JPS6311381B2 - - Google Patents

Info

Publication number
JPS6311381B2
JPS6311381B2 JP15750678A JP15750678A JPS6311381B2 JP S6311381 B2 JPS6311381 B2 JP S6311381B2 JP 15750678 A JP15750678 A JP 15750678A JP 15750678 A JP15750678 A JP 15750678A JP S6311381 B2 JPS6311381 B2 JP S6311381B2
Authority
JP
Japan
Prior art keywords
group
coating
ceramic
metal
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15750678A
Other languages
Japanese (ja)
Other versions
JPS5584370A (en
Inventor
Seishi Yajima
Kyoto Okamura
Noryoshi Shishido
Yoshio Hasegawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKUSHU MUKI ZAIRYO KENKYUSHO
Original Assignee
TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKUSHU MUKI ZAIRYO KENKYUSHO filed Critical TOKUSHU MUKI ZAIRYO KENKYUSHO
Priority to JP15750678A priority Critical patent/JPS5584370A/en
Priority to GB7925601A priority patent/GB2028682B/en
Priority to US06/060,563 priority patent/US4267210A/en
Priority to DE2930557A priority patent/DE2930557C2/en
Priority to GB7938612A priority patent/GB2039787B/en
Priority to US06/092,405 priority patent/US4267211A/en
Priority to DE19792945650 priority patent/DE2945650A1/en
Publication of JPS5584370A publication Critical patent/JPS5584370A/en
Publication of JPS6311381B2 publication Critical patent/JPS6311381B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、セミ無機化合物とセラミツク粉末及
び/又は金属粉末とから成る塗布用組成物に関
し、特にセラミツク又は金属に対する塗料及び接
着剤として使用するのに適した塗布用組成物に関
する。 従来より材料の表面を塗膜にて被覆し内部を保
護する技術は数多く報告されているが、本発明の
組成物により与えられる塗膜は、従来技術のもの
に比較してすぐれた耐熱性を示す特徴を有してい
る。従来法で得られる特に耐熱性にすぐれた塗膜
としては、例えば、TiO2,Cr2O3,Al粉末など
の無機顔料を溶剤で希釈したものを塗布すること
によつて得られる塗膜があげられるが、これらの
耐熱性はほぼ350℃止りであつた。本発明の組成
物で得られる塗膜はこれより更に高温まで安定で
ある。 また、金属、セラミツク、炭素などの被接合体
を接着させることにより、耐熱性接合体を得る方
法が従来提案されており、このような耐熱性接合
体は、例えば放電燈、電子管、パツケージ等に使
用され、近年更にその用途分野は拡大されつつあ
る。しかしながら、従来知られた接合体の製造方
法によればすぐれた耐熱性を有する接合体を得る
ことが困難であり、かつ製造工程が複雑であるた
め、その製造コストが大きく、したがつてその用
途は限られていた。 従来の代表的な接合方法としては第1表に示す
ようにテレフンケン法、ソルダガラス法、活性金
属法、Mo蒸着法などが知られている。 テレフンケン法あるいはMo蒸着法によるもの
は接合強度は大きいが、これらの方法は、金属以
外の例えばセラミツクを一旦加湿ガス中で加熱し
てMoなどの金属でメタライジング(表面層の金
属化処理)した上で、さらにろう材を用いて目的
とする金属とろう付けするという複雑な工程を経
ることが必要であり、製造コストが極めて高いと
いう欠点がある。また、ソルダガラス法はPbO、
Al2O3、CaOなどを主成分とするソルダを例えば
セラミツクと金属の間に入れた後、加熱処理して
接合する方法であるが、これらのソルダは最適接
合温度範囲が比較的狭いので、被接合体に合つた
処理温度を的確に制御する必要がある上に、ソル
ダの表面状態によつても接合性能が敏感に変化す
るためソルダ自体の品質管理が難しいという欠点
を有している。また、活性金属法は活性金属であ
るTi,Zrなどとこれと低融点の合金を作るNi,
Cu,Agなどとを共晶組成になるようにして例え
ばセラミツクス―セラミツクスあるいはセラミツ
クス―金属間に介装したものを、真空中または不
活性ガス中で加熱して接合体とする比較的簡便な
方法であるが、この方法により得られる接合体は
第1表に見る如く接合強度は弱く、また耐熱性も
極めて劣るため、得られた接合体の使用範囲は限
られざるを得ないという欠点があつた。
The present invention relates to a coating composition comprising a semi-inorganic compound and a ceramic powder and/or a metal powder, and in particular to a coating composition suitable for use as a paint and an adhesive for ceramic or metal. Many techniques have been reported in the past for covering the surface of a material with a coating film to protect the inside, but the coating film provided by the composition of the present invention has superior heat resistance compared to those of the prior art. It has the characteristics shown. Examples of coating films with particularly excellent heat resistance obtained by conventional methods include those obtained by coating inorganic pigments such as TiO 2 , Cr 2 O 3 , and Al powder diluted with a solvent. However, their heat resistance was limited to approximately 350°C. The coatings obtained with the compositions of the present invention are stable up to even higher temperatures. In addition, a method has been proposed in the past to obtain a heat-resistant bonded body by bonding objects to be bonded such as metals, ceramics, carbon, etc. Such a heat-resistant bonded body can be used, for example, in discharge lamps, electron tubes, packages, etc. In recent years, the field of application has been further expanded. However, according to the conventionally known method of manufacturing a bonded body, it is difficult to obtain a bonded body with excellent heat resistance, and the manufacturing process is complicated, resulting in high manufacturing costs and, therefore, its use. was limited. As shown in Table 1, typical conventional bonding methods include the Telefunken method, the solder glass method, the active metal method, and the Mo vapor deposition method. Bonding strength using the Telefunken method or Mo vapor deposition method is high, but in these methods, a material other than metal, such as ceramic, is heated in a humidified gas and then metallized with a metal such as Mo (metallization treatment of the surface layer). In addition, it is necessary to go through a complicated process of brazing the target metal using a brazing filler metal, which has the drawback of extremely high manufacturing costs. In addition, the solder glass method uses PbO,
This method involves putting a solder containing Al 2 O 3 or CaO as a main component between the ceramic and the metal, and then heat-treating and bonding. However, these solders have a relatively narrow optimum bonding temperature range, so In addition to the need to accurately control the processing temperature to match the objects to be bonded, the bonding performance also changes sensitively depending on the surface condition of the solder, making it difficult to control the quality of the solder itself. In addition, the active metal method uses active metals such as Ti and Zr and Ni, which forms a low melting point alloy with these active metals, such as Ti and Zr.
