JPH04209771A - Porous material and its production - Google Patents

Porous material and its production

Info

Publication number
JPH04209771A
JPH04209771A JP33843090A JP33843090A JPH04209771A JP H04209771 A JPH04209771 A JP H04209771A JP 33843090 A JP33843090 A JP 33843090A JP 33843090 A JP33843090 A JP 33843090A JP H04209771 A JPH04209771 A JP H04209771A
Authority
JP
Japan
Prior art keywords
porous material
fine
reactive resin
porous
rooms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33843090A
Other languages
Japanese (ja)
Inventor
Koji Motoi
孝治 本居
Yosuke Tajima
陽介 田島
Katsufumi Matsumoto
松本 勝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP33843090A priority Critical patent/JPH04209771A/en
Publication of JPH04209771A publication Critical patent/JPH04209771A/en
Pending legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To precisely provide a porous material having fine openings on the surface and further having a number of fine pores not reaching the back surface by sieving the mixture of a fine powdery material with a liquid reactive resin, and subsequently heating and press-molding the sieved fallen powdery material alone having a specific particle diameter. CONSTITUTION:A fine powdery material having a particle diameter of <=0.3 mm is preliminary mixed with a reactive resin in a true volume ratio of 1:1 to 20:1, the reactive resin being liquid when mixed. The mixture is applied to a sieve whose openings have a mesh size of from the diameter of the fine powdery material to 5 mm. The fallen powdery material is spread on a mold and subsequently heated and press-molded into the objective porous material. The porous material thus produced exhibits substantially no slipperiness on wetting with water and is slightly stained. The porous material can thereby be effectively utilized as a floor material for bath rooms, cooking rooms, lavatories, entrances, verandas, pool sides, shower rooms, etc. The porous material is further suitable as a building material such as a moisture-adsorbing and desorbing wall material or a sound-proof material.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は建築材料、たとえば水に濡れやすい場所に使用
されるフロア−材、吸放湿壁材、防音材等の各種建材に
適する多孔性材料とその製造方法に関する。
The present invention relates to a porous material suitable for various building materials such as flooring materials, moisture absorbing/releasing wall materials, soundproofing materials, etc. used in places easily exposed to water, and a method for manufacturing the same.

【従来の技術】[Conventional technology]

従来から水に濡れやすい浴室、調理室、便所、玄関、ベ
ランダ、プールサイド、シャワールーム等の場所では、
水により滑ったりすることがないように、たとえば、実
公昭57−15308号公報にみられるような多孔性の
フロア−材が使用されている。 この多孔性のフロア−材は、0.3 mm以上の粒径の
砂等の骨材表面を熱硬化性樹脂で被覆し、この熱硬化性
樹脂によって骨材の接触部で連結固化されることによっ
て、骨材間に連続した透水孔が形成されていて、この透
水孔によって、水を表面から裏面部へ透過させることが
でき、水濡れ時の滑りを防止するようにしていた。
Places that are prone to getting wet, such as bathrooms, galleys, toilets, entrances, balconies, poolside, shower rooms, etc.
In order to prevent slipping due to water, a porous floor material is used, for example, as seen in Japanese Utility Model Publication No. 15308/1983. This porous floor material is made by coating the surface of aggregate such as sand with a particle size of 0.3 mm or more with thermosetting resin, and connecting and solidifying the aggregate at the contact area with this thermosetting resin. Continuous water permeable holes are formed between the aggregates, and these water permeable holes allow water to permeate from the surface to the back surface, thereby preventing slippage when wet.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上記多孔性のフロア−材は、単に骨材の接触部
で連結固化して骨材間に間隙を形成しているため透水孔
の孔径が太きい。したがって、透水孔内に水゛とともに
固体の夾雑物が入り、目詰まりを起こして汚れやすいと
いう問題点を有していた。 本発明は、かかる従来技術の有する問題点を解決するこ
とができる新規な多孔性材料の製造を提供することを目
的としている。
However, in the above-mentioned porous floor material, the diameter of the water permeable pores is large because the aggregates are simply connected and solidified at the contact portions to form gaps between the aggregates. Therefore, there is a problem in that solid foreign matter enters the water permeation hole together with water, causing clogging and staining. The present invention aims to provide the production of a novel porous material that can solve the problems of the prior art.

