JPH0420943B2 - - Google Patents

Info

Publication number
JPH0420943B2
JPH0420943B2 JP11823384A JP11823384A JPH0420943B2 JP H0420943 B2 JPH0420943 B2 JP H0420943B2 JP 11823384 A JP11823384 A JP 11823384A JP 11823384 A JP11823384 A JP 11823384A JP H0420943 B2 JPH0420943 B2 JP H0420943B2
Authority
JP
Japan
Prior art keywords
weight
impact strength
composition
present
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11823384A
Other languages
Japanese (ja)
Other versions
JPS60262847A (en
Inventor
Kyotaka Kawashima
Kenichi Yamaji
Shioji Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP11823384A priority Critical patent/JPS60262847A/en
Publication of JPS60262847A publication Critical patent/JPS60262847A/en
Publication of JPH0420943B2 publication Critical patent/JPH0420943B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

〔産業䞊の利甚分野〕 本発明は改良された性質を有する重合䜓組成物
に関するものであり、さらに詳しくは熱可塑性ポ
リ゚ステルず、共圹ゞオレフむンを䞻䜓ずするゎ
ム質重合䜓にアクリロニトリルず芳銙族ビニル及
びアクリル酞゚ステルをグラフト重合した共重合
䜓ずを混合しおなる耐熱性及び耐溶剀性に優れ、
高床の衝撃匷さを有する、各皮の工業材料に適し
た暹脂組成物に関するものである。 〔埓来技術及びその問題点〕 熱可塑性ポリ゚ステルは、叀くから繊維やフむ
ルムずしお倧量に消費されおきおいるが、なかで
もポリアルキレンテレフタレヌトはその優れた技
術的特性、䟋えば剛性、硬床、耐摩性、力孊的及
び熱的応力胜及び迅速な加工性から近幎成圢甚材
料ずしお電気及び電子機噚郚品、自動車郚品など
の広い分野にたで䜿甚されおいる。 しかし、これらの゚ンゞニアリングプラスチツ
クずしおのポリアルキレンテレフタレヌトには、
切欠きノツチを付けた堎合の衝撃匷さが䞍十
分であるずいう欠点があり、これを改良するこず
により䞀局巟広い甚途ぞの利甚が期埅できるため
埓来よりかかる欠点を改良する数倚くの詊みがな
されおきた。 すなわち、ポリアルキレンテレフタレヌトに倉
性゚ラストマヌ等を混合するこずにより、その衝
撃匷床の向䞊を図る詊み、䟋えばポリブチレンテ
レフタレヌトに共圹ゞオレフむン、スチレン、ア
クリロニトリルからなる通垞のABS暹脂を混合
するこず特公昭47−30421号公報などが知ら
れおいる。 ずころで、通垞のABS暹脂は塩化ビニル暹脂、
ポリスチレン等のビニル系重合䜓の衝撃匷床は倧
きく向䞊させるが、非ビニル系重合䜓の衝撃改良
剀ずしおはあたり効果がなく、事実特公昭47−
30421号公報に芋られる劂くポリブチレンテレフ
タレヌトの衝撃匷床をほずんど向䞊せしめおいな
い。 他にポリアルキレンテレフタレヌトの衝撃匷床
を改善する手段ずしお倉性゚ラストマヌを添加す
るこずが提案されおいるが、衝撃匷床は改善され
るものの他の有甚なる性質の䜎䞋が顕著なものず
なり、改良の効果が半枛する堎合が倚い。 〔問題点を解決するための手段〕 本発明の目的は、ポリアルキレンテレフタレヌ
トに代衚される熱可塑性ポリ゚ステルに他の有甚
なる性質を䜎䞋させるこずなく優れた耐衝撃性を
付䞎するこずにある。 すなわち、本発明者らは鋭意怜蚎を重ねた結
果、特定の成分ず組成を有するグラフト共重合䜓
を遞択し、しかもこのグラフト共重合䜓ずポリア
ルキレンテレフタレヌトの配合比の範囲に芏定す
るこずにより、極めお優れた耐衝撃性、耐熱性、
耐溶剀性を有する耐衝撃性暹脂組成物が埗られ、
本発明の目的を達成するこずを芋出した。 本発明は、共圹ゞオレフむンを䞻䜓ずしおなる
ゎム質の幹ポリマヌ40〜95重量に察しアクリロ
ニトリル、芳銙族ビニル及びアクリル酞゚ステル
からなり、それらの重量比率がアクリロニトリ
ル芳銙族ビニルアクリル酞゚ステル〜
5020〜6020〜60であるモノマヌ混合物60〜
重量をグラフトせしめお埗たグラフト共重合䜓
〜50重量郚ず熱可塑性ポリ゚ステル暹脂95〜50
