JPH0420979B2 - - Google Patents

Info

Publication number
JPH0420979B2
JPH0420979B2 JP24459583A JP24459583A JPH0420979B2 JP H0420979 B2 JPH0420979 B2 JP H0420979B2 JP 24459583 A JP24459583 A JP 24459583A JP 24459583 A JP24459583 A JP 24459583A JP H0420979 B2 JPH0420979 B2 JP H0420979B2
Authority
JP
Japan
Prior art keywords
coating
sprayed
glass resin
microns
thermal spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24459583A
Other languages
Japanese (ja)
Other versions
JPS60138064A (en
Inventor
Toshio Morimura
Hideaki Mizuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP24459583A priority Critical patent/JPS60138064A/en
Publication of JPS60138064A publication Critical patent/JPS60138064A/en
Publication of JPH0420979B2 publication Critical patent/JPH0420979B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 本発明は金属、セラミツクスなどの基材表面に
金属、セラミツクス、これらの複合粉末を溶射
し、この溶射皮膜の表面に溶剤に溶解したラダー
シリコーンを塗布し、硬化することを特徴とする
溶射皮膜の表面処理方法に関する。
[Detailed Description of the Invention] The present invention involves thermally spraying metal, ceramics, or a composite powder thereof onto the surface of a base material such as metal or ceramics, applying ladder silicone dissolved in a solvent to the surface of this thermally sprayed coating, and curing it. The present invention relates to a surface treatment method for a thermal spray coating, characterized by the following.

金属、セラミツクスなどからつくられた板、
棒、各種成形物などの基材表面に溶射して、耐熱
性を高めたり、防食性を増加したり、外観を美麗
にしたりする等が行なわれている。
Boards made from metals, ceramics, etc.
It is sprayed onto the surface of base materials such as rods and various molded products to improve heat resistance, corrosion resistance, and aesthetic appearance.

基材としてはアルミニウム、鉄、銅、ステンレ
ス等の金属、陶磁器、セラミツクス焼結体、ガラ
ス等の窯業製品が用いられ、溶射する粉末として
はチタニウム、ステンレス、ニツケル、アルミ等
の金属の粉末及び線材、酸化チタニウム、酸化ア
ルミニウム、酸化ジルコニウム、炭化珪素、窒化
珪素及びこれらの複合材等の高融点無機化合物の
粉末が用いられている。
The base materials used are metals such as aluminum, iron, copper, and stainless steel, and ceramic products such as ceramics, sintered ceramics, and glass.The powders to be thermally sprayed are metal powders and wires such as titanium, stainless steel, nickel, and aluminum. Powders of high melting point inorganic compounds such as titanium oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, and composites thereof are used.

溶射は金属や窯業製品の表面を被覆して保護す
る有効な手段であり、広く用いられているが、一
方表面が多孔質であり、長時間水や湿気に接触し
ておくと水分を吸収するという欠点がある。
Thermal spraying is an effective and widely used means of coating and protecting the surfaces of metal and ceramic products, but on the other hand, the surfaces are porous and will absorb moisture if left in contact with water or moisture for a long time. There is a drawback.

この欠点を防ぐためにしばしば行なわれる方法
は、溶射した表面に有機高分子物の溶液を塗布す
る方法である。フエノール樹脂、エポキシ樹脂、
ナイロン樹脂、ポリイミド樹脂などの有機高分子
物の溶液を塗布することによつて、強靭な皮膜を
表面に形成して、溶射皮膜が多孔のために水分を
吸収したりするのを防止する。しかしながら、有
機高分子物は本質的に耐熱性が低く、高いもので
も400℃で炭化がはじまるので、耐熱性が高いと
いう溶射皮膜の特徴が失われ、好ましくない。
A method often used to prevent this drawback is to apply a solution of an organic polymer to the sprayed surface. Phenol resin, epoxy resin,
By applying a solution of an organic polymer such as nylon resin or polyimide resin, a tough film is formed on the surface to prevent the thermal sprayed film from absorbing moisture due to its pores. However, organic polymers inherently have low heat resistance, and even those with high heat resistance begin to carbonize at 400°C, which is undesirable because the thermal spray coating loses its high heat resistance characteristic.