A relatively simple method of heating Cu, Ag, etc. in a eutectic composition and interposing it between ceramics and ceramics or ceramics and metal in a vacuum or in an inert gas to form a bonded body. However, as shown in Table 1, the joined body obtained by this method has a weak joint strength and extremely poor heat resistance, so the range of use of the obtained joined body is inevitably limited. Ta.

【表】 本発明は、上述した従来法に見られる諸欠点を
克服し、耐熱性にすぐれた塗膜を与える塗料とし
て、あるいは耐熱性高強度の接合体を簡単に且つ
安価に製造するための接着剤として好適な塗布用
組成物を提供することを目的とするものである。
即ち、本発明によれば、主として非酸化性雰囲気
中で400〜2000℃の温度に加熱することにより主
としてSiC(非晶質状態、β型、α型のいずれか
またはこれらの混合相)より成るセラミツクに転
化するセミ無機化合物と、セラミツク粉末及び/
又は金属粉末とを含有して成る塗布用組成物が提
供される。 本発明の組成物は、セラミツク又は金属に対す
る塗料として使用するのに適した塗料組成物であ
り、また、セラミツク及び金属のうちから選ばれ
る同種又は異種の二材料間の接着剤として使用す
るのに適した接着剤組成物である。 以下本発明についてより詳細に説明する。 セラミツク粉末とは、酸化物、炭化物、ケイ化
物、窒化物、ホウ化物、炭素黒鉛、ホウ素などの
粉末を意味し結晶質、非晶質を問わない。またセ
ラミツク粉末は市販品の他に本発明のセミ無機化
合物(1)〜(4)を不活性ガス中あるいは空気中で熱分
解することにより生成したセラミツク(主として
SiCより成る)も用いることができる。セラミツ
ク粉末の粒度は特に重要ではないが、通常0.1〜
10ミクロン程度であることが好ましい。 本発明の塗布用組成物の成分として使用する金
属粉末とは、アルカリ土類金属、遷移金属、典型
金属、半金属、希土類金属、アクチニウム金属、
これらの合金(合金に種々の特性をもたせる炭
素、窒素、リン、ホウ素などの微量添加元素を含
む)の粉末を意味する。金属粉末もまた結晶質で
も非晶質であつてもよい。 また、金属粉末の粒度も特に重要ではないが、
通常0.1〜10ミクロン程度であることが好ましい。 上記のセラミツク粉と金属粉はそれぞれ別々、
あるいは組合せて用いることができ、従つてサー
メツトもまた当然用いることができる。 本発明の塗布用組成物は、上記のセラミツク粉
末及び/又は金属粉末以外に、他の成分として、
主として非酸化性雰囲気中で400〜2000℃の温度
に加熱することにより主としてSiC(非晶質状態、
β型、α型のいずれかまたはこれらの混合相)よ
りなるセラミツクスに転化するセミ無機化合物
(以下本発明特定のセミ無機化合物と呼ぶことが
ある)を含有することが特徴である。セミ無機化
合物と、セラミツク粉末及び/又は金属粉末の配
合割合は、全体の重量を基準とした重量%で表わ
して、セミ無機化合物の重量%が0.1〜50重量%、
好ましくは5〜20重量%であることが望ましい。 本発明で使用することのできる上記のセミ無機
化合物として、直鎖状、環状、はしご状、かご
状、三次元または網目状の、下記(1)乃至(4)に記載
の化合物をあげることができる。 (1) 下記式で表わされるポリカルボシラン (上式中、R1乃至R5はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり; nは10〜10000である) (2) 下記式で表わされるポリカルボシロキサン (上式中、R1乃至R7はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり;nは10〜10000
であり;そしてx単位とy単位の繰り返しはラ
ンダム、ブロツクの双方を含む) (3) 下記式で表わされるポリシロキサン化合物 (上式中、R1乃至R3はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり; nは1〜10000であり;そして a単位とb単位の繰り返しはランダム、ブロ
ツクの双方を含む) (4) 前項(3)のボロシロキサン化合物と、脂肪族多
価アルコール、芳香族アルコール、フエノール
類、あるいは芳香族カルボン酸から選ばれる1
種あるいは2種以上の有機化合物を、反応に対
して不活性な雰囲気下において、250〜450℃の
範囲内の温度で反応させることにより得られる
改質ボロシロキサン化合物。 上記(1)〜(4)に記載のセミ無機化合物の製造法に
関しては、本発明者らが先に出願した、特開昭51
−126300、特開昭52−74000、特開昭52−112700、
特開昭53−42300、特開昭54−61299、特願昭52−
127630、特願昭53−054036に開示されている。 本発明の方法で使用するのに特に好ましいセミ
無機化合物として、例えば次の如きものをあげる
ことができる。 が挙げられる。この場合末端基は水酸基、メチル
基、フエニル基のいずれかである。 本発明で使用する好ましいセミ無機化合物は、
主として非酸化性雰囲気中で400〜2000℃の温度
に加熱することにより主としてSiC(非晶質状態、
β型、α型のいずれかまたはこれらの混合相)よ
りなるセラミツクスに転化するさいに、焼成残留
率が特に高く、40〜85%である。 本発明特定のセミ無機化合物は、場合により液
状として得られるから、このような場合には、こ
の液状のセミ無機化合物にセラミツク粉末及び/
又は金属粉末を添加混合して塗布用組成物とする
ことができる。従つて本発明の塗布用組成物は、
溶剤を含有することは必ずしも必須要件ではな
い。然しながら、均一な塗膜を形成するために、
溶剤を含有していることが一般に好ましい。 使用する溶剤としては、例えばテトラヒドロフ
ラン、ベンゼン、トルエン、キシレン、ヘキサ
ン、エーテル、ジオキサン、クロロホルム、メチ
レンクロリド、石油エーテル、石油ベンジン、リ
