JPH04209827A - Production of pitch-based carbon fiber - Google Patents

Production of pitch-based carbon fiber

Info

Publication number
JPH04209827A
JPH04209827A JP33776790A JP33776790A JPH04209827A JP H04209827 A JPH04209827 A JP H04209827A JP 33776790 A JP33776790 A JP 33776790A JP 33776790 A JP33776790 A JP 33776790A JP H04209827 A JPH04209827 A JP H04209827A
Authority
JP
Japan
Prior art keywords
pitch
fiber
spinning
nozzle
streams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33776790A
Other languages
Japanese (ja)
Inventor
Shuji Yumitori
弓取 修二
Nobuyuki Komatsu
信行 小松
Maki Hamaguchi
眞基 濱口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33776790A priority Critical patent/JPH04209827A/en
Publication of JPH04209827A publication Critical patent/JPH04209827A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To surely and readily obtain the subject fiber having a cross section of no radial structure by discharging plural pitch streams from plural small pitch discharge holes, fusing the pitch streams before solidification and forming one fiber. CONSTITUTION:Spinning is carried out as follows. A spinning nozzle equipped with plural small holes 1 on the pitch discharge surface is initially used to discharge pitch from the respective small holes 1 of the above-mentioned nozzle. The discharged pitch streams are then fused to constitute one fiber. The resultant pitch fiber is subsequently infusibilized and then carbonized to afford the objective fiber. Furthermore, the spinning nozzle having 3 small holes having 0.1-0.12mmphi hole diameter at 0.1mm nozzle interval is preferably used in order to carry out spinning so as to fuse the discharged pitch streams and constitute one fiber.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はピッチ系炭素繊維の製造方法に関するものであ
り、特に繊維断面が実買的にラジアル構造ではないピッ
チ系炭素繊維の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing pitch-based carbon fibers, and particularly to a method for producing pitch-based carbon fibers whose fiber cross section does not have a radial structure when purchased. It is.

[従来の技術] メソフェーズピッチのような液晶ピッチを紡糸する場合
は、液晶ピッチが紡糸ノズルのキャピラリ一部を通過す
るときに、キャピラリーの壁との間で強いせん断力を受
け、その結果繊維断面がラジアル構造になりやすいこと
が知られている。紡糸工程においてラジアル構造となっ
た繊維は、その後の焼成工程で繊維表面に繊維軸方向へ
のクラックが入りやすく、その結果機械的変形に弱くな
り、商品価値が著しく低下してしまうという欠点を有し
ている。
[Prior Art] When spinning liquid crystal pitch such as mesophase pitch, when the liquid crystal pitch passes through a part of the capillary of the spinning nozzle, it is subjected to strong shearing force with the wall of the capillary, resulting in a fiber cross section. It is known that the structure tends to be radial. Fibers that have a radial structure during the spinning process tend to have cracks on the fiber surface in the fiber axis direction during the subsequent firing process, making them susceptible to mechanical deformation and resulting in a significant decrease in commercial value. are doing.

断面構造は紡糸工程時に決定される。そこで上記のよう
なラジアル構造を持たない繊維を得る目的で、紡糸工程
に様々な工夫が加えられてきた。
The cross-sectional structure is determined during the spinning process. Therefore, various improvements have been made to the spinning process in order to obtain fibers that do not have the above-mentioned radial structure.