【課題を解決するための手段】[Means to solve the problem]

このような目的を達成するために、本発明は、予め粒径
0.3m+n以下の微細粉粒体に混合時に液状である反
応性樹脂を真体積比率で1:1から20:1の範囲で混
合させ、得られた混合物を前記微細粉粒体の粒径以上で
5閣以下のメツシュ径の篩にかけ、篩から落下した粉状
体を成形型上に敷き詰め、加圧加熱成形することを特徴
とする多孔性材料の製造方法を要旨としている。
In order to achieve such an object, the present invention has been developed by adding a reactive resin that is liquid at the time of mixing to fine powder particles having a particle size of 0.3 m+n or less in a true volume ratio in the range of 1:1 to 20:1. The resulting mixture is passed through a sieve with a mesh diameter of not less than the particle size of the fine powder and 5 mm or less, and the powder that falls from the sieve is spread on a mold and pressurized and heated. The gist of this paper is a method for producing porous materials.

【作  用】[For production]

所定粒径の微細粒状体と、この微細粒状体に対して所定
量の反応性樹脂とを混合し、得られた混合物を所定径の
篩に通して、所定径以下の径の揃った粉状体を得る。そ
して、この粉状体を成形型上に落下させて型上に敷き詰
め、均一な圧力を加えることで微細粉粒体間に形成され
た微細な空隙を残した未硬化成形体が成形でき、この未
硬化成形体を硬化させるので、成形時の開口にムラが無
く、表面が平滑であるとともに、表面に微小な開口を有
する多数の細孔が内部に形成された多孔性材料を成形で
きる。 そして、得られた多孔性材料は、たとえば、浴室等の水
に濡れる場所のフロア材として使用した場合、表面が平
滑であるので、その上に裸足で立つと足の裏が床面に滑
らかに密着するとともに、床面が水に濡れていても、足
の裏で押圧された水が開口を介して細孔内に逃げ込むた
め、足の裏と床面との間に水の膜が無くなる。なお、細
孔は裏面までは達していないので、細孔内に入り込んだ
水が裏面側へ透過することはない。さらに、開口が微細
であるため、汚れ等が開口から細孔に入りこまないよう
になっている。
Fine granules with a predetermined particle size and a predetermined amount of reactive resin are mixed with the fine granules, and the resulting mixture is passed through a sieve with a predetermined diameter to form a powder with a uniform diameter of a predetermined diameter or less. Get a body. Then, by dropping this powder onto a mold and spreading it over the mold, and applying uniform pressure, an uncured molded product with fine voids formed between the fine powder particles can be molded. Since the uncured molded body is cured, it is possible to mold a porous material that has a smooth surface with no uneven openings during molding, and has many pores with minute openings formed on the surface. When the resulting porous material is used as a flooring material in wet areas such as bathrooms, the surface is smooth, so if you stand barefoot on it, the soles of your feet will touch the floor smoothly. In addition to the close contact, even if the floor surface is wet, the water pressed by the soles of the feet escapes into the pores through the openings, so there is no water film between the soles of the feet and the floor surface. Note that since the pores do not reach the back surface, water that has entered the pores does not permeate to the back surface side. Furthermore, since the openings are minute, dirt and the like are prevented from entering the pores through the openings.

