part 32, the operating valve 15 moves from the neutral position N to the first or second pressure oil supply position 1. II, and the switching stroke is proportional to the pilot pressure oil from the pressure reducing section 32.

前記操作弁15は第1・第2ポンプポート33゜34と
第1・第2タンクボート35,36と第1・第2アクチ
ュエータボート38.39と第1・第2補助ポート40
.41を備え、第1・第2ポンプボート33,34は油
圧ポンプ10の吐出路10aに接続し、第1φ第2タン
クポート35,36は前記ドレーン路27に接続し、第
1・第2アクチュエータボート38.39は各圧力補償
弁18の入口側に接続し、ml・第2補助ポート40.
41は短絡路42で回路17におけるロードチェック弁
24の出口側に接続している。
The operation valve 15 has first and second pump ports 33 and 34, first and second tank boats 35 and 36, first and second actuator boats 38 and 39, and first and second auxiliary ports 40.
.. 41, the first and second pump boats 33 and 34 are connected to the discharge path 10a of the hydraulic pump 10, the 1φ second tank ports 35 and 36 are connected to the drain path 27, and the first and second actuators The boats 38, 39 are connected to the inlet side of each pressure compensating valve 18, and the second auxiliary port 40.
41 is a short circuit path 42 connected to the outlet side of the load check valve 24 in the circuit 17.

前記操作弁15が中立位置Nの時には各ボートがそれぞ
れ遮断され、第1圧油供給位置Iの時には第1ポンプポ
ート33と第1アクチユエータ38が連通し、第2補助
ポート41が第2タンクボート36に連通し、第2圧油
供給位置Hの時には第2ポンプポート34と第2アクチ
ユエータポート39が連通し、TSlSl補助ポー40
が第1タンクポート35に連通し、操作弁15はクロー
ズドセンタ型の三位首切換弁となっている。
When the operation valve 15 is in the neutral position N, each boat is shut off, and when it is in the first pressure oil supply position I, the first pump port 33 and the first actuator 38 are in communication, and the second auxiliary port 41 is connected to the second tank boat. 36, and when in the second pressure oil supply position H, the second pump port 34 and the second actuator port 39 communicate, and the TSlSl auxiliary port 40
communicates with the first tank port 35, and the operation valve 15 is a closed center type three-position switching valve.

前記油圧ポンプ10の吐出路10aにはアンロード弁4
3が設けられ、このアンロード弁43は吐出圧P、と負
荷圧PLSの圧力差(Pl−Pい)△PLSが設定圧以
上となるとアンロードする構成となり、前記圧力差△P
LSが大きい時に開いて油圧ポンプ10の吐出油をタン
クに逃がして吐出圧P1のピーク圧を低減させ、また各
操作弁15が中立位置の時に油圧ポンプ1゜の吐出油を
タンクヘトレーンするようにしである。
An unload valve 4 is provided in the discharge passage 10a of the hydraulic pump 10.
3 is provided, and this unload valve 43 is configured to unload when the pressure difference (Pl-P) ΔPLS between the discharge pressure P and the load pressure PLS exceeds the set pressure,
When LS is large, it opens to release the oil discharged from the hydraulic pump 10 into the tank to reduce the peak pressure of the discharge pressure P1, and when each operating valve 15 is at the neutral position, the oil discharged from the hydraulic pump 1° is transferred to the tank. It's Nishide.

前記圧力補償弁18は第1受圧部19の圧力+バネ20
のバネ力と第2受圧部21の圧力の差に比例して遮断位
置Aから連通位置Bに向けて移動し、連通位置Bとなる
と内部負荷圧検出回路50で内部入口側圧力と内部出口
側圧力の中間圧力を検出して負荷圧導入路22に導入す
る。
The pressure compensating valve 18 has the pressure of the first pressure receiving part 19 + the spring 20
It moves from the cutoff position A toward the communication position B in proportion to the difference between the spring force of An intermediate pressure is detected and introduced into the load pressure introduction path 22.

前記内部負荷圧検出回路50は第1・第2絞り51.5
2を備えて圧力補償弁18の内部入口側と内部出口側を
連通ずる通路53と、その通路53における第1絞り5
1と第2絞り52の中間に接続した通路54と、その通
路54に設けたチェック弁55より構成しである。
The internal load pressure detection circuit 50 has first and second throttles 51.5
2, a passage 53 communicating the internal inlet side and the internal outlet side of the pressure compensation valve 18, and a first throttle 5 in the passage 53.
It consists of a passage 54 connected between the first and second throttles 52 and a check valve 55 provided in the passage 54.

すなわち、前記圧力補償弁18は第2図に示すように弁
本体60に入口ポート61と出口ポート62を連通・遮
断するポペット63を摺動自在に嵌挿し、このポペット
63をバネ20で遮断方向に押してシート面64を弁座
65に押し付け、そのポペット63に前端面63aとシ
ート面64の前端部を連通する第1・第2細孔66.6
7を形成して第1・第2絞り51.52を有する通路5
3とし、その第1・第2細孔66゜67の合流部を透孔
68でバネ室69、つまり第1受圧部19に連通し、そ
の透孔68にチェック弁55が設けである。
That is, as shown in FIG. 2, the pressure compensating valve 18 has a poppet 63 slidably inserted into the valve body 60 for communicating and blocking the inlet port 61 and the outlet port 62, and the poppet 63 is moved in the blocking direction by the spring 20. The seat surface 64 is pressed against the valve seat 65, and the poppet 63 is provided with first and second pores 66.6 that communicate the front end surface 63a and the front end of the seat surface 64.
7 and has first and second apertures 51,52.
3, the confluence of the first and second pores 66 and 67 communicates with a spring chamber 69, that is, the first pressure receiving part 19, through a through hole 68, and a check valve 55 is provided in the through hole 68.