例えば紡糸ノズルのキャピラリー直上に充填物を入れる
方法や紡糸ノズルのキャピラリー形状を変形させる方法
等がある。具体的にはキャピラリー直上に充填物を入れ
る方法として、従来例1;異形の粉末を充填する方法(
特開昭6l−258022)、従来例2ニスタテイツク
ミキサーを入れる方法(特開昭63−75119)、従
来例3;フィルターを入れる方法(特開昭63−993
27)、或は従来例4:インサートという特殊な異物を
入れる方法(特開昭64−6123)等がある。またキ
ャピラリーを変形させる方法として、従来例5;キャピ
ラリーの中間に緩衝領域を設ける方法(特開昭6l−7
5820)がある。これらの方法はノズル孔内でピッチ
の流れを乱すことによって、ノズル孔から流出したピッ
チがラジアル配向とならないようにしようとするもので
あるが、夫々次の様に欠点を有している。従来例1:充
填状態が各孔で均一になり難く、流れの不均一さを生じ
易い。また場合によっては充填物によって閉塞する危険
があり、メンテナンスも難しい。従来例2ニスタテイツ
クミキサ一自体が大変高価であり、あまり実用的な方法
でない。またミキサーの固定やメンテナンスが難しい。
For example, there is a method of inserting a filler directly above the capillary of the spinning nozzle, a method of changing the shape of the capillary of the spinning nozzle, and the like. Specifically, as a method of placing a filler directly above a capillary, Conventional Example 1; a method of filling irregularly shaped powder (
JP-A No. 61-258022), Conventional Example 2: Method of adding a static mixer (JP-A No. 63-75119), Conventional Example 3: Method of adding a filter (JP-A No. 63-993)
27), or Conventional Example 4: A method of inserting a special foreign substance called an insert (Japanese Patent Laid-Open No. 64-6123). In addition, as a method for deforming a capillary, conventional example 5; a method of providing a buffer region in the middle of a capillary (Japanese Patent Application Laid-Open No. 61-7
5820). These methods attempt to prevent the pitch flowing out of the nozzle hole from being radially oriented by disturbing the flow of pitch within the nozzle hole, but each method has the following drawbacks. Conventional Example 1: It is difficult to make the filling state uniform in each hole, which tends to cause non-uniform flow. In addition, there is a risk of blockage due to filling in some cases, and maintenance is also difficult. Conventional Example 2 The static mixer itself is very expensive and is not a very practical method. Also, it is difficult to fix and maintain the mixer.

従来例3;フィルターを通過した直後に紡糸する必要が
あるが、フィルターをキャピラリー直上に隙間なく固定
することは非常に難しい。従来例4;インサートの製作
・固定方法及び均一な取付けが難かしく、非常に高価に
なると予想される。従来例5:ノズルの製作に大変細か
い加工が必要となり、非常に高価になると予想される。
Conventional Example 3: It is necessary to spin the fiber immediately after passing through the filter, but it is very difficult to fix the filter directly above the capillary without any gaps. Conventional Example 4: It is difficult to manufacture and fix the insert and to mount it uniformly, and it is expected that it will be very expensive. Conventional Example 5: Manufacturing the nozzle requires very detailed processing and is expected to be very expensive.

また、これらの方ン去はそのほとんどがキャピラリー以
前においてピッチの流れを乱す技術であるので、キャピ
ラリーを通過した時点で再配向を生じ、ラジアル化する
可能性を有している。唯一、従来例4における変形例は
キャピラリ一部に針のようなものを通すことによって再
配向を抑制しようとするものであるが、ピッチの流れを
十分に乱す効果を有するとは考えにくく、逆に流路が狭
くなってせん断力を強められ、配向が促進される可能性
もある。またキャピラリーは通常0.1〜0.2 ma
+φ、大きくても0.5 mmφ程度であるので、上記
のような細工は実際上非常に難しいことが予想される。
Furthermore, since most of these techniques disturb the pitch flow before the capillary, there is a possibility that reorientation occurs and radialization occurs when the pitch passes through the capillary. The only modification of Conventional Example 4 is to try to suppress reorientation by passing something like a needle through a part of the capillary, but it is unlikely to have the effect of sufficiently disturbing the pitch flow, and it is It is also possible that the flow path becomes narrower and the shear force is strengthened, promoting orientation. Also, the capillary is usually 0.1 to 0.2 ma
+φ, at most about 0.5 mmφ, so it is expected that the above-mentioned work would be extremely difficult in practice.

[発明が解決しようとする課題] 以上の様に従来例の方法はラジアル化防止効果が確実な
ものでなく、また紡糸安定性、加工精度、価格、取付は
方法及びメンテナンス等において種々の問題点があり、
実用的な方法とは言い難いものであった。そこで本発明
は、上記紡糸性や加工精度等に優れた実用的な方法を提
供しようとするものである。
[Problems to be solved by the invention] As described above, the conventional method does not have a reliable effect of preventing radial formation, and also has various problems in spinning stability, processing accuracy, cost, installation method, maintenance, etc. There is,
This was hardly a practical method. Therefore, the present invention aims to provide a practical method that is excellent in spinnability, processing accuracy, and the like.