グロシン、フロン、ジメチルスルフオキサイド、
ジメチルフオルムアミド水等を単独で用いること
ができるが従来の塗装用各種シンナー(真溶剤、
助溶剤、希釈溶剤の混合物)も適用いることがで
きる。 さらに、本発明の塗布用組成物は、所望なら
ば、展色剤、可塑剤、乾燥剤、顔料、顔料分散
剤、硬化剤、紫外線吸収剤、抗酸化剤、たれ防止
剤、平担化剤、消泡剤およびセミ無機化合物を架
橋させるための架橋剤などの添加剤を含有させて
もよい。 以上に説明した本発明の塗布用組成物は、セラ
ミツクまたは金属の基体に塗布し、これらの基体
に対する塗料または接着剤として使用するのに特
にすぐれた適性を有するものである。基体として
使用する金属は融点500℃以上の金属、合金であ
ることが好ましく、また基体のセラミツクは、酸
化物、炭化物、珪化物、窒化物、硼化物、炭素、
黒鉛、ホウ素、セメント、石こう、雲母、石綿等
が好ましい。接着剤として使用する場合には、被
接合体として、金属―金属、金属―セラミツク
ス、セラミツクス―セラミツクス、セラミツクス
―カーボン、カーボン―金属、カーボン―カーボ
ンの組合せを使用することができる。セラミツク
スやカーボン材料の時には特に異形レンガの構成
に効果を発揮する。被覆を受ける材料および接合
体が金属の場合は予め表面を酸洗いなどの洗浄後
サンドブラスト、アルカリ処理、リン酸処理、そ
の他化成処理を施すことは強固な被覆、接合を達
成する上で好ましい。 本発明の被覆法および接着法は勿論プラチツク
や木材にも適用できるが、比較的高温の使用条件
に耐える材料を提供する目的にその効果はより有
効に発揮される。 次に、本発明の塗布組成物を使用して、基体に
被覆(塗膜形成)する方法、及び基体を接着する
方法について、具体的に説明する。 最初に被覆の方法であるが、原料のセミ無機化
合物を粉末化(低分子量の場合は粘稠液なのでそ
のまま用いる)したものとセラミツク粉末及び/
又は金属粉末、必要により添加剤を含有する溶液
を基体上に一様の厚さで塗布する。溶剤を使用す
ることは絶対に必要な条件ではないがより均一な
塗膜形成のためには使用することが望ましい。塗
布の方法はたとえばはけ塗り、スプレー塗りなど
の一般の方法が適用される。塗布後、基体を加熱
することが好ましい。加熱の際の雰囲気は非酸化
性雰囲気(例えば、アルゴン、窒素の如き不活性
ガス、水素ガス、COガス、CO2ガス、あるいは
真空等の如き)を用いることが好ましいがセミ無
機化合物が改質有機ボロシロキサン(前記の(4)の
化合物のときは空気であつてもよい。 熱処理の温度は、被処理物の材料に依存して変
化するが、一般に400℃乃至2000℃範囲の加熱温
度を採用することができる。加熱方法は通常用い
ることのできる種々の方法(例えば抵抗加熱、高
周波加熱、赤外線加熱、アセチレン―酸素バーナ
ー加熱、プロパン―酸素バーナー加熱、水素―酸
素バーナー加熱)を用いることができる。この際
含まれるセミ無機化合物の架橋を目的とした紫外
線、放射線照射を並行して行なうこともできる。 溶液塗布の場合は加熱なしの自然乾燥だけで被
覆面が安定である場合が多いが、加熱処理により
被覆面の耐熱性は一般と向上する。 次に接着を行なう方法があるが、基本的には被
覆の場合と変わりがない。接合面に接合粉あるい
は接合液を塗布後、加熱を行なうが、加熱を加圧
下で行なうと更に強い接合が達成できる。加圧は
被接合体の上部に単に重しを載せるだけでもよ
い。この場合、加熱法は必要部分だけの局所加熱
法をとると良い。加熱と加圧を同時に行なえるホ
ツトプレスを利用することも有効である。これま
で被覆と接合を別々に述べてきたが両者が同時に
行なうことも当然可能である。即ち二つの被複合
体を接合することと該接合体の表面を被覆するこ
とも同時に行なうことができる。塗料の塗装焼付
けは繰返し行なうことも可能である。本発明の塗
布用組成物により得られる被覆体は、一般に空気
中400℃以上の使用条件に安定である特徴がある。
セラミツク粉末成分として、Al2O3,SiO2などを
使用し、さらにセミ無機化合物が完全に無機化合
物に変化しない温度(通常500℃)に焼付け温度
を制約した場合には、耐熱絶縁塗膜が得られる。
一方、金属粉末成分として、Al、黄銅などを使
用し、焼付温度をセミ無機化合物が完全に無機化
合物に変化する温度まで加熱した場合には、耐熱
導電塗膜が得られる。セラミツク粉末―セミ無機
化合物の組合せを主とする塗料では焼付後の塗膜
の化学的安定性の故に、酸、アルカリ、SO2その
他の腐蝕性ガス、廃棄ガス、還元性ガス、溶融金
属、溶融スラグなどに対して高い耐蝕性が発揮さ
れる。また全般的に言えることは、基体に対して
塗膜が強く密着していることで、通常の急冷条件
下でのはく離は認められない。 次に本発明により提供される接合体も一般に空
気中400℃以上の使用条件下で安定である。接合
強度は700Kg/cm2以上であるがその強度は500℃に
おいても低下しない。接合面の電導度、化学的安
定性は塗膜の場合の塗料と処理温度の組合せの例
に準ずる。接合面は急冷条件下でも安定である。 本発明の材料は以下の用途に主として適用され
る。 (1) 建築用材料―パネル、ドーム、トレーラーハ
ウス、壁、天井材、床材、クーリングタワー、
浄化槽、汚水タンク、給水タンク、給湯用配
管、排水管、熱変換用ヒートパイプ等 (2) 航空機、宇宙開発用機器材―胴体、翼、ヘリ
コプターのドライブシヤフト、ジエツトエンジ
ンのコンプレツサー、ロータ、ステータ、ブレ
ード、コンプレツサーケーシング、ハウジン
グ、ノーズコーン、ロケツトノズル、ブレーキ
材、タイヤコード等 (3) 船舶用材料―ボート、ヨツト、漁船、作業用
船等 (4) 路上輸送機器材料―車輌の前項部、側板、水
タンク、便所ユニツト、座席、自動車のボデ
イ、コンテナ、道路機器、ガードレール、バレ
ツト、タンクローリー用タンク、自動車、オー
トバイ等 (5) 耐食機器材料―タンク類、塔類ダクト、スタ
ツフ類、パイプ類等 (6) 電気材料―面発熱体、バリスター、点火器、
熱電対等 (7) スポーツ用品―ボート、洋弓、スキー、スノ
ーモビル、水上スキー、グライダー機体、テニ
スラケツト、ゴルフシヤフト、ヘルメツト、バ
ツト、レーシングジヤケツト等 (8) 機械要素―ガスケツト、パツキン、ギヤ、ブ
レーキ材、摩擦材、、研摩研削材等 (9) 医療用機器材料―義足、義肢等 (10) 音響用機器材料―カンチレバー、トーンアー