次に作動を説明する。Next, the operation will be explained.

(操作弁15が中立位置の時) 第1図に示すように油圧ポンプ10の吐出路10aが操
作弁15で遮断され、油圧ポンプ10の吐出圧油が行き
止りとなるが、主負荷圧導入路23の圧力がゼロである
から切換弁14により斜板11の角度、つまり油圧ポン
プ10の吐出量が減少して吐出圧P、が切換弁14のバ
ネ29に見合う低い圧力となる。この際、油圧ポンプ1
0の吐出油が余剰となると吐出圧P、が上昇しようとす
るがアンロード弁43が開いて吐出油はアンロード弁4
3からタンクへ逃げる。
(When the operation valve 15 is in the neutral position) As shown in Fig. 1, the discharge passage 10a of the hydraulic pump 10 is blocked by the operation valve 15, and the pressure oil discharged from the hydraulic pump 10 comes to a dead end, but the main load pressure is introduced. Since the pressure in the passage 23 is zero, the angle of the swash plate 11, that is, the discharge amount of the hydraulic pump 10 is reduced by the switching valve 14, and the discharge pressure P becomes a low pressure commensurate with the spring 29 of the switching valve 14. At this time, hydraulic pump 1
When the discharged oil of 0 becomes surplus, the discharge pressure P tries to rise, but the unload valve 43 opens and the discharged oil flows to the unload valve 4.
Escape from 3 to the tank.

この時、圧力補償弁18はバネ20で遮断位置Aに保持
され、油圧アクチュエータ16の保持圧phは圧力補償
弁18で保持されると共に、短絡路42を経て操作弁1
5で保持されるので、油圧アクチュエータ16の自然降
下をは非常に小さい。
At this time, the pressure compensating valve 18 is held at the shutoff position A by the spring 20, and the holding pressure ph of the hydraulic actuator 16 is held by the pressure compensating valve 18, and the operating valve 1
5, the natural fall of the hydraulic actuator 16 is very small.

なお、第1図においてロードチェック弁24は保持圧が
圧力補償弁18の出口側に流入しないようにするためで
あって、圧力補償弁18の出口圧が保持圧以上となると
開き動作する。
In FIG. 1, the load check valve 24 is designed to prevent the holding pressure from flowing into the outlet side of the pressure compensating valve 18, and opens when the outlet pressure of the pressure compensating valve 18 exceeds the holding pressure.

(1つの操作弁15を第1圧油供給位置Iとした時)・
・・第3図参照 ■パイロット制御弁30のレバー30aを操作して減圧
部32より圧油を出力し、その圧油を操作弁15の受圧
部15aに供給すると操作弁15が中立位置Nから第1
圧油供給位置Iに切換えられる。
(When one operation valve 15 is set to the first pressure oil supply position I)・
...Refer to Fig. 3■ When the lever 30a of the pilot control valve 30 is operated to output pressure oil from the pressure reducing part 32 and the pressure oil is supplied to the pressure receiving part 15a of the operating valve 15, the operating valve 15 moves from the neutral position N. 1st
Switched to pressure oil supply position I.

これにより、油圧ポンプ10の吐出圧油は第1ポンプポ
ート33より第1アクチユエータボート38を経て圧力
補償弁18の入口側に供給され、これと同時に圧力補償
弁18の第2受圧部21に供給されるから、圧力補償弁
18は連通位置Bに向けて押される。
Thereby, the discharge pressure oil of the hydraulic pump 10 is supplied from the first pump port 33 to the inlet side of the pressure compensation valve 18 via the first actuator boat 38, and at the same time, the second pressure receiving part 21 of the pressure compensation valve 18 is supplied to the inlet side of the pressure compensation valve 18. , the pressure compensation valve 18 is pushed toward the communication position B.

圧力補償弁13が連通位置Bに押されると油圧ポンプ1
0の吐出圧油は内部負荷圧検出路50の第1絞り51、
通路54、チェック弁55より負荷圧導入路22に流入
して圧力補償弁18の第1受圧部19に作用すると同時
に主負荷圧導入路23より制御弁14の受圧部14aに
パイロット圧として作用する。
When the pressure compensation valve 13 is pushed to the communication position B, the hydraulic pump 1
The discharge pressure oil of 0 is the first throttle 51 of the internal load pressure detection path 50,
It flows into the load pressure introduction path 22 from the passage 54 and the check valve 55 and acts on the first pressure receiving part 19 of the pressure compensation valve 18, and at the same time acts on the pressure receiving part 14a of the control valve 14 from the main load pressure introduction path 23 as pilot pressure. .

■前述の状態で油圧ポンプ10の吐出圧P。■Discharge pressure P of the hydraulic pump 10 in the above-mentioned state.

が保持圧Phより低い時には、油圧ポンプ10の吐出圧
油が油圧アクチュエータ16に流れないので、通路53
に圧油が流れずに負荷圧導入路22の圧力と圧力補償弁
18の入口側圧力が等しくなり、圧力補償弁18はバネ
20のバネ力で遮断位置Aに押される。結局圧力補償弁
1Bは通路54がわずかに開いて負荷圧導入路22には
吐出圧P1よりわずかに低下した圧力が導入され第2受
圧部21にかかる吐出圧対バネ20のバネ力および第1
受圧部19にかかる負荷圧がバランスした位置となる。
is lower than the holding pressure Ph, the pressure oil discharged from the hydraulic pump 10 does not flow to the hydraulic actuator 16, so the passage 53
The pressure in the load pressure introduction path 22 and the pressure on the inlet side of the pressure compensating valve 18 become equal, and the pressure compensating valve 18 is pushed to the shutoff position A by the spring force of the spring 20. Eventually, the passage 54 of the pressure compensation valve 1B opens slightly, and a pressure slightly lower than the discharge pressure P1 is introduced into the load pressure introduction passage 22.
This is a position where the load pressure applied to the pressure receiving part 19 is balanced.