【実 施 例】【Example】

以下に、本発明を、その実施例を参照しつつ詳しく説明
する。 本発明にかかる多孔性材料の製造方法は、以下の順序に
より実施される。 ■ 0.3 mm (通常は平均値)以下の粒径を有す
る微細粉粒体に、常温で液状を示す反応性樹脂を真体積
比で1:1〜20:1、好ましくはlo:3〜20:1
の割合で加えて混合する。 なお、混合により得られる混合物は、樹脂量の平均値か
らの分散が樹脂に対して、10%以下望ましくは5%以
下の均一混合がなされていることが好ましい。 混合方法としては、各種ブレンダー〔たとえば、スーパ
ーミキサー、アイリッヒミキサー(アイリッヒミキサー
社製)等〕で混合し、さらに分散機〔たとえば、ホソカ
ワミクロン社製タービュライザー、Bachoten社
製ダイノーミル等〕を用いる方法、微細粉粒体に液状樹
脂を噴霧し撹拌する装置〔たとえば、Sugie社製シ
ュギーミキサー、各種気流混合機、Acme社製サター
すミキサー、粉研パウテックス社製フローシェドミキサ
ー等〕を用いる方法等が挙げられる。 微細粉粒体としては、例えば、カオリン、クレー、ケイ
砂、天然鉱物繊維、天然石粉砕粉、マイカ、ガラスミル
ドファイバー、アルミナ短繊維、チタン酸カリウム短繊
維、カーボン短繊維、ウィスカ等が挙げられる。これら
はいずれのものも−種のみで、又は二種以上−緒に使用
することができる。 微細粉粒体の寸法・粒径は、多孔性材料の用途等によっ
て最適の寸法は変わるが粒径30〇−以下(なお、粒径
は揃っていることが好ましいが、平均300−以下でも
構わない)のものが用いられる。そして微細粉粒体の繊
維太さ、粒径、形状および熱硬化性樹脂の粘度を調整す
ることにより、表面開口の径を調整することが可能であ
る。 また、反応性樹脂としては、常温で液状物、たとえば、
不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹
脂、フラン樹脂、イミド樹脂、アクリル系樹脂(また必
ずしも加熱する必要のない常温硬化反応性樹脂を含む)
等が挙げられる。 ■ 得られた混合物を微細粉粒体よりは大きく5mm以
下のメツシュ径を有する篩(網目状のものや、孔が多数
穿孔されているものなど、特にその形状は限定されない
)を通し、この篩から落下した粉状体を成形型上に敷き
詰める。 なお、5 mmを超えるメツシュ径の篩を通すと、混合
物が塊状に落下し、塊状粒間の空隙によって賦形後に大
きな開口が成形体表面に発現する。 ■ 賦形したのち、加圧・加熱するか、賦形せずに直接
加圧・加熱を行って所望の多孔性材料を得る。 賦形は、前記粉状体を成形型上に敷き詰めた後、ドクタ
ーナイフ等ですりきるなどの方法により行われる。 加圧・加熱は、同時に行ってもよいし、加圧して所望形
状に成形したのち、加熱してもよい。 また、加圧に先立って粉状体の上部を弾性変形および/
または塑性変形可能なりッションシートで覆い、このク
ツションシートを介して粉状体を加圧することが好まし
い。 すなわち、クツションシートを用いないと、特に成形型
にうねり、反りの有る場合に均一な成形ができないこと
がある。 クツションシートとしては、特に限定されないが、たと
えば、ゴムシート、フオーム、フェルト、不織布、粘土
状ペーストおよびそれらの複合物等が挙げられる。 (実施例1) 予め、アルミナファイバー(300メツシユノくス)2
000重量部にエポキシ樹脂(油化シェル製エピコート
828と酸無水物系硬化剤をエポキシ等量分混合した物
)を2000重量部(かさ体積比1:0.25)加えて
混合し、得られた混合物を3mmの篩を通し、粉状体と
して落下させて成形型上に均質に敷き詰め、ドクターナ
イフですりきり、80℃のプレス機で加熱硬化させて板
状の成形体を得た。 (実施例2) 予め、マイカ(100メツシユパス)3500重量部に
ビニルエステル系樹脂(日本ユピカ製)を1200重量
部(かさ体積比1:0.27)を加えて混合し、得られ
た混合物をlunの篩を通し、粉状体として落下させて
成形型上に均質に敷き詰め、ドクターナイフですりきり
、プレス機で加圧した後、100℃で加熱硬化させて板
状の成形体を得た。 (実施例3) 予め、石英粉末(200メツシユパス)6000重量部
に不飽和ポリエステル樹脂1500重量部(かさ体積比
1:0.25)を加えて混合し、得られた混合物を4M
の篩を通し、粉状体として落下させて成形型上に均質に
敷き詰め、加圧(50kg/cnf) した、80℃で
加熱硬化させて板状の成形体を得た。 (比較例1) 15mmの篩を用いた以外は、実施例1と同様にして成
形体を得た。 (比較例2) 9mmの篩を用いた以外は、実施例1と同様にして成形
体を得た。 (従来例) 実公昭57−15308号公報に記載されたように、0
.3mm以上の粒径の砂5重量部に不飽和ポリエステル
樹脂1重量部を混合して砂の表面を樹脂で被覆し、これ
を成形型に敷き詰め80’Cで加熱硬化して板状の成形
体(透水性レジンコンクリート材)を得た。 上記実施例1,2、比較例1. 2、従来例で得られた
成形体、および、参考例としての伊勢化学製ガラスフィ
ルター(孔径0.3ilT11のマイクロポーラスガラ
ス1mmX 100mmX l 00mn+)について
、孔径、細孔容積、耐汚染性、滑り抵抗性のそれぞれの
評価を行い、その結果を第1表に示した。 なお、開口径については、水銀圧入法により測定し、そ
の評価は、開口を含む細孔容積の全細孔容積中に対する
容積分率が、101m以上が10%未満のものは◎で、
10.cm以上が10%以上30%未満のものは○で、
101n11以上が30%以上あるものは×で示した。 細孔容積については、多孔性材料に対する全細孔容積の
割合が2%以上のものは◎で示し、2%未満のものは×
で示した。 耐汚染性については、タルク粉(10μ以下)を水中に
分散させ(0,2g/cc) 、この液50aを試験片
100mnX100+nmに適時散布して試験し、その
評価は、タルク粉が表面に残り、後で洗い流すことが可
能なものは◎で、タルク粉が裏面より液出又は目詰まり
を起こしたものは×で示しな・ また、滑り抵抗性については、多孔性材料の傾斜面にお
いて、第1図にみるように、JIS A3721の滑り
試験におけるフェルトの代わりに人工皮革片(50mm
X 30mm) 2、荷重2kgを用いて、多孔性材料
(成形体)1の傾斜を変えて人工皮革片が滑り出す角度
θを測定し、摩擦係数(tanθ)を計算して求め、そ
の評価は摩擦係数0.6以上を◎で、0.6未満のもの
は×で示した。 第1表 第1表にみるように、実施例1. 2のものは、全て良
好であったが、比較例1,2のものは、開口径、細孔容
積、耐汚染性の評価が悪く、従来例、参考例のものは、
耐汚染性に問題があった。
The present invention will be explained in detail below with reference to examples thereof. The method for producing a porous material according to the present invention is carried out in the following order. ■ A reactive resin that is liquid at room temperature is added to a fine powder having a particle size of 0.3 mm (usually an average value) or less in a true volume ratio of 1:1 to 20:1, preferably lo: 3 to 20:1