ム。スピーカーコーン、ボイスコイル (11) 原子力用材料 (B4C塗布、分散)中性子吸収材、中性子反
射材、燃料被覆管エンドキヤツプシール (12) 電子機器部品 プレント配線、部品接合(常温、加熱) (13) 真空部品製造 以下に本発明を実施例で説明する。 実施例 1 ホウ酸310gとジフエニルジクロロシラン1898
gをn―ブチルエーテル3と共に5の三口フ
ラスコに入れ、100℃で18時間撹拌しながら反応
させ冷却後白色沈殿を得た。n―ブチルエーテル
除去後、沈殿をメタノールで洗浄し未反応のホウ
酸を除き、その後水洗しボロジフエニルシロキサ
ン化合物1680gを得た。 このボロジフエニルシロキサン化合物200gに
ヒドロキノン20gを均密に混合し500mlのフラス
コ中で、撹拌しながら、窒素雰囲気中で1時間50
℃の昇温速度で加熱し、300℃で1時間反応させ
淡黄色のセミ無機化合物を得た。粒径0.5μのゲル
状シリカ7重量部に、上記セミ無機化合物1重量
部を添加し、さらにシリコーン樹脂をアルキツド
樹脂にて変性した添加剤1重量部とテトラヒドロ
フラン溶剤1重量部を加えて全体をエマルジヨン
状塗料とした。このものをパーカーライジングし
た軟鋼板あるいは銅板に塗布し空気中500℃まで
加熱した結果良好な耐熱絶縁塗膜が得られた。こ
の塗膜は空気中500℃使用下で絶縁性が安全に保
たれる。ゲル状シリカをγ―アルミナ、酸化チタ
ン、亜鉛華、酸化クロム、ベンガラに変えたり一
部置換してもほぼ同様の結果が得られた。本実施
例の塗料は炭素質材料の安定化被覆、含浸にも効
果を発揮する。 上記するゲル状シリカを含む塗膜を更に600℃、
700℃、800℃で各々1時間加熱しても塗膜の剥離
はおこらず、十分な電気絶縁性を備えている。又
800℃に加熱した試料を急激に常温水中に浸漬し
ても剥離せず、金属板と接着している。このよう
にして得られる塗料の代表的特性は、使用温度限
界1000℃、接着力(剪断)25Kg/cm2、鉛筆硬度
3H、固有電気抵抗1014Ω・cm、最適膜厚50μm以
下である。また、この塗料を直径1mmのNiメツ
キ銅導体上に30μmの厚さで塗布した電線および
300℃、400℃、500℃、600℃で焼付を行つた場合
の巻付可能マンドレル倍径はそれぞれ3,3,
5,12,12倍径できわめて可トウ性に優れている
ことがわかつた。 実施例 2 粒径2μの金属アルミニウム粉末7重量部に対
し、実施例1で使用したセミ無機化合物を1重量
部加え更に実施例1で使用したと同じ添加剤を1
重量部、溶剤1重量部を加えエマルジヨン状塗料
とした。このものをミガキ鋼板およびアルカリ処
理軟鋼板に塗布後空気中500℃まで加熱した結果
良好な耐熱塗膜が得られた。この塗膜は空気中最
高800℃まで安定であり650℃で常用可能に安定で
ある。アルミニウム粉末を黄銅粉末、銅粉末に変
えたり、一部置換した場合もほぼ同様の結果が得
られた。 実施例 3 5の三口フラスコに無水キシレン2と金属
ナトリウム300gを入れ、窒素ガス気流下でキシ
レンの沸点(136℃)まで加熱し、ジメチルジク
ロロシラン540gを1の滴下ロートから30分で
滴下した。滴下終了後18時間加熱をつづけて還流
させ、青紫色の沈殿物を生成させた。この沈殿で
ロ過し、まずメタノールで洗浄した後、水で洗浄
して、白色粉末のポリ(ジメチルシラン)を215
g得た。このポリ(ジメチルシラン)100gに実
施例1で合成したボロジフエニルシロキサン化合
物を3.5wt%添加し、窒素ガス気流下で350℃で10
時間反応させ、ポリカルボシロキサン66gを得
た。このセミ無機化合物の4重量部、粒径2μの
α―SiC粉4重量部、シリコーン樹脂1重量部、
n―ヘキサン1重量部を加えて溶解混合し塗料と
した。このものを黒鉛板の全表面に塗布し、N2
気流中1500℃まで加熱した。こうして得られた
SiC被覆黒鉛と未処理黒鉛をそれぞれ空気中で10
時間500℃で加熱した結果、被覆品の酸化減量は
未処理品の酸化減量の約1/30であつた。 また、溶融Alに対する反応は被覆品ではほと
んど起こらなかつた。またこの塗料を市販の金属
溶解用SiC製ルツボに塗布し同様の熱処理を2回
繰返した後、転炉スラグを満たし、1600℃で加熱
した結果、溶融体がルツボ外へ浸み出すまでの時
間は約10倍となつた。 実施例 4 実施例3で得たポリ(ジメチルシラン)100g
をN2気流中400℃で10時間熱分解縮合させ、35g
のポリカルボシランを得た。このセミ無機化合物
をN2気流中500℃で仮焼後粉砕した粉末(粒径
0.5μ)を4重量部とり、これに実施例1で用いた
セミ無機化合物4重量部、粒径1μのNi粉末1重
量部を混合し、さらにテトラヒドロフラン1重量
部を加えて、全体をペースト状接着剤とした。こ
のものをNb金属とアルミナの接着しようとする
面に塗布後、N2気流中1700℃まで加熱した結果、
引張強度7.7Kg/mm2の接着が達成された。この接
着面は特に熱衝撃に強かつた。 実施例 5 実施例1で用いたセミ無機ポリマー4重量部、
粒径1μのα―SiC4重量部を混合し、これにテト
ラヒドロフランを1重量部加えてペースト状接着
剤とした。2枚の市販SiC板(密度3.0g/cm3)を
準備し、接合希望の両面に上記ペーストを塗布後
重ね合せた。接着部をアセチレンバーナーで加熱
して接着を行なつた結果引張強度3.0Kg/mm2の接
着が達成された。この接着面は、800℃の温度か
ら水中への減下試験の結果、熱衝撃に強いことが
わかつた。この接着剤は例えば異形レンガ等のよ
うな複雑な形状のものやSiC―C、C―MgO等の
ような異質な被接着体の接着に用いることができ
る。
[Table] The present invention overcomes the drawbacks of the conventional methods described above, and can be used as a paint that provides a coating film with excellent heat resistance, or for easily and inexpensively manufacturing a heat-resistant and high-strength joined body. The object of the present invention is to provide a coating composition suitable as an adhesive.