このために油圧ポンプ10の吐出圧P、が切換弁14の
動作により上昇し、それに従って圧力補償弁18が連通
位置Bとなって負荷圧導入路22の圧力、つまり負荷圧
PLSも上昇するので、制御弁14がその負荷圧pts
て供給位置Cからドレーン位iDに押されて大径ピスト
ン12の受圧室12aかドレーンに連通し、斜板11が
小径ピストン13で容量増方向に傾動されて吐出圧P1
が更に上昇し、この動作を繰り返して油圧ポンプ10の
吐出圧P1が順次上昇する。
For this reason, the discharge pressure P of the hydraulic pump 10 increases due to the operation of the switching valve 14, and accordingly, the pressure compensation valve 18 becomes the communication position B, and the pressure in the load pressure introduction path 22, that is, the load pressure PLS also increases. , the control valve 14 has its load pressure pts
is pushed from the supply position C to the drain position iD, which communicates with the pressure receiving chamber 12a of the large diameter piston 12 or the drain, and the swash plate 11 is tilted in the direction of increasing the capacity by the small diameter piston 13 to increase the discharge pressure P1.
further increases, and by repeating this operation, the discharge pressure P1 of the hydraulic pump 10 gradually increases.

■前述のように油圧ポンプ10の吐出圧P。■As mentioned above, the discharge pressure P of the hydraulic pump 10.

が上昇して油圧アクチュエータ16の保持圧となると、
ロードチェック弁24がその圧力で開き圧力補償弁18
の出口側圧油が油圧アクチュエータ16に供給される。
rises to the holding pressure of the hydraulic actuator 16,
The load check valve 24 opens at that pressure and the pressure compensation valve 18
The outlet side pressure oil is supplied to the hydraulic actuator 16.

これにより、圧力補償弁18の内部負荷圧検出回路50
における通路53に圧油が流れ、第1絞り51と第2絞
り52の中間に接続した通路54には圧力補償弁18の
入口側圧力と出口側圧力の中間の圧力が導入され、その
圧力が負荷圧ptsとして負荷圧導入路22より圧力補
償弁18の第1受圧部19に供給されるので、圧力補償
弁18の第1受圧部19の圧力が第2受圧部21の圧力
より低くなって差圧が生し、圧力補償弁18は連通位置
Bに向けて押され圧力補償弁18の通過流量が増加し、
これによって通路53を流れる流量も増加して第1絞り
51と第2絞り52間の圧力差が増加するため負荷圧導
入路22の負荷圧ptsと圧力補償弁コ8の入口側圧力
との差圧も増加し、圧力補償弁18か連通位置Bに向け
て更に押されて圧力補償弁18は負荷圧PLsに見合う
セット圧となる。
As a result, the internal load pressure detection circuit 50 of the pressure compensation valve 18
Pressure oil flows through a passage 53 in the passage 53, and a pressure between the inlet side pressure and the outlet side pressure of the pressure compensating valve 18 is introduced into a passage 54 connected between the first throttle 51 and the second throttle 52, and the pressure is Since the load pressure pts is supplied from the load pressure introduction path 22 to the first pressure receiving part 19 of the pressure compensation valve 18, the pressure in the first pressure receiving part 19 of the pressure compensation valve 18 becomes lower than the pressure in the second pressure receiving part 21. A differential pressure is generated, the pressure compensation valve 18 is pushed toward the communication position B, and the flow rate passing through the pressure compensation valve 18 increases.
As a result, the flow rate flowing through the passage 53 also increases, and the pressure difference between the first throttle 51 and the second throttle 52 increases, so the difference between the load pressure pts of the load pressure introduction passage 22 and the pressure on the inlet side of the pressure compensating valve 8 The pressure also increases, and the pressure compensating valve 18 is further pushed toward the communication position B, so that the pressure compensating valve 18 becomes a set pressure corresponding to the load pressure PLs.

前記油圧アクチュエータ16からの戻り浦は短絡路42
、第2補助ポート41、第2タンクポート36よりドレ
ーン路27に流出する。
The return port from the hydraulic actuator 16 is a short circuit path 42
, the second auxiliary port 41 and the second tank port 36 into the drain passage 27 .

(油圧アクチュエータ16に供給される流量)油圧ポン
プ10の吐出圧P、と負荷圧PLSの圧力差△PLSは
、油圧ポンプ10の吐出側と操作弁15のポンプポー1
・を接続する配管の管路抵抗による圧力損失、操作弁1
5の主通路15bの圧力損失、通路53の第1絞り51
による圧力損失で決まる。
(Flow rate supplied to the hydraulic actuator 16) The pressure difference ΔPLS between the discharge pressure P of the hydraulic pump 10 and the load pressure PLS is the difference between the discharge side of the hydraulic pump 10 and the pump port 1 of the operation valve 15.
・Pressure loss due to line resistance of the piping connecting the control valve 1
5, the pressure loss in the main passage 15b, the first throttle 51 of the passage 53
It is determined by the pressure loss due to

ここで、第1の管路抵抗による圧力損失は小さいので無
視し、同様に他の配管の圧力損失も無視して吐出圧Pl
、操作弁15の主通路15゜出口圧をP 2 、通路5
3の第1絞り51の出口圧をP 3 、ロードチェック
弁25の出口圧をP4とする。なお、前記通路53の第
1絞り51の出口圧P、が負荷圧ptsとなる。
Here, the pressure loss due to the resistance of the first pipe is ignored since it is small, and the pressure loss of other pipes is similarly ignored, and the discharge pressure Pl
, the main passage 15° outlet pressure of the operating valve 15 is P 2 , the passage 5
The outlet pressure of the first throttle 51 of No. 3 is P3, and the outlet pressure of the load check valve 25 is P4. Note that the outlet pressure P of the first throttle 51 of the passage 53 becomes the load pressure pts.