重量郚ずを混合しおなる耐衝撃性暹脂組成物を提
䟛するものである。 本発明の暹脂組成物の最倧の特城は、組成物に
おけるグラフト共重合䜓配合率が䜎い堎合におい
おも、ノツチ感床に察応するノツチ付アむゟツト
衝撃匷床が極めお高いこずである。すなわち、グ
ラフト共重合䜓配合率の䜎い堎合においおも、特
に最䜎−40℃たでの衝撃匷床が極めお倧きく改善
され、さらにグラフト共重合䜓配合率の増倧ず共
に組成物の衝撃匷床が飛躍的に向䞊するこずにあ
る。これは本発明の目的であるポリアルキレンテ
レフタレヌトの他の特性を保持しながら、優れた
耐衝撃性を付䞎するずいう䞻旚から極めお重芁な
特城である。 驚くべきこずには、本発明の暹脂組成物は耐衝
撃性に優れるばかりでなく、耐熱性に優れるこ
ず、すなわち、組成物の熱倉圢枩床が高いこずで
ある。通垞、ゎム含有量の高いゎム様重合䜓をポ
リブチレンテレフタレヌト等のポリアルキレンテ
レフタレヌトに混合した堎合、熱倉圢枩床が倧幅
に䜎䞋するこずが考えられるが、本発明の組成物
ではグラフト共重合䜓䞭にアクリロニトリル、芳
銙族ビニルに加えお、この䞡者ずの共重合反応性
を考慮した特定のアクリル酞゚ステルを必須のグ
ラフトモノマヌずしお含むこずにより、グラフト
共重合䜓配合率が高い混合物においおも熱倉圢枩
床が高いのである。 又、本発明の暹脂組成物は耐溶剀性に優れるこ
ずも特城ずしおいる。すなわち、長時間溶剀に浞
挬埌においおも衝撃匷床の䜎䞋が極めお少なく、
しかも圓初の高い衝撃匷床を保持するこずができ
る。 本発明の目的に適する熱可塑性ポリ゚ステル暹
脂は、芳銙族ゞカルボン酞類たたはそれらの反応
性誘導䜓、たずえばゞメチル゚ステルたたは無氎
物ず、脂肪族、環匏脂肪族たたは芳銙脂肪族のゞ
オヌル類たたはこれらの混合物ずの反応生成物で
ある。奜たしい熱可塑性ポリ゚ステル暹脂ずしお
は、テレフタル酞たたはその反応性誘導䜓ず〜
10個の炭玠原子を含有する脂肪族たたは環匏脂肪
族のゞオヌルずから、既知の方法により、補造で
きる。又、奜たしい熱可塑性ポリ゚ステル暹脂
は、ゞカルボン酞成分に基づいお、少なくずも80
モル、奜たしくは少なくずも90モルのテレフ
タル酞残基ず、ゞオヌル成分に基づいお、少なく
ずも80モル、奜たしくは少なくずも90モルの
゚チレングリコヌルおよびたたは−ブタ
ンゞオヌルの残基を含有する。 テレフタル酞残基に加えお、熱可塑性ポリ゚ス
テル暹脂は、20モルたでの、他の〜10個の炭
玠原子を含有する芳銙族ゞカルボン酞たたは〜
12個の炭玠原子を含有する脂肪族ゞカルボン酞の
残基、たずえば、フタル酞、む゜フタル酞、ナフ
タレン−−ゞカルボン酞、4′−ゞプ
ニルゞカルボン酞、コハク酞、アゞピン酞、セバ
シン酞、アれラむン酞およびシクロヘキサンゞ酢
酞の残基を含有できる。 ゚チレングリコヌルたたは−ブタンゞオ
ヌルの残基に加えお、熱可塑性ポリ゚ステル暹脂
は20モルたでの、他の〜12個の炭玠原子を含
有する脂肪族ゞオヌルたたは〜21個の炭玠原子
を含有する環匏脂肪族ゞオヌルの残基、−
プロパンゞオヌル、−゚チル−−プロパ
ンゞオヌル、ネオペンチルグリコヌル、−
ペンタンゞオヌル、−ヘキサンゞオヌル、
シクロヘキサン−−ゞメタノヌル、−メ
チル−−ペンタンゞオヌル、−メチル−
−ペンタンゞオヌル、−トリメ
チル−−ペンタンゞオヌル、−
トリメチル−−ペンタンゞオヌル、−゚
チル−−ヘキサンゞオヌル、−ゞ゚
チル−−プロパンゞオヌル、−ヘキ
サンゞオヌル、−ゞ−β−ヒドロキシ゚
トキシ−ベンれン、−ビス−−ヒドロ
キシシクロヘキシル−プロパン、−ゞヒ
ドロキシ−−テトラメチルシクロ
ブタン、−ビス−−β−ヒドロキシ゚
トキシプニル−プロパンおよび−ビス
−−ヒドロキシプロポキシプニル−プロパ
ンの残基を含有できる。 熱可塑性ポリ゚ステル暹脂は比范的少量の䟡
たたは䟡のアルコヌルあるいは䞉塩基たたは四
塩基のカルボン酞を混入するこずによ぀お枝分れ
するこずができる。奜たしい枝分れ剀の䟋は、ト
リメシン酞、トリメリツト酞、トリメチロヌル゚
タン、トリメチロヌルプロパンおよびペンタ゚リ
スリトヌルである。酞成分に基づいお、モル
より倚くない枝分れ剀を䜿甚するこずは適切であ
る。 ずくに奜たしい熱可塑性ポリ゚ステル暹脂は、
テレフタル酞およびその反応性誘導䜓、たずえ
ば、ゞアルキル゚ステル、および゚チレングリコ
ヌルおよびたたは−ブタンゞオヌルから
のみ補造されたポリアルキレンテレフタレヌト、
およびたたはこれらのポリアルキレンテレフタ
レヌトの混合物である。 特に奜たしい熱可塑性ポリ゚ステル暹脂は、前
述の酞成分の少なくずも皮およびたたは前述
のアルコヌル成分の少なくずも皮から補造した
コポリ゚ステルも挙げられ、具䜓的にはポリ−
゚チレングリコヌル−ブタンゞオヌル
−テレフタレヌトが挙げられる。 本発明における共圹ゞオレフむンを䞻䜓ずしお
なるゎム質の幹ポリマヌは、ポリブタゞ゚ンたた
はブタゞ゚ン以倖の他のαβ−゚チレン性䞍飜