That is, according to the present invention, SiC mainly consists of SiC (amorphous state, β type, α type, or a mixed phase thereof) by heating to a temperature of 400 to 2000°C in a mainly non-oxidizing atmosphere. Semi-inorganic compounds converted into ceramics, ceramic powders and/or
or a metal powder is provided. The composition of the present invention is a coating composition suitable for use as a coating for ceramics or metals, and also for use as an adhesive between two materials of the same or different types selected from ceramics and metals. A suitable adhesive composition. The present invention will be explained in more detail below. Ceramic powder refers to powders of oxides, carbides, silicides, nitrides, borides, carbon graphite, boron, etc., and may be crystalline or amorphous. In addition to commercially available ceramic powders, ceramic powders (mainly
(composed of SiC) can also be used. The particle size of ceramic powder is not particularly important, but it is usually 0.1~
Preferably, it is about 10 microns. The metal powder used as a component of the coating composition of the present invention includes alkaline earth metals, transition metals, typical metals, semimetals, rare earth metals, actinium metals,
It refers to powders of these alloys (containing trace amounts of added elements such as carbon, nitrogen, phosphorus, and boron, which give the alloys various properties). Metal powders may also be crystalline or amorphous. Also, the particle size of the metal powder is not particularly important, but
Usually, it is preferably about 0.1 to 10 microns. The above ceramic powder and metal powder are each separately,
Alternatively, they can be used in combination, so cermets can naturally also be used. In addition to the ceramic powder and/or metal powder described above, the coating composition of the present invention contains, as other components,
Mainly SiC (amorphous state,
It is characterized by containing a semi-inorganic compound (hereinafter sometimes referred to as the specific semi-inorganic compound of the present invention) that can be converted into ceramics consisting of either β-type, α-type, or a mixed phase thereof. The blending ratio of the semi-inorganic compound and the ceramic powder and/or metal powder is expressed as weight % based on the total weight, and the weight % of the semi-inorganic compound is 0.1 to 50 weight %,
The content is preferably 5 to 20% by weight. Examples of the above-mentioned semi-inorganic compounds that can be used in the present invention include linear, cyclic, ladder-like, cage-like, three-dimensional, or mesh-like compounds described in (1) to (4) below. can. (1) Polycarbosilane represented by the following formula (In the above formula, R 1 to R 5 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
phenyl group, C5 - C8 cycloalkyl group, benzyl group or vinyl group; n is 10-10000) (2) Polycarbosiloxane represented by the following formula (In the above formula, R 1 to R 7 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
phenyl group, C5 - C8 cycloalkyl group, benzyl group or vinyl group; n is 10-10000
and the repetition of x units and y units includes both random and block) (3) A polysiloxane compound represented by the following formula (In the above formula, R 1 to R 3 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
It is a phenyl group, a C 5 - C 8 cycloalkyl group, a benzyl group or a vinyl group; n is 1 - 10000; and the repetition of the a unit and b unit includes both random and block. (4) The previous item ( 3) borosiloxane compound and 1 selected from aliphatic polyhydric alcohol, aromatic alcohol, phenols, or aromatic carboxylic acid.
A modified borosiloxane compound obtained by reacting a species or two or more organic compounds at a temperature within the range of 250 to 450°C in an atmosphere inert to the reaction. Regarding the manufacturing method of the semi-inorganic compounds described in (1) to (4) above, the present inventors have previously filed an application for JP-A-51
-126300, Japanese Patent Publication No. 52-74000, Japanese Patent Application Publication No. 52-112700,
Unexamined Japanese Patent Publication No. 53-42300, Unexamined Japanese Patent Application No. 54-61299, Patent Application No. 1983-
127630, disclosed in Japanese Patent Application No. 53-054036. Particularly preferred semi-inorganic compounds for use in the method of the present invention include, for example, the following: can be mentioned. In this case, the terminal group is a hydroxyl group, a methyl group, or a phenyl group. Preferred semi-inorganic compounds for use in the present invention are:
Mainly SiC (amorphous state,
When converted into ceramics consisting of either β type, α type, or a mixed phase thereof, the firing residual rate is particularly high, ranging from 40 to 85%. The specific semi-inorganic compound of the present invention is obtained in liquid form in some cases, so in such cases, ceramic powder and/or
Alternatively, a coating composition can be prepared by adding and mixing metal powder. Therefore, the coating composition of the present invention has
Containing a solvent is not necessarily an essential requirement. However, in order to form a uniform coating,
It is generally preferred to include a solvent. Examples of the solvent used include tetrahydrofuran, benzene, toluene, xylene, hexane, ether, dioxane, chloroform, methylene chloride, petroleum ether, petroleum benzine, ligrosine, chlorofluorocarbon, dimethyl sulfoxide,
Dimethylformamide water etc. can be used alone, but conventional paint thinners (true solvent,
Mixtures of co-solvents and diluting solvents) can also be applied. Furthermore, the coating composition of the present invention may optionally contain a color vehicle, a plasticizer, a drying agent, a pigment, a pigment dispersant, a curing agent, an ultraviolet absorber, an antioxidant, an anti-sagging agent, a leveling agent, etc. , an antifoaming agent, and a crosslinking agent for crosslinking semi-inorganic compounds. The coating composition of the present invention as described above is particularly suitable for coating on ceramic or metal substrates and for use as a paint or adhesive for these substrates. The metal used as the base is preferably a metal or alloy with a melting point of 500°C or higher, and the ceramic base is preferably a metal or alloy with a melting point of 500°C or higher.