Add and mix in the following proportions. In addition, it is preferable that the mixture obtained by mixing is uniformly mixed so that the dispersion of the amount of resin from the average value is 10% or less, preferably 5% or less based on the resin. The mixing method includes mixing with various blenders (e.g., Super Mixer, Eirich Mixer (manufactured by Eirich Mixer), etc.), and further using a dispersing machine (e.g., Turbulizer, manufactured by Hosokawa Micron, Dyno Mill, manufactured by Bachoten, etc.). A method using a device that sprays liquid resin onto fine powder and stirs it [for example, a Shugie mixer manufactured by Sugie, various air flow mixers, a Sutter mixer manufactured by Acme, a flow shed mixer manufactured by Kouken Powtex, etc.] etc. Examples of the fine powder include kaolin, clay, silica sand, natural mineral fibers, crushed natural stone powder, mica, glass milled fibers, alumina staple fibers, potassium titanate staple fibers, carbon staple fibers, and whiskers. Any of these can be used alone or in combination. The optimum dimensions and particle diameter of the fine powder vary depending on the use of the porous material, etc., but the particle size is 300- or less (please note that it is preferable that the particle sizes are uniform, but an average of 300- or less is also acceptable). ) is used. By adjusting the fiber thickness, particle size, and shape of the fine powder and the viscosity of the thermosetting resin, it is possible to adjust the diameter of the surface opening. In addition, reactive resins that are liquid at room temperature, such as
Unsaturated polyester resins, epoxy resins, phenolic resins, furan resins, imide resins, acrylic resins (including room temperature curing reactive resins that do not necessarily require heating)
etc. ■ Pass the obtained mixture through a sieve (the shape is not particularly limited, such as a mesh or one with many holes) having a mesh diameter of 5 mm or less, which is larger than fine powder. The powder that has fallen from the mold is spread over the mold. Note that when the mixture is passed through a sieve with a mesh diameter exceeding 5 mm, it falls in lumps, and large openings appear on the surface of the molded product after shaping due to the voids between the lump particles. ■ After shaping, pressurize and heat, or directly press and heat without shaping to obtain the desired porous material. Shaping is performed by a method such as spreading the powder on a mold and then scraping it with a doctor knife or the like. Pressurization and heating may be performed at the same time, or heating may be performed after pressurizing and molding into a desired shape. Also, prior to pressurization, the upper part of the powder is elastically deformed and/or
Alternatively, it is preferable to cover with a plastically deformable cushion sheet and pressurize the powder through this cushion sheet. That is, unless a cushion sheet is used, uniform molding may not be possible, especially if the mold has undulations or warps. Examples of cushion sheets include, but are not limited to, rubber sheets, foams, felts, nonwoven fabrics, clay-like pastes, and composites thereof. (Example 1) In advance, alumina fiber (300 mesh) 2