本発明に用いられる溶剤可溶性のラダーシリコ
ーンは、通称グラスレジンと呼ばれるもので、分
子中にSiとOとが格子状に結合し、末端がアルコ
キシ、またはフエノキシ構造をもつシリコーンオ
リゴマーである。市販品にはオーエンスイリノイ
ズ(Owens−Illinois)社のグラスレジン(Glass
Resin)などがある。
The solvent-soluble ladder silicone used in the present invention is commonly called glass resin, and is a silicone oligomer in which Si and O are bonded in a lattice pattern in the molecule, and the terminal has an alkoxy or phenoxy structure. Commercially available products include Glass resin from Owens-Illinois.
Resin) etc.

このラダーシリコーンは溶剤に溶解して塗布
し、溶剤を蒸発させてから100〜400℃に加熱する
と架橋が起り、耐熱性、耐溶剤性が増加する。こ
の際、酸性触媒を併用することによつて、加熱の
温度を低下させ、加熱時間を短くすることができ
る。実験の結果、ラダーシリコーンは有機高分子
物に比べ溶射面にとくに密着性がよく、溶射面に
塗布して十分な耐久性、耐候性、耐水性、耐湿性
等を与えることが判明した。
This ladder silicone is dissolved in a solvent and applied, and after the solvent is evaporated, crosslinking occurs when heated to 100 to 400°C, increasing heat resistance and solvent resistance. At this time, by using an acidic catalyst in combination, the heating temperature can be lowered and the heating time can be shortened. As a result of experiments, it was found that ladder silicone has particularly good adhesion to thermally sprayed surfaces compared to organic polymers, and provides sufficient durability, weather resistance, water resistance, moisture resistance, etc. when applied to thermally sprayed surfaces.

本発明を実施するには、まず基材となる金属、
セラミツクスなどの材料、製品に金属の粉末、線
材、セラミツクス粉末などを用いて溶射を行な
う。
To carry out the present invention, first, a metal as a base material,
Thermal spraying is performed on materials such as ceramics and products using metal powder, wire rods, ceramic powder, etc.

粉末の粒径は100ミクロン〜5ミクロン、望ま
しくは50ミクロン〜10ミクロンである。溶射は一
般的に行なわれているプラズマ溶射法などが採用
される。溶射材料としては、アルミニウム、チタ
ニウム、亜鉛、クロム、タンタル、ニツケル等ま
たはその合金、酸化ジルコニウム、酸化アルミニ
ウム、酸化チタニウム、炭化珪素、窒化珪素、窒
化ホウ素等またはその複合物などが選らばれる。
The particle size of the powder is between 100 microns and 5 microns, preferably between 50 microns and 10 microns. For thermal spraying, a commonly used plasma spraying method is used. As the thermal spraying material, aluminum, titanium, zinc, chromium, tantalum, nickel, etc. or alloys thereof, zirconium oxide, aluminum oxide, titanium oxide, silicon carbide, silicon nitride, boron nitride, etc., or composites thereof are selected.

溶射は基材を均一に被覆するように行なわれる
が、本質的に1〜20ミクロン程度のピンホールが
みられる。この表面に硬化触媒を含有、または含
有していないラダーシリコーンの溶液を塗布す
る。硬化触媒としてはパラトルエンスルホン酸、
フエニルフオスフオン酸、クエン酸なのど酸がラ
ダーシリコーンの重量に対して0.1〜5%添加さ
れる。溶剤としてはメタノール、エタノール、ト
ルエン、キシレンのような有機溶剤が用いられ
る。ラダーシリコーンの溶液には、着色剤、消泡
剤、充填剤、増粘剤、有機高分子を添加してもよ
い。
Thermal spraying is done to uniformly coat the substrate, but pinholes on the order of 1 to 20 microns are inherently present. A solution of ladder silicone with or without a curing catalyst is applied to this surface. As a curing catalyst, para-toluenesulfonic acid,
Throat acids such as phenylphosphonic acid and citric acid are added in an amount of 0.1 to 5% based on the weight of the ladder silicone. Organic solvents such as methanol, ethanol, toluene, and xylene are used as the solvent. A coloring agent, an antifoaming agent, a filler, a thickener, and an organic polymer may be added to the ladder silicone solution.