Graphite, boron, cement, gypsum, mica, asbestos, etc. are preferred. When used as an adhesive, combinations of metal-metal, metal-ceramics, ceramic-ceramics, ceramic-carbon, carbon-metal, and carbon-carbon can be used as the objects to be joined. When using ceramics or carbon materials, it is particularly effective in constructing irregularly shaped bricks. When the material to be coated and the bonded body are metal, it is preferable to perform sandblasting, alkali treatment, phosphoric acid treatment, or other chemical conversion treatment on the surface after cleaning such as pickling in order to achieve strong coating and bonding. Although the coating method and adhesion method of the present invention can of course be applied to plastics and wood, the effect is more effectively exhibited for the purpose of providing a material that can withstand relatively high-temperature usage conditions. Next, a method for coating (forming a coating film) on a substrate and a method for adhering the substrate using the coating composition of the present invention will be specifically explained. The first coating method is to use powdered semi-inorganic compounds as raw materials (used as they are because they are viscous liquids in the case of low molecular weight materials) and ceramic powder and/or
Alternatively, a solution containing metal powder and optionally additives is applied onto the substrate in a uniform thickness. Although it is not an absolutely necessary condition to use a solvent, it is desirable to use it in order to form a more uniform coating film. As for the application method, general methods such as brushing and spraying can be used. It is preferable to heat the substrate after application. It is preferable to use a non-oxidizing atmosphere (for example, inert gas such as argon, nitrogen, hydrogen gas, CO gas, CO 2 gas, or vacuum) as the atmosphere during heating, but semi-inorganic compounds may be modified. Organic borosiloxane (air may be used in the case of the compound (4) above). The temperature of heat treatment varies depending on the material of the object to be treated, but generally the heating temperature is in the range of 400°C to 2000°C. As the heating method, various commonly used methods (for example, resistance heating, high frequency heating, infrared heating, acetylene-oxygen burner heating, propane-oxygen burner heating, hydrogen-oxygen burner heating) can be used. At this time, ultraviolet rays and radiation irradiation can be performed in parallel for the purpose of crosslinking the semi-inorganic compounds contained.In the case of solution coating, the coated surface is often stable just by air drying without heating. Heat treatment improves the heat resistance of the coated surface compared to other methods.The next method is adhesion, but it is basically the same as coating.After applying bonding powder or bonding liquid to the bonding surface, heating However, an even stronger bond can be achieved if heating is performed under pressure. Pressure can be applied by simply placing a weight on the top of the object to be joined. In this case, the heating method is a local heating method of only the necessary parts. It is also effective to use a hot press that can heat and pressurize at the same time.So far we have described coating and bonding separately, but it is of course possible to perform both at the same time.In other words, it is possible to perform both at the same time. It is possible to join the bodies and to coat the surface of the joined body at the same time.It is also possible to repeatedly apply and bake the paint.The coated body obtained by the coating composition of the present invention is generally It is characterized by being stable under usage conditions of over 400℃ in air.
When ceramic powder components such as Al 2 O 3 and SiO 2 are used and the baking temperature is restricted to a temperature at which the semi-inorganic compound does not completely transform into an inorganic compound (usually 500°C), the heat-resistant insulating coating becomes can get.
On the other hand, when Al, brass, or the like is used as the metal powder component and the baking temperature is heated to a temperature at which the semi-inorganic compound completely changes to an inorganic compound, a heat-resistant conductive coating film can be obtained. Due to the chemical stability of the paint film after baking, paints mainly made of a combination of ceramic powder and semi-inorganic compounds are susceptible to acids, alkalis, SO2 and other corrosive gases, waste gases, reducing gases, molten metals, and molten metals. Demonstrates high corrosion resistance against slag, etc. Also, generally speaking, the coating film adheres strongly to the substrate, and no peeling is observed under normal quenching conditions. Next, the bonded product provided by the present invention is also generally stable under usage conditions of 400° C. or higher in air. The bonding strength is over 700Kg/cm 2 and does not decrease even at 500°C. The electrical conductivity and chemical stability of the bonding surface are similar to the combination of paint and processing temperature in the case of a paint film. The joint surface is stable even under rapid cooling conditions. The material of the present invention is mainly applied to the following applications. (1) Building materials - panels, domes, mobile homes, walls, ceiling materials, flooring materials, cooling towers,
Septic tanks, sewage tanks, water supply tanks, hot water supply piping, drainage pipes, heat conversion heat pipes, etc. (2) Equipment materials for aircraft and space development - fuselages, wings, helicopter drive shafts, jet engine compressors, rotors, stators , blades, complex casings, housings, nose cones, rocket nozzles, brake materials, tire cords, etc. (3) Marine materials - boats, yachts, fishing boats, work boats, etc. (4) Road transportation equipment materials - the previous section of vehicles parts, side panels, water tanks, toilet units, seats, car bodies, containers, road equipment, guardrails, valets, tanks for tank trucks, cars, motorcycles, etc. (5) Corrosion-resistant equipment materials - tanks, tower ducts, staff, etc. Pipes, etc. (6) Electrical materials - surface heating elements, varistors, igniters,
Thermocouples, etc. (7) Sports equipment - boats, bows, skis, snowmobiles, water skis, glider bodies, tennis rackets, golf shafts, helmets, butts, racing jackets, etc. (8) Mechanical elements - gaskets, gaskets, gears, brake materials, Friction materials, abrasive materials, etc. (9) Medical equipment materials - prosthetic legs, prosthetic limbs, etc. (10) Audio equipment materials - cantilevers, tone arms. Speaker cones, voice coils (11) Nuclear power materials (B 4 C coating, dispersion) Neutron absorbing materials, neutron reflecting materials, fuel cladding end cap seals (12) Electronic equipment parts Plain wiring, component bonding (room temperature, heating) ( 13) Vacuum component manufacturing The present invention will be explained below using examples. Example 1 310 g of boric acid and 1898 diphenyldichlorosilane
g was placed in a three-necked flask (No. 5) together with 3 n-butyl ether, and reacted at 100° C. with stirring for 18 hours. After cooling, a white precipitate was obtained. After removing n-butyl ether, the precipitate was washed with methanol to remove unreacted boric acid, and then washed with water to obtain 1680 g of a borodiphenylsiloxane compound. 200 g of this borodiphenylsiloxane compound was homogeneously mixed with 20 g of hydroquinone, and the mixture was placed in a 500 ml flask for 1 hour in a nitrogen atmosphere with stirring.