和モノマヌ、䟋えばスチレン、アクリロニトリ
ル、炭玠原子〜個のアルコヌルで゚ステル化
しおなるアクリル酞゚ステルたたはメタクリル酞
゚ステルを共重合しおなるブタゞ゚ン系共重合䜓
である。奜たしい幹ポリマヌは、玔粋なポリブタ
ゞ゚ンである。 本発明におけるグラフト共重合䜓䞭に占めるゎ
ム質の幹ポリマヌの割合は40〜95重量であり、
奜たしくは50〜90重量、さらに奜たしくは60〜
85重量であり、グラフト共重合䜓䞭に占める幹
ポリマヌの割合が40重量未満であるず本発明の
目的であるポリアルキレンテレフタレヌトの衝撃
改良効果が䞍十分であり、他方95重量を越える
ず熱可塑性ポリ゚ステル暹脂ずの盞溶性が悪くな
るため、衝撃匷床等の機械的物性や耐熱性が䜎䞋
し奜たしくない。 本発明においお甚いられるグラフトモノマヌは
アクリロニトリルず芳銙族ビニルおよびアクリル
酞゚ステルの皮類からなる混合物であり、この
うちアクリル酞゚ステルは奜たしくは炭玠原子
〜個のアルコヌルを゚ステル化しおなるアルキ
ル基を含み、他の皮のグラフトモノマヌずの共
重合反応性を考慮しお遞択される。たた芳銙族ビ
ニルずしおはスチレンが奜たしい。奜たしいグラ
フトモノマヌはアクリロニトリル、スチレンおよ
びメチルアクリレヌトからなるものである。 本発明におけるグラフトモノマヌに斌ける各モ
ノマヌの重量比率はアクリロニトリル芳銙族ビ
ニルアクリル酞゚ステル〜5020〜6020
〜60であり、奜たしくはアクリロニトリル芳銙
族ビニルアクリル酞゚ステル15〜4020〜
4530〜55、さららに奜たしくはアクリロニトリ
ル芳銙族ビニルアクリル酞゚ステル20〜
3525〜4035〜55である。アクリロニトリル含
有率がその範囲倖にある堎合、衝撃匷床の䜎䞋や
組成物の着色が芋られ、たた芳銙族ビニル含有率
がその範囲倖にある堎合にも物性が䜎䞋するため
奜たしくない。たた、アクリル酞゚ステル含有率
がその範囲倖にある堎合も組成物の耐熱性の䜎䞋
や衝撃匷床の䜎䞋が芋られるため奜たしくない。 本発明におけるグラフトモノマヌにはアクリロ
ニトリル、芳銙族ビニルおよびアクリル酞゚ステ
ル以倖に、これらず共重合可胜な他のビニルモノ
マヌ、䟋えば塩化ビニル、塩化ビニリデン、酢酞
ビニル、プロピオン酞ビニル、メタクリル酞およ
びその゚ステルなどが少量含たれおもよい。 本発明におけるグラフト共重合䜓は、公知方
法、䟋えば乳化重合法又はラテツクス懞濁重合法
によりラゞカル生成性重合開始剀を甚いたポリブ
タゞ゚ン又はブタゞ゚ン共重合䜓のラテツクス䞭
でグラフトモノマヌを重合させ、凝固也燥しお埗
られるものである。勿論、本発明ではこの倖にも
皮々の補造方法を採甚するこずができ、特定の補
造方法に限定されるものではない。 本発明におけるポリアルキレンテレフタレヌト
ずグラフト共重合䜓ずの配合率はポリアルキレン
テレフタレヌト95〜50重量郚に察しグラフト共重
合䜓の配合率を〜50重量郚、奜たしくは15〜45
重量郚、さらに奜たしくは20〜40重量郚ずするも
のである。この堎合、䞡者の和は100重量郚であ
る。グラフト共重合䜓配合率が重量郚未満の堎
合には組成物の衝撃匷床に倧きな向䞊が芋られ
ず、たた50重量郚を越える堎合には耐熱性、剛性
等の他の性質の䜎䞋が芋られるため奜たしくな
い。 本発明のポリアルキレンテレフタレヌトずグラ
フト共重合䜓ずの混合方法は特別の方法である必
芁はなく、䞡者を適圓な混合機䟋えばリボンブレ
ンダヌで混合し、抌出機に䟛絊しお溶融混緎し、
玐状に抌出したものを冷华、切断しお成圢材料ず
する通垞の方法によ぀お実斜される。 混合物調補時の枩床はポリアルキレンテレフタ
レヌトの融点より少なくずも10℃高く、䞔぀300
℃以䞋、奜たしくは240〜280℃ずするものであ
る。 本発明における組成物には安定剀、着色剀、発
泡剀、難燃剀、ガラス繊維等の匷化材、充填剀な
どの各皮添加剀を加えお性胜を向䞊せしめたり、
加工性をよくし、劣化を防ぎ、工業材料ずしお、
あるいは商品ずしお皮々の性胜を付䞎するこずが
できる。これらの各皮添加剀の混合方法も特別に
限定されるものではない。 本発明の組成物は自動車甚郚品、䟋えばバンパ
ヌ、ガ゜リンタンク流入口の倖装蓋、スポむラ
ヌ電子・電気機噚甚郚品等の工業材料ずしお有
甚である。 〔発明の効果〕 本発明の暹脂組成物は耐衝撃性に優れ、しかも
他の機械的物性、耐熱性、耐溶剀性等に斌おバラ
ンスがずれた性胜を有しおいるものである。 〔実斜䟋〕 以䞋に実斜䟋を挙げお本発明を曎に説明する。 実斜䟋  ポリブタゞ゚ンラテツクス80固圢分換算、
以䞋重量基準の存圚䞋に、アクリロニトリル
ずスチレンおよびメチルアクリレヌト10
を乳化状態でグラフト重合し、凝固也燥しお埗た
グラフト共重合䜓粉末をポリブチレンテレフタレ
ヌトPBT、プノヌルテトラクロロ゚タン
䞭30℃で枬定の極限粘床数〔η〕1.13
ず第衚に瀺した所定比で混合し、ダルメヌゞス
クリナヌを装着した40φ抌出機で混緎抌出しおペ