操作弁15の主通路15bの開口面積、つまり第1ポン
プポート33と第1アクチユエータポート38の開口面
積をAとする。
Let A be the opening area of the main passage 15b of the operation valve 15, that is, the opening area of the first pump port 33 and the first actuator port 38.

この状態で前記圧力差△PL5が切換弁14のバネ29
のバネ力により小さいと前述のように切換弁14がドレ
ーン位置りとなって斜板11の角度が増大して油圧ポン
プ10の吐出量が増大する。
In this state, the pressure difference △PL5 is caused by the spring 29 of the switching valve 14.
If the spring force is too small, the switching valve 14 will be in the drain position as described above, the angle of the swash plate 11 will increase, and the discharge amount of the hydraulic pump 10 will increase.

これにより操作弁15の主通路15.を流れる流量が増
大して圧力差△PL、が大きくなり、その圧力差△pt
sがバネ29のバネ力よりも増大すると切換弁14は供
給位置Cとなって前述のように油圧ポンプ10の吐出量
が減少する。
As a result, the main passage 15 of the operation valve 15. As the flow rate increases, the pressure difference △PL increases, and the pressure difference △pt
When s increases more than the spring force of the spring 29, the switching valve 14 becomes the supply position C, and the discharge amount of the hydraulic pump 10 decreases as described above.

すなわち、切換弁14は圧力差△PLSX受圧部14.
の受圧面積−ハネ29のバネ力となるようにバランスし
、油圧ポンプ10の吐出量は圧力差△PLSがバネ29
のバネ力に見合う値となるように制御される。
That is, the switching valve 14 has a pressure difference ΔPLSX pressure receiving part 14.
The pressure receiving area - the spring force of the spring 29 is balanced so that the discharge amount of the hydraulic pump 10 is equal to the pressure difference △PLS of the spring 29.
The spring force is controlled to a value commensurate with the spring force.

前述の状態において油圧アクチュエータ16に流れる流
ff1Qは Q =CA (ET’V; ・CA J7T”1青−・
CA  PH−h )+(Pl −PI )と表わされ
る。但しCは定数、Aは操作弁15の主通路15.の開
口面積。
In the above state, the flow ff1Q flowing into the hydraulic actuator 16 is Q = CA (ET'V; ・CA J7T"1Blue-・
It is expressed as CA PH-h )+(Pl-PI). However, C is a constant, and A is the main passage 15 of the operating valve 15. opening area.

このように、油圧アクチュエータ6に流れる流ff1Q
はQ−cA(P”;”−τ17とならずにQ−CA  
°(Pl P2 )+ (P2  Pg )となるので
、操作弁15の主通路15.の開口面積に完全に比例せ
ずに(P2  P3)項だけが誤差となるが、1つの油
圧アクチュエータ16に圧油を供給する時にはその誤差
分だけ操作弁15の主通路15aの開口面積を増大すれ
ば必要流量が確保できる。
In this way, the flow ff1Q flowing to the hydraulic actuator 6
is not Q-cA(P";"-τ17 but Q-CA
°(Pl P2 ) + (P2 Pg ), so the main passage 15 of the operating valve 15. Although only the term (P2 P3) causes an error without being completely proportional to the opening area of This will ensure the required flow rate.

−例として各圧力の数値を下記に示す。- As an example, the numerical values for each pressure are shown below.

油圧アクチュエータ16の保持圧phが150kg /
 c−で、制御弁14のバネセットが圧力差Δptsが
20kg/c−の場合、 P + −173kg/cd、  P2−156kg/
cd。
The holding pressure ph of the hydraulic actuator 16 is 150 kg /
c-, when the spring set of the control valve 14 has a pressure difference Δpts of 20 kg/c-, P + -173 kg/cd, P2-156 kg/
cd.

P3−153kg/cd、P4 =150kg/cシ保
持圧)となる。
P3 - 153kg/cd, P4 = 150kg/c (holding pressure).

(複数の油圧アクチエエータ16に圧油を供給する時) 前述した第3図に示す左側の油圧アクチュエータ16に
圧油を供給している状態から、第4図に示すように右側
の油圧アクチュエータ16に圧油を供給する時の動作を
説明する。なお、右側の油圧アクチュエータ16の保持
圧を200)cg / cシとする。
(When supplying pressure oil to a plurality of hydraulic actuators 16) From the state where pressure oil is being supplied to the left hydraulic actuator 16 shown in FIG. 3 described above, to the right hydraulic actuator 16 as shown in FIG. The operation when supplying pressure oil will be explained. Note that the holding pressure of the right hydraulic actuator 16 is 200) cg/c.

前述と同様にして右側の操作弁15を第1圧油供給位置
lに切換えると、油圧ポンプ10の吐出圧油は第1ポン
プポート33、主通路15b、第1アクチエエータボー
ト38より圧力補償弁18の入口側に流れ、その時の吐
出圧P。
When the right operation valve 15 is switched to the first pressure oil supply position l in the same manner as described above, the pressure oil discharged from the hydraulic pump 10 is pressure compensated from the first pump port 33, the main passage 15b, and the first actuator boat 38. Flows to the inlet side of the valve 18, and the discharge pressure P at that time.