The mixture was heated at a temperature increase rate of 300°C and reacted for 1 hour to obtain a pale yellow semi-inorganic compound. 1 part by weight of the above semi-inorganic compound was added to 7 parts by weight of gel-like silica with a particle size of 0.5μ, and 1 part by weight of an additive obtained by modifying a silicone resin with an alkyd resin and 1 part by weight of a tetrahydrofuran solvent were added to the whole mixture. It was made into an emulsion-like paint. This material was applied to a Parkerized mild steel plate or copper plate and heated in air to 500°C, resulting in a good heat-resistant insulating coating. This coating maintains its insulation properties safely even when used in air at 500℃. Almost the same results were obtained even when the gelled silica was replaced with γ-alumina, titanium oxide, zinc white, chromium oxide, red iron oxide or partially replaced. The paint of this example is also effective for stabilizing coating and impregnating carbonaceous materials. The coating film containing the above-mentioned gel-like silica was further heated at 600°C.
Even when heated for 1 hour at 700°C and 800°C, the coating film does not peel off and has sufficient electrical insulation properties. or
Even when a sample heated to 800℃ is suddenly immersed in water at room temperature, it does not peel off and remains adhered to the metal plate. Typical properties of the paint obtained in this way are: usage temperature limit 1000℃, adhesive strength (shear) 25Kg/cm 2 , and pencil hardness.
3H, specific electrical resistance of 10 14 Ω・cm, and optimal film thickness of 50 μm or less. In addition, electric wires and wires coated with this paint at a thickness of 30 μm on Ni-plated copper conductors with a diameter of 1 mm and
When baking is performed at 300℃, 400℃, 500℃, and 600℃, the mandrel diameters that can be wrapped are 3, 3, and 3, respectively.
It was found that the towability of the 5, 12, and 12 times diameter was extremely excellent. Example 2 1 part by weight of the semi-inorganic compound used in Example 1 was added to 7 parts by weight of metallic aluminum powder with a particle size of 2μ, and 1 part by weight of the same additive as used in Example 1 was added.
parts by weight and 1 part by weight of a solvent were added to prepare an emulsion-like paint. This product was applied to a polished steel plate and an alkali-treated mild steel plate, and then heated in air to 500°C. As a result, a good heat-resistant coating film was obtained. This coating is stable in air up to 800℃ and stable for regular use at 650℃. Almost the same results were obtained when aluminum powder was replaced with brass powder or copper powder, or when a part of the aluminum powder was replaced. Example 3 Anhydrous xylene 2 and 300 g of metallic sodium were placed in the three-necked flask of No. 5, heated to the boiling point of xylene (136° C.) under a nitrogen gas stream, and 540 g of dimethyldichlorosilane was added dropwise from the dropping funnel of No. 1 over 30 minutes. After the dropwise addition was completed, heating was continued for 18 hours to produce a blue-purple precipitate. This precipitate was filtered and washed first with methanol and then with water to remove white powder poly(dimethylsilane) at 215%
I got g. 3.5 wt% of the borodiphenylsiloxane compound synthesized in Example 1 was added to 100 g of this poly(dimethylsilane), and the mixture was heated at 350°C under a nitrogen gas stream for 10 min.
After a period of reaction, 66 g of polycarbosiloxane was obtained. 4 parts by weight of this semi-inorganic compound, 4 parts by weight of α-SiC powder with a particle size of 2μ, 1 part by weight of silicone resin,
1 part by weight of n-hexane was added and mixed to form a paint. Apply this material to the entire surface of the graphite plate, and add N2
Heated to 1500°C in a stream of air. thus obtained
SiC coated graphite and untreated graphite each in air for 10
As a result of heating at 500°C for an hour, the oxidation loss of the coated product was approximately 1/30 of that of the untreated product. Furthermore, almost no reaction to molten Al occurred in the coated product. In addition, after applying this paint to a commercially available SiC crucible for metal melting and repeating the same heat treatment twice, it was filled with converter slag and heated at 1600°C. As a result, the time required for the molten material to seep out of the crucible has increased approximately 10 times. Example 4 100g of poly(dimethylsilane) obtained in Example 3
was pyrolyzed and condensed at 400℃ in a N2 stream for 10 hours, and 35g
of polycarbosilane was obtained. A powder (particle size:
0.5 μ), 4 parts by weight of the semi-inorganic compound used in Example 1 and 1 part by weight of Ni powder with a particle size of 1 μ are mixed therein, and 1 part by weight of tetrahydrofuran is added to form a paste. It was used as an adhesive. After applying this material to the surface of Nb metal and alumina to be bonded, we heated it to 1700℃ in a N2 stream.
A bond with a tensile strength of 7.7 Kg/mm 2 was achieved. This adhesive surface was particularly resistant to thermal shock. Example 5 4 parts by weight of the semi-inorganic polymer used in Example 1,
4 parts by weight of α-SiC having a particle size of 1 μm were mixed, and 1 part by weight of tetrahydrofuran was added to the mixture to obtain a paste adhesive. Two commercially available SiC plates (density 3.0 g/cm 3 ) were prepared, and the above paste was applied to both surfaces to be bonded, and then the plates were stacked together. Adhesion was achieved by heating the bonded area with an acetylene burner, and as a result, an adhesion with a tensile strength of 3.0 Kg/mm 2 was achieved. This adhesive surface was found to be resistant to thermal shock as a result of a drop test in water from a temperature of 800°C. This adhesive can be used, for example, to bond objects with complex shapes such as irregularly shaped bricks, and different objects to be bonded such as SiC--C, C--MgO, and the like.