このように調整されたラダーシリコーン溶液は
上記ピンホールによく充填し、かつ溶射皮膜に密
着させて強固な塗膜とするためにB型粘度計で10
〜200cpsの粘度(常温)のものが好ましい。
The ladder silicone solution prepared in this way fills the pinholes well and adheres to the sprayed coating to form a strong coating.
A viscosity of ~200 cps (at room temperature) is preferred.

溶射した面へ塗布する方法は、刷毛塗、スプレ
ー、ロールコーテイング、フローコーテイングな
どいずれの方法も用いられる。塗布厚は乾燥した
のち1〜500ミクロンなるようにする。塗布した
のち、50〜200℃で10秒〜30秒程度乾燥し、つい
で、100〜400℃で1〜30分加熱して架橋硬化を行
なわせる。
Any method such as brush coating, spray coating, roll coating, flow coating, etc. can be used to apply the coating to the sprayed surface. The coating thickness should be 1 to 500 microns after drying. After coating, it is dried at 50 to 200°C for about 10 to 30 seconds, and then heated at 100 to 400°C for 1 to 30 minutes to effect crosslinking and curing.

こうして得られた硬化皮膜は硬く、かつ耐熱性
があり、水分の吸収がほとんどみられない。
The cured film thus obtained is hard and heat resistant, and absorbs almost no moisture.

本発明方法が特に有効な製品としては金属板上
に溶射絶縁皮膜を設けたプリント配線基板などが
ある。
Products for which the method of the present invention is particularly effective include printed wiring boards in which a thermally sprayed insulation film is provided on a metal plate.

実施例 1 炭素鋼でつくられた直径1cm、長さ1mの丸棒
の表面にステンレス(18Cr−8Ni)線材を用いて
溶射を行なつた。ステンレス線材の太さは2mm、
溶射条件はアーク溶射法による大気中溶射であつ
た。この溶射により、炭素鋼表面に200ミクロン
の厚さのステンレス被覆ができた。次にラダーシ
リコーンとしてグラスレジン650(Owens−
Illinois社製)をえらび、10%のトルエン溶液を
調製し、グラスレジンの重量に対し1%のフエニ
ルフオスフオン酸を溶解した。この溶液を先に溶
射した丸棒を均一にスプレーし、80℃で10分間乾
燥したのち、200℃で20分加熱して架橋硬化した。
得られた丸棒はグラスレジンが20ミクロンの厚さ
にコーテイングされていた。表面硬度は7H鉛筆
硬度であり、600℃に1時間加熱しても全く変化
しなかつた。1ケ月水中に浸漬しても錆の発生が
認められなかつた。
Example 1 A stainless steel (18Cr-8Ni) wire was thermally sprayed onto the surface of a round bar made of carbon steel with a diameter of 1 cm and a length of 1 m. The thickness of the stainless steel wire is 2mm.
The thermal spraying conditions were atmospheric thermal spraying using the arc spraying method. This thermal spraying created a 200 micron thick stainless steel coating on the carbon steel surface. Next, glass resin 650 (Owens-
A 10% toluene solution was prepared, and 1% phenylphosphonic acid was dissolved in the glass resin based on the weight of the glass resin. This solution was sprayed uniformly onto the round bar that had been thermally sprayed earlier, dried at 80°C for 10 minutes, and then heated at 200°C for 20 minutes to crosslink and cure.
The resulting round bar was coated with glass resin to a thickness of 20 microns. The surface hardness was 7H pencil hardness, and did not change at all even after heating to 600°C for 1 hour. No rust was observed even after being immersed in water for one month.