[課題を解決するための手段] 本発明のピッチ系炭素繊維の製造方法はピッチを紡糸ノ
ズルから紡出し、不融化後、炭素化或は黒鉛化してピッ
チ系炭素繊維を製造するにあたり、ピッチ吐出面に複数
個の微細孔が設けられた紡糸ノズルを用い、各微細孔か
ら吐出されるピッチが吐出後に融合して1本の炭素繊維
を構成するように紡糸することに要旨がある。
[Means for Solving the Problems] The method for producing pitch-based carbon fiber of the present invention involves spinning pitch from a spinning nozzle, making it infusible, and then carbonizing or graphitizing it to produce pitch-based carbon fiber. The gist is to use a spinning nozzle in which a plurality of micropores are provided on the surface, and to perform spinning so that the pitch discharged from each micropore is fused after discharge to form one carbon fiber.

[作用コ 本発明においてはピッチ吐出孔より吐出された複数本の
ピッチを凝固前に融合するものであるので、凝固直前の
配向状態が融合によって乱され、ラジアル構造を有しな
い炭素繊維となる。即ち、前述のようにピッチはキャピ
ラリ一部通過時における強いせん断力によってラジアル
化が促進されるので、せん断力を弱めるかキャピラリー
通過後に構造を乱す必要があるが、本発明ではキャピラ
リー通過後に、溶融ピッチ同士が融合するときの流動性
向を利用することによって配向を乱しているので、効果
的にラジアル化を防止することができる。
[Operation] In the present invention, the plurality of pitches discharged from the pitch discharge hole are fused before solidification, so the orientation state immediately before solidification is disturbed by the fusion, resulting in carbon fibers without a radial structure. That is, as mentioned above, the radialization of the pitch is promoted by the strong shear force when passing through a part of the capillary, so it is necessary to weaken the shear force or disturb the structure after passing through the capillary. However, in the present invention, after passing through the capillary, Since the orientation is disturbed by utilizing the flow tendency when the pitches fuse together, radialization can be effectively prevented.

以下更に詳しく説明する。This will be explained in more detail below.

紡糸ノズルの微細孔は次の要件を満たすことが好ましい
It is preferable that the micropores of the spinning nozzle satisfy the following requirements.

形状:特に限定されるものではないが、加工上円形が好
ましい。
Shape: Although not particularly limited, a circular shape is preferred for processing purposes.

寸法:複数個の微細孔から吐出されたピッチを一本の繊
維として巻き取るので、通常の孔径より小さめが望まし
く、0.15a+’mφ以下、より好ましくは0.10
〜0.12m+11φ程度である。
Dimensions: Since the pitch discharged from multiple micropores is wound up as a single fiber, the diameter of the holes is preferably smaller than normal, and is preferably 0.15a+'mφ or less, more preferably 0.10mφ or less.
It is approximately 0.12m+11φ.

数 :複数個であればよいが、最小限の数で目的を達成
するためには、3個が最も適していると考えられる。2
個の場合には、紡糸安定性が3個よりやや劣っている。
Number: It may be more than one, but three is considered most suitable in order to achieve the purpose with the minimum number. 2
In the case of 3 pieces, the spinning stability is slightly inferior to that of 3 pieces.

ノズル間隔:吐出後のピッチが凝固するまでに融合させ
る必要があるので、少なくとも吐出後凝固するまでの長
さより狭い間隔とする必要がある。溶融紡糸の理論解析
から、ピッチ吐出量: 6 cc/ll1in、ノズル
孔・125ホール、ノズル径: 0.20mmφ、雰囲
気温度=25℃のとき、吐出面から約 1.6CIl1111L/た時点で凝固することとなる
Nozzle interval: Since it is necessary to fuse the pitches after discharge before solidifying, it is necessary to make the interval narrower than at least the length after discharge until solidification. From theoretical analysis of melt spinning, when pitch discharge rate: 6 cc/111 inch, nozzle hole 125 holes, nozzle diameter: 0.20 mmφ, and ambient temperature = 25°C, solidification occurs at approximately 1.6 CI1111 L/1 from the discharge surface. It happens.

この計算結果は設定条件により異なるが、これらを勘案
すればほぼ1co+〜2ca+の間と考えられる。従っ
て最大2CO1以下でないと吐出後のピッチをどのよう
にまとめても1本の繊維とならない。またノズルの加工
上の制約から、最小間隔は0.la+mである0以上の
ことより、間隔は0.1+*m〜2C■、より好ましく
は0.1+++aとすることが望ましい。
This calculation result varies depending on the setting conditions, but if these are taken into consideration, it is considered to be approximately between 1co+ and 2ca+. Therefore, unless the maximum is 2CO1 or less, no matter how the pitches are collected after being discharged, they will not become one fiber. Also, due to nozzle processing constraints, the minimum interval is 0. Since la+m is 0 or more, it is desirable that the interval be 0.1+*m to 2C■, more preferably 0.1+++a.