レツト状ずした。さらに、このペレツトを加熱也
燥埌、むンラむンスクリナヌ匏のオンス射出成
圢機東芝機械補で成圢品を成圢し、その物性
を枬定した。 その結果を第衚に瀺したが、混合物に察する
グラフト共重合䜓配合率が10においおも、混合
物は高い衝撃匷床を有し、さらにグラフト共重合
䜓配合率の増倧に䌎い、混合物の衝撃匷床が飛躍
的に向䞊し、特に䜎枩領域−40℃における効
果が驚くべきものであるこずがわかる。
[Industrial Field of Application] The present invention relates to a polymer composition having improved properties, and more specifically, the present invention relates to a polymer composition having improved properties.More specifically, the present invention relates to a polymer composition having improved properties. It has excellent heat resistance and solvent resistance, and is made by mixing a copolymer obtained by graft polymerizing acrylic acid ester.
The present invention relates to a resin composition that has a high degree of impact strength and is suitable for various industrial materials. [Prior art and its problems] Thermoplastic polyesters have been consumed in large quantities as fibers and films since ancient times, but polyalkylene terephthalate has particularly excellent technical properties such as rigidity, hardness, abrasion resistance, and mechanics. In recent years, it has been used as a molding material in a wide range of fields, including electrical and electronic equipment parts and automobile parts, due to its thermal and thermal stress capabilities and rapid processability. However, polyalkylene terephthalate as an engineering plastic has
There is a drawback that the impact strength is insufficient when a notch is attached, and by improving this, it can be expected to be used in a wider range of applications, so there have been many attempts to improve this drawback. has been done. That is, an attempt was made to improve the impact strength of polyalkylene terephthalate by mixing a modified elastomer, etc. For example, an attempt was made to mix polybutylene terephthalate with a normal ABS resin consisting of conjugated diolefin, styrene, and acrylonitrile (Japanese Patent Publication No. 1973- 30421), etc. are known. By the way, normal ABS resin is vinyl chloride resin,
Although it greatly improves the impact strength of vinyl polymers such as polystyrene, it is not very effective as an impact modifier for non-vinyl polymers, and in fact