一方、グラスレジンコーテイング前は、2日間
で錆が発生した。
On the other hand, before glass resin coating, rust occurred in two days.

実施例 2 SUS304ステンレス鋼でつくられた厚さ1mmの
平板に酸化ジルコニウム粉末で溶射した。酸化ジ
ルコニウムの粒径は44〜10ミクロン、溶射条件は
プラズマ溶射法による大気中溶射であつた。この
溶射によつてステンレス表面に300ミクロンの厚
さの酸化ジルコニウム被覆ができた。次にラダー
シリコーンとしてグラスレジン150(Owens−
Illinois社製)をえらび、15%のブタノール・ト
ルエン溶液(1:1)を調製した。この溶液を先
に溶射した平板にローラーコーテイングにより両
面に均一にコーテイングし、100℃の熱風炉で2
分間乾燥し、ついで300℃で5分間加熱して架橋
硬化を行なつた。
Example 2 A 1 mm thick flat plate made of SUS304 stainless steel was sprayed with zirconium oxide powder. The particle size of the zirconium oxide was 44 to 10 microns, and the spraying conditions were atmospheric spraying by plasma spraying. This thermal spraying resulted in a 300 micron thick zirconium oxide coating on the stainless steel surface. Next, glass resin 150 (Owens-
A 15% butanol/toluene solution (1:1) was prepared. This solution was coated uniformly on both sides of the previously sprayed flat plate by roller coating, and then heated in a hot air oven at 100℃ for 2 hours.
It was dried for a minute and then heated at 300°C for 5 minutes to effect crosslinking and curing.

得られたコーテイング板はグラスレジンが15ミ
クロンの厚さにコーテイングされていた。表面硬
度は6H鉛筆硬度であり、600℃に1時間加熱して
も全く変化しなかつた。2%塩酸中に3ケ月浸漬
しても錆の発生が認められなかつた。一方、グラ
スレジンコーテイング前は、2%塩酸に2日間浸
漬で錆が発生した。
The resulting coated plate was coated with glass resin to a thickness of 15 microns. The surface hardness was 6H pencil hardness, and did not change at all even after heating to 600°C for 1 hour. No rust was observed even after immersion in 2% hydrochloric acid for 3 months. On the other hand, before glass resin coating, rust occurred after being immersed in 2% hydrochloric acid for 2 days.

実施例 3 酸化アルミニウムの焼結によつてつくられた厚
さ3cm、縦5cm、横10cmの成形物にニツケル粉末
を用いて溶射した。ニツケル粉末の粒径は44〜10
ミクロン、溶射条件はプラズマ溶射法による大気
中溶射であつた。この溶射によつて焼結体表面に
250ミクロンの厚さのニツケル被覆ができた。次
にラダーシリコーンとしてグラスレジン100
(Owens−Illinois社製)をえらび、15%ブタノー
ル溶液を調製し、グラスレジンの重量に対し3%
のクエン酸を溶解した。この溶液を先に溶射した
成形物に刷毛塗りし、80℃で20分間乾燥したの
ち、200℃で30分間加熱して架橋硬化を行なつた。
得られた製品はグラスレジンが25ミクロンの厚さ
にコーテイングされていた。表面硬度は7H鉛筆
硬度であり、600℃に1時間加熱しても全く変化
がなかつた。1ケ月水中に浸漬しても全く外観の
変化がなかつた。一方、グラスレジンコーテイン
グ前のものは、水分を吸収して表面に曇りを生じ
た。
Example 3 Nickel powder was thermally sprayed onto a molded article 3 cm thick, 5 cm long and 10 cm wide, made by sintering aluminum oxide. The particle size of nickel powder is 44-10
micron, and the thermal spraying conditions were atmospheric thermal spraying using the plasma spraying method. This thermal spraying coats the surface of the sintered body.
A 250 micron thick nickel coating was created. Next, glass resin 100 is used as ladder silicone.
(manufactured by Owens-Illinois), prepare a 15% butanol solution, and prepare a 3% butanol solution based on the weight of the glass resin.
of citric acid was dissolved. This solution was applied with a brush to the previously thermally sprayed molded article, dried at 80°C for 20 minutes, and then heated at 200°C for 30 minutes to effect crosslinking and curing.
The resulting product was coated with glass resin to a thickness of 25 microns. The surface hardness was 7H pencil hardness, and there was no change at all even after heating to 600°C for 1 hour. There was no change in appearance even after being immersed in water for one month. On the other hand, the one before glass resin coating absorbed moisture and became cloudy on the surface.