000 parts by weight of epoxy resin (a mixture of Epikote 828 manufactured by Yuka Shell Co., Ltd. and an acid anhydride curing agent in equal amounts of epoxy) was added to 2000 parts by weight (bulk volume ratio 1:0.25) and mixed. The resulting mixture was passed through a 3 mm sieve, dropped as a powder, uniformly spread on a mold, ground with a doctor knife, and heated and cured in a press at 80° C. to obtain a plate-shaped molded product. (Example 2) 1200 parts by weight of vinyl ester resin (manufactured by U-Pica Japan) was added and mixed in advance to 3500 parts by weight of mica (100 mesh pass) (bulk volume ratio 1:0.27), and the resulting mixture was mixed. The powder was passed through a Lun sieve, dropped as a powder, uniformly spread on a mold, ground with a doctor knife, pressed with a press, and heated and cured at 100°C to obtain a plate-shaped molded product. (Example 3) 1500 parts by weight of unsaturated polyester resin (bulk volume ratio 1:0.25) was added and mixed in advance to 6000 parts by weight of quartz powder (200 mesh passes), and the resulting mixture was mixed with 4M
The mixture was passed through a sieve, dropped as a powder, uniformly spread on a mold, pressurized (50 kg/cnf), and heated and cured at 80°C to obtain a plate-shaped molded product. (Comparative Example 1) A molded body was obtained in the same manner as in Example 1 except that a 15 mm sieve was used. (Comparative Example 2) A molded body was obtained in the same manner as in Example 1 except that a 9 mm sieve was used. (Conventional Example) As described in Utility Model Publication No. 15308/1983, 0
.. 5 parts by weight of sand with a particle size of 3 mm or more is mixed with 1 part by weight of unsaturated polyester resin, the surface of the sand is coated with the resin, and this is placed in a mold and heated and cured at 80'C to form a plate-shaped molded product. (Water permeable resin concrete material) was obtained. Examples 1 and 2, Comparative Example 1. 2. Pore diameter, pore volume, stain resistance, and slip resistance of the molded body obtained in the conventional example and the glass filter made by Ise Chemicals (microporous glass 1 mm x 100 mm x l 00 mn+ with a pore diameter of 0.3 il T11) as a reference example. The results are shown in Table 1. The aperture diameter is measured by mercury porosimetry, and the evaluation is ◎ if the volume fraction of the pore volume including the aperture to the total pore volume is 101 m or more and less than 10%;
10. If cm or more is 10% or more and less than 30%, mark it as ○.
Those with 30% or more of 101n11 or more are marked with an x. Regarding pore volume, those in which the ratio of the total pore volume to the porous material is 2% or more are marked with ◎, and those with a ratio of less than 2% are marked with ×.
It was shown in Contamination resistance was tested by dispersing talcum powder (10μ or less) in water (0.2g/cc) and spraying this liquid 50a on a test piece 100mm x 100+nm at appropriate times.The evaluation was based on whether talcum powder remained on the surface. , items that can be washed away later are marked ◎, and items where talcum powder has leaked out from the back side or caused clogging are marked with As shown in Figure 1, a piece of artificial leather (50 mm
x 30 mm) 2. Using a load of 2 kg, change the inclination of the porous material (molded body) 1 and measure the angle θ at which the artificial leather piece begins to slide, and calculate the coefficient of friction (tan θ). A coefficient of 0.6 or more is indicated by ◎, and a coefficient less than 0.6 is indicated by ×. Table 1 As shown in Table 1, Example 1. 2 were all good, but Comparative Examples 1 and 2 had poor evaluations of opening diameter, pore volume, and stain resistance, and conventional and reference examples had poor evaluations.
There was a problem with stain resistance.