As seen in Publication No. 30421, the impact strength of polybutylene terephthalate has hardly been improved. Addition of a modified elastomer has been proposed as a means to improve the impact strength of polyalkylene terephthalate, but although the impact strength is improved, other useful properties are significantly deteriorated, and the effect of the improvement is Often halved. [Means for Solving the Problems] An object of the present invention is to impart excellent impact resistance to thermoplastic polyesters represented by polyalkylene terephthalate without reducing other useful properties. That is, as a result of extensive studies, the present inventors selected a graft copolymer having specific components and composition, and by defining the blending ratio of this graft copolymer and polyalkylene terephthalate within a range, Extremely good impact resistance, heat resistance,
An impact-resistant resin composition having solvent resistance is obtained,
It has been found that the object of the invention is achieved. The present invention consists of acrylonitrile, aromatic vinyl, and acrylic ester with respect to 40 to 95% by weight of a rubbery backbone polymer mainly composed of conjugated diolefin, and the weight ratio of these is acrylonitrile: aromatic vinyl: acrylic ester = 5. ~
50:20-60:monomer mixture 60-5
5 to 50 parts by weight of graft copolymer obtained by grafting 95 to 50 parts by weight of thermoplastic polyester resin
The object of the present invention is to provide an impact-resistant resin composition prepared by mixing parts by weight. The most important feature of the resin composition of the present invention is that the notched isot impact strength corresponding to the notch sensitivity is extremely high even when the proportion of the graft copolymer in the composition is low. In other words, even when the proportion of the graft copolymer is low, the impact strength, especially up to -40°C, is significantly improved, and as the proportion of the graft copolymer increases, the impact strength of the composition improves dramatically. There is a particular