が173kg/c−であるから右側の圧力補償弁18の
第1受圧部19に作用している負荷圧pts(153k
g/cJ3より高く連通位置Bに押されるが、その出口
圧力が保持圧(200kg/cd)より低いので、油圧
ポンプ10の吐出圧油は行き止まりとなる。
is 173 kg/c-, so the load pressure pts (153 kg/c-) acting on the first pressure receiving part 19 of the right pressure compensation valve 18 is
Although it is pushed to the communication position B higher than g/cJ3, the outlet pressure is lower than the holding pressure (200 kg/cd), so the discharge pressure oil of the hydraulic pump 10 becomes a dead end.

これにより、油圧ポンプ1の吐出圧P、が右側の圧力補
償弁18の通路53,54、チェック弁55より負荷圧
導入路22より主負荷圧導入路23に入り、その吐出圧
P、が負荷圧PL5として切換弁14の受圧部14aに
作用してドレーン位置りとするから、前述の昇圧過程が
再び始じまり油圧ポンプ10の吐出圧P1は右側の油圧
アクチュエータ16の保持圧200kg/cliまで上
昇して保持圧200kg/c−以上になると前述の単独
操作と同様にして右側の油圧アクチュエータ16に油圧
ポンプ10の吐出圧が供給される。
As a result, the discharge pressure P of the hydraulic pump 1 enters the main load pressure introduction passage 23 from the load pressure introduction passage 22 through the passages 53 and 54 of the pressure compensation valve 18 on the right side and the check valve 55, and the discharge pressure P enters the main load pressure introduction passage 23 from the load pressure introduction passage 22. Since the pressure PL5 acts on the pressure receiving part 14a of the switching valve 14 and sets it to the drain position, the above-mentioned pressure increase process starts again, and the discharge pressure P1 of the hydraulic pump 10 reaches the holding pressure of the right hydraulic actuator 16 of 200 kg/cli. When the holding pressure increases to 200 kg/c- or higher, the discharge pressure of the hydraulic pump 10 is supplied to the right hydraulic actuator 16 in the same manner as in the above-described single operation.

右側の油圧アクチュエータ16が作動している時の各圧
力は以下の様になる。
Each pressure when the right hydraulic actuator 16 is operating is as follows.

油圧ポンプ10の吐出圧P1は223kg/cd、操作
弁15の主通路15.の出口側圧力P、は206 kg
 / cd、通路53の第1絞り51出ロ側圧力Pa 
 (負荷圧P LS)は203kg/c−となる。
The discharge pressure P1 of the hydraulic pump 10 is 223 kg/cd, and the main passage 15 of the operating valve 15 is 223 kg/cd. The outlet pressure P is 206 kg
/ cd, first throttle 51 outlet side pressure Pa of passage 53
(Load pressure PLS) is 203 kg/c-.

このとき左側の油圧アクチュエータ16は次のように作
動する。
At this time, the left hydraulic actuator 16 operates as follows.

左側の圧力補償弁18の第1受圧部19には153kg
/c−の負荷圧が作用していたので、右側の油圧アクチ
ュエータ16が作動することでその負荷圧P Ls−2
03kg/e−がチェック弁42より主負荷圧導入路2
3、負荷圧導入路22を経て第1受圧部19に作用して
上昇し、その第1受圧部19の負荷圧ptsが第2受圧
部21の圧力(P 2−156kg/cd)以上となる
と圧力補償弁18は遮断位i!Aに向けて押されて開口
が絞られ、その結果圧力補償弁18の入口側圧力、つま
り操作弁15の主通路15.の出口圧P2が上昇して前
記右側の負荷圧p L、−203)cg / c−にな
ったところでバランスする。
The first pressure receiving part 19 of the left pressure compensation valve 18 has a weight of 153 kg.
Since a load pressure of /c- was acting, the right hydraulic actuator 16 operates to reduce the load pressure P Ls-2.
03kg/e- from the check valve 42 to the main load pressure introduction path 2
3. When the load pressure acts on the first pressure receiving part 19 through the load pressure introduction path 22 and rises, and the load pressure pts of the first pressure receiving part 19 exceeds the pressure of the second pressure receiving part 21 (P 2 - 156 kg/cd). The pressure compensating valve 18 is in the blocking position i! A, the opening is narrowed, and as a result, the pressure on the inlet side of the pressure compensating valve 18, that is, the main passage 15. of the operating valve 15. Balance occurs when the outlet pressure P2 increases and reaches the load pressure pL, -203) cg/c- on the right side.

すなわち、左側の圧力補償弁18の第1受圧部19の圧
力は右側の油圧アクチュエータ16の保持圧に見合う負
荷圧PLs−203kg/c−まで上昇し、その圧力上
昇につれて圧力補償弁18の入口側圧力も上昇して負荷
圧P LS203 kg/C−でバランスする。
That is, the pressure in the first pressure receiving part 19 of the left pressure compensation valve 18 rises to the load pressure PLs-203 kg/c- corresponding to the holding pressure of the right hydraulic actuator 16, and as the pressure rises, the pressure in the first pressure receiving part 19 of the pressure compensation valve 18 on the inlet side of the pressure compensation valve 18 increases. The pressure also increases and balances at the load pressure PLS203 kg/C-.

これにより、左側の操作弁15の主通路15゜の出口圧
P2は203kg/c−となり、ロードチェック弁出口
圧P4は15.0kg/c−となり、通路53の第1絞
り51の出口圧P3は176.5 kg/C−となる。
As a result, the outlet pressure P2 of the main passage 15° of the left operation valve 15 becomes 203 kg/c-, the load check valve outlet pressure P4 becomes 15.0 kg/c-, and the outlet pressure P3 of the first restrictor 51 of the passage 53 becomes 203 kg/c-. becomes 176.5 kg/C-.