【発明の効果】【Effect of the invention】

本発明にかかる多孔性材料の製造方法は、以上のように
構成されているので、表面が略平滑で、微細な開口を表
面に有し、裏面には達していない細孔を内部に多数備え
た多孔性材料を精度よく得ることができる。 そして、得られる多孔性材料は、水濡れ時に滑りにくく
、しかも汚れにくい。したがって、浴室、調理室、便所
、玄関、ベランダ、プールサイド、シャワールーム等に
おけるフロア−材として有効に利用できる。 また、表面に細孔が開口していることから、フロア−材
だけでなく吸放湿壁材、防音材等各種の建築材料として
も適す。
Since the method for producing a porous material according to the present invention is configured as described above, the surface is substantially smooth, has fine openings on the surface, and has many pores inside that do not reach the back surface. Porous materials can be obtained with high precision. The resulting porous material is resistant to slipping when wet and resistant to staining. Therefore, it can be effectively used as a flooring material in bathrooms, cooking rooms, toilets, entrances, balconies, poolsides, shower rooms, etc. In addition, since the surface has pores, it is suitable not only for flooring materials but also for various building materials such as moisture-absorbing wall materials and soundproofing materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は滑り抵抗性試験を説明する説明図である。 1・・・多孔性材料 特許出願人   積水化学工業株式会社第1図 FIG. 1 is an explanatory diagram illustrating a slip resistance test. 1...Porous material Patent applicant: Sekisui Chemical Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)予め粒径0.3mm以下の微細粉粒体に混合時に
液状である反応性樹脂を真体積比率で1:1から20:
1の範囲で混合させ、得られた混合物を前記微細粉粒体
の粒径以上で5mm以下のメッシュ径の篩にかけ、篩か
ら落下した粉状体を成形型上に敷き詰め、加圧加熱成形
することを特徴とする多孔性材料の製造方法。
(1) A reactive resin that is liquid at the time of mixing into fine powder with a particle size of 0.3 mm or less in a true volume ratio of 1:1 to 20:
1, the resulting mixture is passed through a sieve with a mesh diameter of at least the particle size of the fine powder and 5 mm or less, and the powder that falls from the sieve is spread on a mold and molded under pressure and heat. A method for producing a porous material, characterized by:
JP33843090A 1990-11-30 1990-11-30 Porous material and its production Pending JPH04209771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33843090A JPH04209771A (en) 1990-11-30 1990-11-30 Porous material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33843090A JPH04209771A (en) 1990-11-30 1990-11-30 Porous material and its production