上記構成の微細孔を有する紡糸ノズルを用いて通常通り
紡糸することにより、ラジアル構造を持たない炭素繊維
を得ることができる。紡糸ノズルの一例を341図(a
) 、 (b)に示す、また第2図(a)。
Carbon fibers having no radial structure can be obtained by performing normal spinning using a spinning nozzle having micropores having the above configuration. Figure 341 (a) shows an example of a spinning nozzle.
), (b), and FIG. 2(a).

(b)に変形例を示す。変形例は図中の磯部分を削り込
んだものであり、削り込み部分にピッチが溜まるように
して紡糸することができ、ピッチの温度が低いためピッ
チが1つの繊維にならない時等の場合に有効であると考
えられる。
(b) shows a modified example. A modified example is one in which the rocky part in the figure is carved out, and the pitch can be collected in the carved part for spinning, and can be used in cases such as when the pitch does not form into one fiber because the temperature of the pitch is low. It is considered to be effective.

以下実施例によって本発明を更に詳述するが、下記実施
例は本発明を制限するものではなく、前・後記の趣旨を
逸脱しない範囲で変更実施することは全て本発明の技術
範囲に包含される。
The present invention will be explained in more detail with reference to examples below, but the following examples do not limit the present invention, and all modifications and implementations within the scope of the spirit of the preceding and later descriptions are included within the technical scope of the present invention. Ru.

[実施例] 実施例 第1図に示される3つの微細孔を有するノズルを用いて
下記の条件で紡糸および焼成を行なった。
[Example] Example Spinning and firing were carried out under the following conditions using a nozzle having three micropores shown in FIG.

使用ピッチ:メソフェーズ炭素質95%以上、軟化点2
60℃ 紡糸温度 :355〜365℃、(360℃で最も安定
) 紡糸圧力 : 2〜5 kg/cm” (窒素で加圧)
巻取り速度: 100〜500m/+in  (250
m/minで最も安定) 焼成   :空気中で不融化処理した後、2000℃で
黒鉛化を実施 得られた炭素繊維はランダムな構造を示し、焼成後もク
ラック等の発生はなかった。
Pitch used: Mesophase carbonaceous material 95% or more, softening point 2
60°C Spinning temperature: 355-365°C, (most stable at 360°C) Spinning pressure: 2-5 kg/cm” (pressurized with nitrogen)
Winding speed: 100~500m/+in (250
(most stable at m/min) Firing: After infusibility treatment in air, graphitization was carried out at 2000°C. The obtained carbon fiber showed a random structure and no cracks etc. occurred even after firing.

比較例1 実施例で用いた紡糸ノズルの3つの細孔の内2つを炭素
買材料で人為的に閉塞させ、実施例と同様に処理したと
ころ、繊維断面は完全にラジアル構造となった。
Comparative Example 1 When two of the three pores of the spinning nozzle used in the example were artificially blocked with a carbon fiber material and treated in the same manner as in the example, the fiber cross section had a completely radial structure.

比較例2 キャピラリー径が0.2 amφの単孔のノズルを使用
して下記の条件で、紡糸および焼成を行なった。
Comparative Example 2 Spinning and firing were performed under the following conditions using a single-hole nozzle with a capillary diameter of 0.2 amφ.

使用ピッチ:実施例と同じも・の 紡糸温度 :353〜370℃(362℃で最も安定) 紡糸圧力 : 2〜9 kg/cod’ (窒素で加圧
)巻取り速度: 100〜900m/win  (30
0m/winで最も安定) 焼成   : 実施例と同様に処理 このようにして得られた繊維の断面はラジアル構造を示
し、焼成後はクラックが入っていた。
Pitch used: Same as in the example Spinning temperature: 353 to 370°C (most stable at 362°C) Spinning pressure: 2 to 9 kg/cod' (pressurized with nitrogen) Winding speed: 100 to 900 m/win ( 30
(Most stable at 0 m/win) Firing: Processed in the same manner as in the example The cross section of the fiber thus obtained showed a radial structure and had cracks after firing.