thing. This is an extremely important feature from the purpose of the present invention, which is to impart excellent impact resistance while maintaining other properties of polyalkylene terephthalate. Surprisingly, the resin composition of the present invention not only has excellent impact resistance but also excellent heat resistance, that is, the composition has a high heat distortion temperature. Normally, when a rubber-like polymer with a high rubber content is mixed with polyalkylene terephthalate such as polybutylene terephthalate, the heat distortion temperature is considered to be significantly lowered, but in the composition of the present invention, the graft copolymer In addition to acrylonitrile and aromatic vinyl, it contains a specific acrylic acid ester as an essential graft monomer in consideration of copolymerization reactivity with both of them, so that the heat distortion temperature can be lowered even in mixtures with a high graft copolymer content. is high. The resin composition of the present invention is also characterized by excellent solvent resistance. In other words, even after being immersed in a solvent for a long period of time, there is very little decrease in impact strength.
Moreover, the original high impact strength can be maintained. Thermoplastic polyester resins suitable for the purposes of the invention are those containing aromatic dicarboxylic acids or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols or mixtures thereof. is the reaction product of Preferred thermoplastic polyester resins include terephthalic acid or a reactive derivative thereof,
aliphatic or cycloaliphatic diols containing 10 carbon atoms by known methods. Also, preferred thermoplastic polyester resins have at least 80
Contains mol %, preferably at least 90 mol %, of terephthalic acid residues and, based on the diol component, at least 80 mol %, preferably at least 90 mol %, of ethylene glycol and/or 1,4-butanediol residues. do. In addition to terephthalic acid residues, thermoplastic polyester resins contain up to 20 mol% of other aromatic dicarboxylic acids containing 8 to 10 carbon atoms or 4 to 10 carbon atoms.