Claims (1)

【特許請求の範囲】 1 主として非酸化性雰囲気中で400〜2000℃の
温度に加熱することにより主としてSiC(非晶質
状態、β型、α型のいずれかまたはこれらの混合
相)より成るセラミツクに転化する直鎖状、環
状、はしご状、かご状、三次元または網目状の、 (1) 下記式で表わされるポリカルボシラン (上式中、R1乃至R5はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり;nは10〜10000
である) (2) 下記式で表わされるポリカルボシロキサン (上式中、R1乃至R7はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり;nは10〜10000
であり;そしてx単位とy単位の繰り返しはラ
ンダム、ブロツクの双方を含む) (3) 下記式で表わされるボロシロキサン化合物 (上式中、R1乃至R3はそれぞれ、水素、C4
以下のアルキル基、C4以下のハロアルキル基、
フエニル基、C5〜C8シクロアルキル基、ベン
ジル基またはビニル基であり; nは1〜10000であり;そして a単位とb単位の繰り返しはランダム、ブロ
ツクの双方を含む)および (4) 前項(3)のボロシロキサン化合物と、脂肪族多
価アルコール、芳香族アルコール、フエノール
類、あるいは芳香族カルボン酸から選ばれる1
種あるいは2種以上の有機化合物を、反対に対
して不活性な雰囲気下において、250〜450℃の
範囲内の温度で反応させることにより得られる
改質ボロシロキサン化合物、 から選ばれたセミ無機化合物の少なくとも一つ
と、セラミツク粉末及び/又は金属粉末とを含有
して成る塗布用組成物。 2 セラミツクまたは金属の塗料として使用する
ための特許請求の範囲第1項記載の組成物。 3 セラミツク及び金属のうちから選ばれる同種
又は異種の二材料間の接着剤として使用するため
の特許請求の範囲第1項記載の組成物。
[Claims] 1. Ceramic mainly composed of SiC (amorphous state, β type, α type, or a mixed phase thereof) by heating to a temperature of 400 to 2000°C in a mainly non-oxidizing atmosphere. A linear, cyclic, ladder-like, cage-like, three-dimensional or network-like polycarbosilane that is converted into (1) a polycarbosilane represented by the following formula: (In the above formula, R 1 to R 5 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
phenyl group, C5 - C8 cycloalkyl group, benzyl group or vinyl group; n is 10-10000
) (2) Polycarbosiloxane represented by the following formula (In the above formula, R 1 to R 7 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
phenyl group, C5 - C8 cycloalkyl group, benzyl group or vinyl group; n is 10-10000
(and the repetition of x units and y units includes both random and block) (3) A borosiloxane compound represented by the following formula (In the above formula, R 1 to R 3 are hydrogen and C 4
The following alkyl groups, C4 or less haloalkyl groups,
a phenyl group, a C5 - C8 cycloalkyl group, a benzyl group, or a vinyl group; n is 1 to 10,000; and the repetition of the a unit and b unit includes both random and block) and (4) the preceding item. (3) borosiloxane compound and 1 selected from aliphatic polyhydric alcohols, aromatic alcohols, phenols, or aromatic carboxylic acids.
A modified borosiloxane compound obtained by reacting a species or two or more organic compounds in an oppositely inert atmosphere at a temperature within the range of 250 to 450°C, a semi-inorganic compound selected from: A coating composition comprising at least one of the following, and a ceramic powder and/or a metal powder. 2. The composition according to claim 1 for use as a coating for ceramic or metal. 3. The composition according to claim 1 for use as an adhesive between two materials of the same or different types selected from ceramics and metals.
JP15750678A 1978-07-28 1978-12-22 Coating composition Granted JPS5584370A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP15750678A JPS5584370A (en) 1978-12-22 1978-12-22 Coating composition
GB7925601A GB2028682B (en) 1978-07-28 1979-07-23 Method for producing corrosion-heat-and oxidation-resistant materials
US06/060,563 US4267210A (en) 1978-07-28 1979-07-25 Method for producing corrosion-, heat- and oxidation-resistant materials
DE2930557A DE2930557C2 (en) 1978-07-28 1979-07-27 Process and coating compound for the production of a corrosion, heat and oxidation resistant material
GB7938612A GB2039787B (en) 1978-11-13 1979-11-07 Producing corrosion resistant articles
US06/092,405 US4267211A (en) 1978-11-13 1979-11-08 Process for producing corrosion-, heat- and oxidation-resistant shaped article
DE19792945650 DE2945650A1 (en) 1978-11-13 1979-11-12 METHOD FOR PRODUCING A CORROSION, HEAT AND OXIDATION RESISTANT MOLDED BODY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15750678A JPS5584370A (en) 1978-12-22 1978-12-22 Coating composition

Publications (2)

Publication Number Publication Date
JPS5584370A JPS5584370A (en) 1980-06-25
JPS6311381B2 true JPS6311381B2 (en) 1988-03-14

Family

ID=15651163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15750678A Granted JPS5584370A (en) 1978-07-28 1978-12-22 Coating composition

Country Status (1)

Country Link
JP (1) JPS5584370A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS584209A (en) * 1981-06-30 1983-01-11 昭和電線電纜株式会社 Heat resistant insulated wire
JP2540535B2 (en) * 1987-03-20 1996-10-02 昭和電線電纜株式会社 Heat resistant paint
JPS63250011A (en) * 1987-04-07 1988-10-17 昭和電線電纜株式会社 Heat resistant wire
JPH01108271A (en) * 1987-10-20 1989-04-25 Ube Ind Ltd Corrosion-preventive film which prevent diffusion of water vapor
JP5231710B2 (en) * 2005-04-28 2013-07-10 大阪瓦斯株式会社 Composition comprising metal fine particles and inorganic fine particles and method for producing the same
JP5392465B2 (en) * 2008-11-25 2014-01-22 住友電気工業株式会社 Magnesium alloy parts
WO2010134611A1 (en) * 2009-05-22 2010-11-25 リンテック株式会社 Molded object, process for producing same, member for electronic device, and electronic device

Also Published As

Publication number Publication date
JPS5584370A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
US4267210A (en) Method for producing corrosion-, heat- and oxidation-resistant materials
EP0791029B1 (en) Protective compositions and methods of making same
US4267211A (en) Process for producing corrosion-, heat- and oxidation-resistant shaped article
US5225283A (en) Coating for protecting a carbon-carbon composite from oxidative degradation
JPH01138108A (en) Inorganic silazane high-polymer, its production and use thereof
KR102146594B1 (en) Multi-stage method for the coating of steel prior to hot forming
JPH06287468A (en) Coating to protect material from reaction with air at high temperature
JPH04153283A (en) Heat-resistant insulating coating material
JPH01138107A (en) Modified polysilazane, its production and use thereof
US4929507A (en) Heat-resistant paint comprising polymetallocarbosilane
JPS6311381B2 (en)
US4808659A (en) Adhesive composition comprising organometallic polymer
JPH01203476A (en) Coating composition and coating method
JPWO2004000952A1 (en) Aqueous suspension composition, aqueous coating composition, coated article and method for producing the same
JPH0422190B2 (en)
US4879142A (en) Process for preparing a silicon carbide protective coating
EP0402886A1 (en) Coating material based on (poly)borosiloxanes and method of producing glass coatings as well as their use
JPH05238856A (en) Method for forming coating film of metal carbide
JPS6129387B2 (en)
JP3439554B2 (en) Method for producing metal substrate with ceramic coating
JPH0653864B2 (en) Heat and corrosion resistant composition
JPS6138743B2 (en)
EP0407289B1 (en) Process for obtaining an electrically insulating product
JPH04288381A (en) Heat-resistant coating material
CA1100366A (en) Coated silicon-based ceramic composites and method for making same