Claims (1)

【特許請求の範囲】[Claims] 1 基材表面に溶射皮膜を設け、該皮膜上に溶剤
に溶解いたラダーシリコーンを塗布し、硬化する
ことを特徴とする溶射皮膜の表面処理方法。
1. A method for surface treatment of a thermal spray coating, which comprises providing a thermal spray coating on the surface of a substrate, applying ladder silicone dissolved in a solvent onto the coating, and curing the coating.
JP24459583A 1983-12-27 1983-12-27 Surface treatment of sprayed film Granted JPS60138064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24459583A JPS60138064A (en) 1983-12-27 1983-12-27 Surface treatment of sprayed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24459583A JPS60138064A (en) 1983-12-27 1983-12-27 Surface treatment of sprayed film

Publications (2)

Publication Number Publication Date
JPS60138064A JPS60138064A (en) 1985-07-22
JPH0420979B2 true JPH0420979B2 (en) 1992-04-07

Family

ID=17121054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24459583A Granted JPS60138064A (en) 1983-12-27 1983-12-27 Surface treatment of sprayed film

Country Status (1)

Country Link
JP (1) JPS60138064A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3775759D1 (en) * 1987-04-07 1992-02-13 Plasma Coatings Inc AIR-HARDENED COMPOSITE COATING AND METHOD FOR THEIR APPLICATION.

Also Published As

Publication number Publication date
JPS60138064A (en) 1985-07-22

Similar Documents

Publication Publication Date Title
CA2482001A1 (en) Protection against oxidation of parts made of composite material
US3389002A (en) Heat and corrosion resistant coating composition
JPS63168475A (en) Corrosion resistant dispersion and execution thereof
JPH0420979B2 (en)
KR100896648B1 (en) Refractory composition having excellent adiabatic for spray and spraying construction method using the same
JPS54101724A (en) Iron or iron alloy coated with corrosion resistant layer and manufacture thereof
Rudolph Composition and application of coatings based on boron nitride
CN102821946B (en) Sandwich construction and preparation method thereof
JPS6311381B2 (en)
US4196029A (en) Process for depositing a conducting metal layer on an insulating support
JP2687182B2 (en) Composite material
JP3302817B2 (en) Inorganic / organic fusion coated steel sheet and method for producing the same, inorganic / organic fusion coating, coating liquid for forming inorganic / organic fusion coating, and method for producing the same
JPH0643267B2 (en) Infrared radiation coating
JPS6015145A (en) Coating metallic body and manufacture thereof
JPH04136181A (en) Ceramic coated nonferrous metallic material having superior water repellency and durability and its production
JPS61192771A (en) Ceramic coating agent mainly composed of silicon carbide
JPH0371472B2 (en)
CN116218366B (en) Polymer ceramic super-hydrophilic anti-corrosion coating material, and preparation method and application thereof
JP2845556B2 (en) Primer composition and resin-coated metal body
JPH0234790A (en) Production of surface-treated steel sheet having superior durability and adhesion to organic resin
KR100362847B1 (en) Coating Material and Coating Method of Hot-Dip Galvanized Port Roll
JPH04500584A (en) Method for manufacturing a substrate for arranging electrical and/or electronic components
EP0162548A1 (en) Method for formation of metal compound coating
JPH04257440A (en) Composite material
JPH0512920A (en) Plated conductive wire