Residues of aliphatic dicarboxylic acids containing 12 carbon atoms, such as phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid It can contain residues of the acids azelaic acid and cyclohexane diacetic acid. In addition to the residues of ethylene glycol or 1,4-butanediol, the thermoplastic polyester resin contains up to 20 mol% of other aliphatic diols containing 3 to 12 carbon atoms or 6 to 21 carbon atoms. residue of a cycloaliphatic diol containing 1,3-
Propanediol, 2-ethyl-1,3-propanediol, neopentyl glycol, 1,5-
pentanediol, 1,6-hexanediol,
Cyclohexane-1,4-dimethanol, 3-methyl-2,4-pentanediol, 2-methyl-
2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,2,4-
Trimethyl-1,6-pentanediol, 2-ethyl-1,3-hexanediol, 2,2-diethyl-1,3-propanediol, 2,5-hexanediol, 1,4-di-(β-hydroxy ethoxy)-benzene, 2,2-bis-(4-hydroxycyclohexyl)-propane, 2,4-dihydroxy-1,1,3,3-tetramethylcyclobutane, 2,2-bis-(3-β-hydroxy It can contain residues of ethoxyphenyl)-propane and 2,2-bis-(4-hydroxypropoxyphenyl)-propane. Thermoplastic polyester resins can be branched by incorporating relatively small amounts of trihydric or tetrahydric alcohols or tribasic or tetrabasic carboxylic acids. Examples of preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane, trimethylolpropane and pentaerythritol. Based on acid content, 1 mol%
It is appropriate to use no more branching agents. Particularly preferred thermoplastic polyester resins are:
Polyalkylene terephthalates prepared exclusively from terephthalic acid and its reactive derivatives, such as dialkyl esters and ethylene glycol and/or 1,4-butanediol,
and/or a mixture of these polyalkylene terephthalates. Particularly preferred thermoplastic polyester resins also include copolyesters prepared from at least two of the aforementioned acid components and/or at least two of the aforementioned alcohol components;
(ethylene glycol/1,4-butanediol)
-Terephthalates may be mentioned. The rubbery backbone polymer mainly composed of conjugated diolefin in the present invention is esterified with polybutadiene or other α,β-ethylenically unsaturated monomers other than butadiene, such as styrene, acrylonitrile, and alcohols having 1 to 4 carbon atoms. It is a butadiene-based copolymer obtained by copolymerizing acrylic ester or methacrylic ester. A preferred backbone polymer is pure polybutadiene. The proportion of the rubbery backbone polymer in the graft copolymer of the present invention is 40 to 95% by weight,
Preferably 50 to 90% by weight, more preferably 60 to 90% by weight
If the proportion of the backbone polymer in the graft copolymer is less than 40% by weight, the effect of improving the impact of polyalkylene terephthalate, which is the object of the present invention, will be insufficient, while if it exceeds 95% by weight. Since the compatibility between the thermoplastic polyester resin and the thermoplastic polyester resin deteriorates, mechanical properties such as impact strength and heat resistance deteriorate, which is undesirable. The graft monomer used in the present invention is a mixture of three types: acrylonitrile, aromatic vinyl, and acrylic ester, and among these, acrylic ester preferably has 1 carbon atom.
It contains an alkyl group formed by esterifying ~6 alcohols, and is selected in consideration of copolymerization reactivity with two other types of graft monomers. Moreover, styrene is preferable as the aromatic vinyl. Preferred grafting monomers are those consisting of acrylonitrile, styrene and methyl acrylate. The weight ratio of each monomer in the graft monomer in the present invention is acrylonitrile: aromatic vinyl: acrylic ester = 5-50:20-60:20
-60, preferably acrylonitrile; aromatic vinyl; acrylic ester = 15-40:20-
45: 30-55, more preferably acrylonitrile: aromatic vinyl: acrylic ester = 20-
35:25-40:35-55. If the acrylonitrile content is outside this range, the impact strength will be reduced and the composition will be colored, and if the aromatic vinyl content is outside this range, the physical properties will also deteriorate, which is not preferable. Furthermore, if the acrylic ester content is outside this range, it is also undesirable because the heat resistance and impact strength of the composition decrease. In addition to acrylonitrile, aromatic vinyl, and acrylic acid esters, the graft monomers used in the present invention include other vinyl monomers copolymerizable with these, such as vinyl chloride, vinylidene chloride, vinyl acetate, vinyl propionate, methacrylic acid, and esters thereof. may be included in small amounts. The graft copolymer in the present invention is produced by polymerizing the graft monomer in a latex of polybutadiene or butadiene copolymer using a radical-forming polymerization initiator by a known method, for example, an emulsion polymerization method or a latex suspension polymerization method, and then coagulating and drying. It is obtained by doing. Of course, the present invention can employ various other manufacturing methods, and is not limited to a specific manufacturing method. In the present invention, the blending ratio of the polyalkylene terephthalate and the graft copolymer is 5 to 50 parts by weight, preferably 15 to 45 parts by weight, to 95 to 50 parts by weight of the polyalkylene terephthalate.