この出口圧P3は負荷圧となるが、右側の油圧アクチュ
エータ16の負荷圧Pts=203kg/C−より低い
ので、チェック弁55の作用で圧力補償弁18の第1受
圧部19には供給されない。
This outlet pressure P3 becomes a load pressure, but since it is lower than the load pressure Pts=203 kg/C- of the right hydraulic actuator 16, it is not supplied to the first pressure receiving part 19 of the pressure compensation valve 18 due to the action of the check valve 55.

すなわち、各油圧アクチュエータ16の保持圧に見合う
負荷圧PLFtが各操作弁15の負荷圧検出ボート37
に導入されるが、チェック弁55によって最も高い負荷
圧が負荷圧導入路23に導入されるので各圧力補償弁1
8の第1受圧部19には最も高い負荷圧が供給され、各
圧力補償弁18は最も高い負荷圧に応じたセット圧とな
り、保持圧の異なる油圧アクチュエータ16に操作弁1
5の開度に比例して油圧ポンプ10の吐出圧油を供給で
きる。
That is, the load pressure PLFt corresponding to the holding pressure of each hydraulic actuator 16 is determined by the load pressure detection boat 37 of each operation valve 15.
However, since the highest load pressure is introduced into the load pressure introduction path 23 by the check valve 55, each pressure compensation valve 1
The highest load pressure is supplied to the first pressure receiving part 19 of No. 8, and each pressure compensating valve 18 has a set pressure corresponding to the highest load pressure.
The discharge pressure oil of the hydraulic pump 10 can be supplied in proportion to the opening degree of the hydraulic pump 10.

左右側の油圧アクチュエータ16が同時に作動している
時の流量は次のようになる。
The flow rate when the left and right hydraulic actuators 16 are operating simultaneously is as follows.

油圧ポンプ10の吐出量をQ、低圧側(左側)の油圧ア
クチュエータ16への流量をQ s 、高圧側(右側)
の油圧アクチュエータ16への流量をQlとすると、 Q=Q1+Q2 Ql−CAIXJ下]=777 Ql −CA2 x   p、−p〒 となり、P + −223kg/cシ、P2−203k
g / cd、  P 5 = 206kg/cdであ
るから、Q+−CA、x、、r丁石゛。
The discharge amount of the hydraulic pump 10 is Q, the flow rate to the hydraulic actuator 16 on the low pressure side (left side) is Qs, and the high pressure side (right side)
If the flow rate to the hydraulic actuator 16 is Ql, then Q = Q1 + Q2 Ql - CAIXJ lower] = 777 Ql - CA2 x p, -p〒, P + -223kg/c, P2 - 203k
g/cd, P5 = 206 kg/cd, so Q+-CA, x, , r.

Q2=CA2X7丁7 となる。Q2=CA2X7cho7 becomes.

ここで、左右の操作弁15の主通路15aの開口面積A
、、A2を同一としても前述の各圧力の値が変化しない
ので、左右側の流量比となり、8%が流量分配誤差とな
る。
Here, the opening area A of the main passage 15a of the left and right operation valves 15 is
,, Even if A2 is the same, the values of the respective pressures described above do not change, so the flow rate ratio between the left and right sides becomes 8%, which becomes a flow rate distribution error.

これに対して、従来技術と同様に圧力補償弁18の出口
側から負荷圧PLsを導入すると、高圧側(右側)の油
圧アクチュエータ16において圧力補償弁18の圧力損
失がp5−p、m206kg/cシー200 kg /
 cd = 6 kg / cdであるから、右側の油
圧アクチュエータ16の流ff1Q2はQl −CA2
 ()0−6−CA2 X、/”丁τとなり、前述の流
量比が となって、流量分配誤差が1796と悪くなってしまう
On the other hand, when the load pressure PLs is introduced from the outlet side of the pressure compensation valve 18 as in the prior art, the pressure loss of the pressure compensation valve 18 in the high pressure side (right side) hydraulic actuator 16 is p5-p, m206kg/c. sea 200 kg/
Since cd = 6 kg/cd, the flow ff1Q2 of the right hydraulic actuator 16 is Ql - CA2
()0-6-CA2

次に変形例を説明する。Next, a modification will be explained.

第5図のように、主負荷圧導入路23にバイパス路70
を設け、このバイパス路70を絞り71を経てタンク7
2に接続しである。
As shown in FIG. 5, a bypass path 70 is connected to the main load pressure introduction path 23.
This bypass passage 70 is connected to the tank 7 via a throttle 71.
It is connected to 2.

このようにすれば、各操作弁15を中立位置Nとした時
に主負荷圧導入路23の圧力低下が早くなり、制御弁1
4に作用する負荷圧が早くゼロとなって油圧ポンプ10
の吐出圧P1が迅速に低下するので、油圧ポンプ10の
駆動負荷を即軽減できて油圧ポンプ負荷音残りを低減で
きる。
In this way, when each operation valve 15 is set to the neutral position N, the pressure in the main load pressure introduction path 23 will decrease quickly, and the control valve 1
The load pressure acting on the hydraulic pump 10 quickly becomes zero and the hydraulic pump 10
Since the discharge pressure P1 of the hydraulic pump 10 decreases quickly, the driving load on the hydraulic pump 10 can be immediately reduced, and the residual load noise of the hydraulic pump can be reduced.

第6図に示すように、前記バイパス路70をパイロット
制御弁30のパイロット用油圧ポンプ31の吐出路に接
続しである。
As shown in FIG. 6, the bypass passage 70 is connected to the discharge passage of the pilot hydraulic pump 31 of the pilot control valve 30.

このようにしても前述と同様な機能を奏する。Even in this case, the same function as described above is achieved.