[発明の効果] 本発明は以上の様に構成されており、ラジアル構造を有
しない炭素繊維を確実にしかも容易に作ることができる
ようになった。本発明のノズル孔キャピラリ一部の形状
は従来のものと同じ円筒形で良いので、加工精度やメン
テナンス性は従来と変わらず、充填物等も使用しないの
でピッチ流出量のバラツキがなく安定した紡糸を行なう
ことができる。
[Effects of the Invention] The present invention is configured as described above, and it has become possible to reliably and easily produce carbon fibers that do not have a radial structure. The shape of a part of the nozzle hole capillary of the present invention can be the same cylindrical shape as the conventional one, so the processing accuracy and maintainability are unchanged from the conventional one, and since no filler is used, there is no variation in pitch flow rate and stable spinning is possible. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

341図(a)及び′!J2図(a)は夫々本発明に使
用される紡糸ノズルの一部断面図であり、第1図(b)
及び第2図(b)は夫々第1図(a)及び第2図(a)
中のA1或はA2方向から見た平面図である。
341 Figure (a) and '! Figure J2 (a) is a partial sectional view of the spinning nozzle used in the present invention, and Figure 1 (b) is a partial cross-sectional view of the spinning nozzle used in the present invention.
and Fig. 2(b) are respectively Fig. 1(a) and Fig. 2(a).
It is a plan view seen from the A1 or A2 direction inside.

Claims (1)

【特許請求の範囲】[Claims] ピッチを紡糸ノズルから紡出し、不融化後、炭素化或は
黒鉛化してピッチ系炭素繊維を製造するにあたり、ピッ
チ吐出面に複数個の微細孔が設けられた紡糸ノズルを用
い、各微細孔から吐出されるピッチを吐出後に融合して
1本の炭素繊維を構成するように紡糸することを特徴と
するピッチ系炭素繊維の製造方法。
When pitch is spun from a spinning nozzle, made infusible, and then carbonized or graphitized to produce pitch-based carbon fiber, a spinning nozzle with a plurality of micropores provided on the pitch discharge surface is used, and the pitch is spun from each micropore. A method for producing pitch-based carbon fibers, which comprises spinning the discharged pitches so that they are fused to form one carbon fiber after being discharged.
JP33776790A 1990-11-30 1990-11-30 Production of pitch-based carbon fiber Pending JPH04209827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33776790A JPH04209827A (en) 1990-11-30 1990-11-30 Production of pitch-based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33776790A JPH04209827A (en) 1990-11-30 1990-11-30 Production of pitch-based carbon fiber

Publications (1)

Publication Number Publication Date
JPH04209827A true JPH04209827A (en) 1992-07-31

Family

ID=18311774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33776790A Pending JPH04209827A (en) 1990-11-30 1990-11-30 Production of pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JPH04209827A (en)

Similar Documents

Publication Publication Date Title
Edie et al. Melt-spun non-circular carbon fibers
CA1220914A (en) Process of spinning pitch-based carbon fibers
US4746470A (en) Process for the preparation of carbon fibers having structure reflected in cross sectional view thereof as random mosaic
KR930006814B1 (en) Pitch for the production of carbon fibers
JPH04209827A (en) Production of pitch-based carbon fiber
JP2815405B2 (en) Method for producing spinneret and hollow fiber
EP0169023B1 (en) Method of manufacture of pitch-based carbon fiber
JPS6317123B2 (en)
JP2008231639A (en) Method for producing spun yarn
KR100324705B1 (en) A pitch type carbon fiber, and a process of preparing for the same
JPH042804A (en) Structure of nozzle for spinning of pitch-based carbon fiber
JPS59168125A (en) Production of carbon fiber
JP2837299B2 (en) Method for producing pitch-based ultrafine carbon fiber
KR100407804B1 (en) Multi-hollow pitch carbon fiber and preparation method of the same
JP2680183B2 (en) Method for producing pitch-based carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JP2665118B2 (en) Method for producing fine pitch-based carbon fiber and spinning nozzle
JPH0693518A (en) Spinneret for spinning pitch-based carbon fiber
JPH0229764B2 (en)
JPH02139422A (en) Spinneret for carbon fiber production
JPS62170527A (en) Production of pitch-based carbon fiber
JPH06166914A (en) Production of carbon ribbon and spinneret
JPH0382822A (en) Production of pitch-based carbon fiber
JPS59168124A (en) Production of carbon fiber
JPH01156514A (en) Multihole spinning nozzle for producing pitch based carbon fiber