Publications (1)

Publication Number Publication Date
JPH04209771A true JPH04209771A (en) 1992-07-31

Family

ID=18318077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33843090A Pending JPH04209771A (en) 1990-11-30 1990-11-30 Porous material and its production

Country Status (1)

Country Link
JP (1) JPH04209771A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114154A1 (en) * 2006-03-28 2007-10-11 Marusho Natsuyama Felt Co., Ltd. Sound absorbing material as vehicle exterior equipment and process for manufacturing the same
JP2010505719A (en) * 2006-09-30 2010-02-25 北京仁▲創▼科技集▲団▼有限公司 Composite permeable brick and mixed material for manufacturing surface layer of composite permeable brick
JP2011201724A (en) * 2010-03-25 2011-10-13 Neive:Kk Porous alumina sintered compact and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114154A1 (en) * 2006-03-28 2007-10-11 Marusho Natsuyama Felt Co., Ltd. Sound absorbing material as vehicle exterior equipment and process for manufacturing the same
US8278228B2 (en) 2006-03-28 2012-10-02 Marusho Natsuyama Felt Co., Ltd. Sound absorbing materials as vehicle exterior equipment and manufacturing method thereof
JP2010505719A (en) * 2006-09-30 2010-02-25 北京仁▲創▼科技集▲団▼有限公司 Composite permeable brick and mixed material for manufacturing surface layer of composite permeable brick
JP2011201724A (en) * 2010-03-25 2011-10-13 Neive:Kk Porous alumina sintered compact and method for producing the same

Similar Documents

Publication Publication Date Title
JP5228220B2 (en) Flexible and rollable cementitious membrane and method for producing the same
JPH04209771A (en) Porous material and its production
US10640675B2 (en) Hybrid polymer coating for petrous or ceramic substrates, petrous or ceramic substrate, and obtaining method
JPH04209770A (en) Porous material and its production
JP6095275B2 (en) Surface concrete surface high pressure adjustment method and ground concrete floor construction method using the same
JPH07122047B2 (en) Anti-slip agent
JP2940555B2 (en) Porous molded body
JPH0446074A (en) Porous material
JP3417700B2 (en) Lightweight body composition for thickening decorative pattern formation
JPH0314864A (en) Molding composition for porous material
JPH03108527A (en) Manufacture of porous material
JPH0446072A (en) Production of porous material
JP3342274B2 (en) Manufacturing method of surface material
JPH074265Y2 (en) Permeable flooring
JP2763121B2 (en) Floor material
JPH0313319A (en) Method of manufacturing porous molding
JPH0446076A (en) Production of porous material
JP3256178B2 (en) Method of manufacturing patterned lightweight cellular concrete panel
JPH02308066A (en) Form for placing concrete
JPH0987053A (en) Instantaneously demoldable porous concrete molding and its production
JP2940554B2 (en) Method for producing porous floor material
JPH0227301B2 (en)
JPH05178651A (en) Production of inorganic building plate
JPH0446071A (en) Production of porous material
JPH03100029A (en) Porous board and its preparation