第7図に示すように、アンロード弁43で前記バイパス
路70をタンク72に連通・遮断するようにし、アンロ
ード弁43が遮断位置Eから連通位置Fに切換わるとバ
イパス路70が絞り73を経てタンク72に連通ずるよ
うにしである。
As shown in FIG. 7, the bypass passage 70 is connected to and disconnected from the tank 72 by the unload valve 43, and when the unload valve 43 is switched from the shut-off position E to the communication position F, the bypass passage 70 is opened to the throttle 72. It communicates with the tank 72 through the.

かかる構成とすれば、操作弁15を中立位置Nから第1
又は第2圧油供給位置I又は■に操作した時には油圧ポ
ンプ10の吐出圧P、と負荷圧ptsとの差圧がアンロ
ード弁43のバネ43aのバネ力より小さくなるためア
ンロード弁43が連通位置Fから遮断位置Eとなり、負
荷圧導入路23がバイパス路70を経てタンク72と連
通しないので応答性が確保され、操作弁15を第1又は
第2圧油供給位置I又は■から中立位置Nに操作した時
にはアンロード弁43が遮断位置Eから連通位置Fとな
って主負荷圧導入路23が絞り73を通ってタンク72
に連通ずるため負荷圧の低下がはやくなリボンブ圧の低
下もはやくなるから異和感を生じない。
With such a configuration, the operating valve 15 is moved from the neutral position N to the first
Or, when operated to the second pressure oil supply position I or ■, the differential pressure between the discharge pressure P of the hydraulic pump 10 and the load pressure pts becomes smaller than the spring force of the spring 43a of the unload valve 43, so the unload valve 43 The communication position F becomes the cutoff position E, and the load pressure introduction path 23 does not communicate with the tank 72 via the bypass path 70, so responsiveness is ensured, and the operation valve 15 is moved from the first or second pressure oil supply position I or ■ to the neutral position. When operated to position N, the unloading valve 43 changes from the blocking position E to the communicating position F, and the main load pressure introduction path 23 passes through the throttle 73 and is connected to the tank 72.
Since the load pressure is communicated with the valve, the load pressure decreases quickly, and the ribbon pressure decreases quickly, so there is no discomfort.

〔発明の効果〕〔Effect of the invention〕

圧力補償弁18を遮断方向に押す第1受圧部19に圧力
補償弁18の入口側圧力と出口側圧力の中間圧力を供給
するので、圧力補償弁18の圧力損失による通過流mの
誤差が低減して複数の油圧アクチュエータ16への流量
分配誤差が低減するし、圧力補償弁18を連通方向に押
・す第2受圧部21に供給される操作弁15の出口側圧
力よりも第1受圧部19に供給される圧力が低くなって
圧力補償弁18が連通方向に作動し圧力補償動作を行う
ことができる。
Since the intermediate pressure between the inlet side pressure and the outlet side pressure of the pressure compensation valve 18 is supplied to the first pressure receiving part 19 that pushes the pressure compensation valve 18 in the blocking direction, the error in the passing flow m due to the pressure loss of the pressure compensation valve 18 is reduced. This reduces errors in flow rate distribution to the plurality of hydraulic actuators 16, and the pressure on the outlet side of the operating valve 15 supplied to the second pressure receiving section 21 that pushes the pressure compensating valve 18 in the communication direction is lower than that of the first pressure receiving section. As the pressure supplied to the valve 19 becomes lower, the pressure compensating valve 18 operates in the communication direction and can perform a pressure compensating operation.

また、操作弁15を中立位置とした時には圧力補償弁1
8がバネ20のバネ力によって遮断位置Aに保持されて
、油圧アクチュエータ16の保り圧が主負荷圧導入路2
3に作用しないから、その主負荷圧導入路23の負荷圧
を利用して油圧ポンプ10の容量を制御する場合に保持
圧で油圧ポンプ10の容量が増大することがなく、圧力
補償弁18の出口側と油圧アクチュエータ16を接続す
る回路にカウンターバランス弁を設ける必要がなくなっ
て油圧回路が簡単となるばかりか、部品点数が少なくな
ってコストを安くできる。
Moreover, when the operation valve 15 is set to the neutral position, the pressure compensation valve 1
8 is held at the cutoff position A by the spring force of the spring 20, and the holding pressure of the hydraulic actuator 16 is maintained at the main load pressure introduction path 2.
3, when controlling the capacity of the hydraulic pump 10 using the load pressure of the main load pressure introduction path 23, the capacity of the hydraulic pump 10 does not increase due to the holding pressure, and the pressure compensating valve 18 There is no need to provide a counterbalance valve in the circuit connecting the outlet side and the hydraulic actuator 16, which not only simplifies the hydraulic circuit, but also reduces the number of parts and reduces costs.

また、圧力補償弁18の内部負荷圧検出回路50より負
荷圧を検出するので、負荷圧検出回路が簡素化される。
Further, since the load pressure is detected by the internal load pressure detection circuit 50 of the pressure compensation valve 18, the load pressure detection circuit is simplified.

また、各圧力補償弁18の内部負荷圧検出回路50はチ
ェック弁55で負荷圧導入路22に接続しているから、
複数の操作弁15を同時操作した時には最も高い負荷圧
が負荷圧導入路22に導入されて、各油圧アクチュエー
タ16に流量分配できる。
Further, since the internal load pressure detection circuit 50 of each pressure compensation valve 18 is connected to the load pressure introduction path 22 through the check valve 55,
When a plurality of operation valves 15 are operated simultaneously, the highest load pressure is introduced into the load pressure introduction path 22, and the flow rate can be distributed to each hydraulic actuator 16.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例を示す油圧回路図、第2図
は圧力補償弁の断面図、第3図、第4図は動作説明図、
第5図、第6図、第7図は第2、第3、第4実施例を示
す油圧回路図、第8図は従来の模式的説明図である。 10は油圧ポンプ、15は操作弁、16は油圧アクチュ
エータ、18は圧力補償弁、19は第1受圧部、20は
バネ、21は第2受圧部、23は負荷圧導入路、23は
主負荷圧導入路、・50は内部負荷圧検出回路、51.
52は第1・第2絞り、53.54は通路、55はチェ
ック弁。
FIG. 1 is a hydraulic circuit diagram showing a first embodiment of the present invention, FIG. 2 is a sectional view of a pressure compensation valve, FIGS. 3 and 4 are operation explanatory diagrams,
FIG. 5, FIG. 6, and FIG. 7 are hydraulic circuit diagrams showing the second, third, and fourth embodiments, and FIG. 8 is a conventional schematic explanatory diagram. 10 is a hydraulic pump, 15 is an operation valve, 16 is a hydraulic actuator, 18 is a pressure compensation valve, 19 is a first pressure receiving part, 20 is a spring, 21 is a second pressure receiving part, 23 is a load pressure introduction path, 23 is the main load Pressure introduction path; 50 is an internal load pressure detection circuit; 51.
52 is a first and second throttle, 53 and 54 are passages, and 55 is a check valve.

Claims (1)

【特許請求の範囲】[Claims]  油圧ポンプ10の吐出路10aに複数の操作弁15を
設け、各操作弁15と各油圧アクチュエータ16の接続
回路に圧力補償弁18をそれぞれ設け、各圧力補償弁1
8を各油圧アクチュエータ16の負荷圧における最高圧
でセットするようにした油圧回路において、前記圧力補
償弁18を遮断位置Aに向けて押す第1受圧部19を負
荷圧導入路22に接続し、この各負荷圧導入路22を主
負荷圧導入路23で連通し、圧力補償弁18を連通位置
Bに向けて押す第2受圧部21を操作弁15の出口側に
接続し、前記圧力補償弁18に、第1絞り51と第2絞
り52を有して内部入口側と内部出口側を連通する通路
53及びこの通路53における第1絞り51と第2絞り
52の間に接続してチェック弁55を有する通路54よ
り成る内部負荷圧検出回路50を設け、その通路54を
前記負荷圧導入路22に接続したことを特徴とする油圧
回路。
A plurality of operation valves 15 are provided in the discharge path 10a of the hydraulic pump 10, and a pressure compensation valve 18 is provided in the connection circuit between each operation valve 15 and each hydraulic actuator 16.
8 is set at the highest load pressure of each hydraulic actuator 16, a first pressure receiving part 19 that pushes the pressure compensating valve 18 toward the cutoff position A is connected to the load pressure introduction path 22, These load pressure introduction paths 22 are connected through a main load pressure introduction path 23, and a second pressure receiving part 21 that pushes the pressure compensation valve 18 toward the communication position B is connected to the outlet side of the operation valve 15, and the pressure compensation valve 18, a passage 53 having a first throttle 51 and a second throttle 52 and communicating the internal inlet side and the internal outlet side, and a check valve connected between the first throttle 51 and the second throttle 52 in this passage 53. 5. A hydraulic circuit characterized in that an internal load pressure detection circuit 50 comprising a passage 54 having a diameter 55 is provided, and the passage 54 is connected to the load pressure introduction passage 22.
JP34114690A 1990-11-30 1990-11-30 Oil-hydraulic circuit Pending JPH04210102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34114690A JPH04210102A (en) 1990-11-30 1990-11-30 Oil-hydraulic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34114690A JPH04210102A (en) 1990-11-30 1990-11-30 Oil-hydraulic circuit

Publications (1)

Publication Number Publication Date
JPH04210102A true JPH04210102A (en) 1992-07-31

Family

ID=18343684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34114690A Pending JPH04210102A (en) 1990-11-30 1990-11-30 Oil-hydraulic circuit

Country Status (1)

Country Link
JP (1) JPH04210102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031940A1 (en) * 1997-01-21 1998-07-23 Hitachi Construction Machinery Co., Ltd. Directional control valve with flow dividing valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031940A1 (en) * 1997-01-21 1998-07-23 Hitachi Construction Machinery Co., Ltd. Directional control valve with flow dividing valve
US5957159A (en) * 1997-01-21 1999-09-28 Hitachi Construction Machinery Co., Ltd. Directional control valve with flow distribution valves

Similar Documents

Publication Publication Date Title
JPH04210101A (en) Oil-hydraulic circuit
JP2557000B2 (en) Control valve device
US10590962B2 (en) Directional control valve
JP2013160382A (en) Hydraulic control device
US5673557A (en) Displacement control system for variable displacement type hydraulic pump
JPH07509046A (en) Control device for at least one hydraulic consumer
JPS595165B2 (en) hydraulic control device
US5291821A (en) Hydraulic circuit for swivel working machine
JPH04210102A (en) Oil-hydraulic circuit
JP3240286B2 (en) Hydraulic system
JP2556999B2 (en) Hydraulic circuit
JP3681709B2 (en) Hydraulic control device
JP2550773Y2 (en) Direction control valve device
JP2002276609A (en) Hydraulic control device
JP3558862B2 (en) Hydraulic system
JP2577676Y2 (en) Pressure oil supply device
JPS6014606A (en) Circuit for combining two flows
JP3444506B2 (en) Pressure oil supply device
JPH05332311A (en) Pressure oil supply device
JP2652791B2 (en) Flow control device
JP3317448B2 (en) Load pressure detector for pressure compensated hydraulic circuit
JPH0643301U (en) Directional control valve device
JPS596404A (en) Flow rate controller of multiple fixed displacement pump
JPS63303202A (en) Load sensing hydraulic system
JPH10132135A (en) Hydraulic valve device