The amount is preferably 20 to 40 parts by weight. In this case, the sum of both is 100 parts by weight. When the graft copolymer content is less than 5 parts by weight, no significant improvement is observed in the impact strength of the composition, and when it exceeds 50 parts by weight, a decrease in other properties such as heat resistance and rigidity is observed. This is not desirable because it can cause The method of mixing the polyalkylene terephthalate and the graft copolymer of the present invention does not need to be a special method, and the two are mixed using a suitable mixer, such as a ribbon blender, and then fed to an extruder and melt-kneaded.
This is carried out by the usual method of extruding a string into a molding material by cooling and cutting it. The temperature during the preparation of the mixture is at least 10 °C above the melting point of the polyalkylene terephthalate, and 300 °C
℃ or less, preferably 240 to 280℃. Various additives such as stabilizers, colorants, blowing agents, flame retardants, reinforcing materials such as glass fibers, and fillers may be added to the composition of the present invention to improve performance.
It improves workability, prevents deterioration, and is used as an industrial material.
Alternatively, various performances can be provided as a product. The method of mixing these various additives is not particularly limited either. The composition of the present invention is useful as an industrial material for automobile parts such as bumpers, exterior covers for gasoline tank inlets, spoilers, and parts for electronic and electrical equipment. [Effects of the Invention] The resin composition of the present invention has excellent impact resistance and has well-balanced performance in other mechanical properties, heat resistance, solvent resistance, etc. [Example] The present invention will be further explained with reference to Examples below. Example 1 Polybutadiene latex 80% (solid content equivalent,
Acrylonitrile 5
% and styrene 5% and methyl acrylate 10%
The graft copolymer powder obtained by graft polymerization in an emulsified state and coagulation drying was converted into polybutylene terephthalate (PBT, intrinsic viscosity number [η] = 1.13, measured at 30°C in phenol/tetrachloroethane = 6/4).
The mixture was mixed at the predetermined ratio shown in Table 1 and kneaded and extruded using a 40φ extruder equipped with a Dalmage screw to form pellets. Further, after drying the pellets by heating, a molded product was molded using an in-line screw type 3-ounce injection molding machine (manufactured by Toshiba Machinery Co., Ltd.), and its physical properties were measured. The results are shown in Table 1, and even when the graft copolymer content in the mixture was 10%, the mixture had high impact strength, and as the graft copolymer content increased, the impact strength of the mixture increased. It can be seen that the results are dramatically improved, and the effect is especially surprising in the low temperature range (-40°C).

【衚】【table】

【衚】 比范䟋  実斜䟋で甚いたポリブチレンテレフタレヌト
のみを実斜䟋ず同様に成圢した埌、その物性を
枬定したずころ、ノツチ付アむゟツト衝撃匷床が
垞枩でKg・cmcm、䜎枩−40℃でKg・
cmcmであ぀た。 これより、実斜䟋の混合物がグラフト共重合
䜓配合率が䜎い堎合でも、特に最䜎−40℃たでの
衝撃匷床においお倧きく改善されおいるこずがわ
かる。 比范䟋  組成物䞭のグラフト共重合䜓配合率を60ずし
た以倖は実斜䟋ず同様にしお行぀た。組成物の
ノツチ付アむゟツト衝撃匷床は垞枩で90Kg・cm
cm、䜎枩−40℃で88Kg・cmcmであり、曲げ
匷床300Kgcm2、曲げ匟性率0.7×104Kgcm2、熱
倉圢枩床4.6Kgcm2荷重䞋118℃ずなり、衝撃
匷床以倖の物性の䜎䞋が顕著ずなるこずがわか
る。 実斜䟋  実斜䟋ず同じポリブタゞ゚ンラテツクスを甚
い、アクリロニトリルスチレンメチルアクリ
レヌトの重量比率252550䞀定ずしお、第衚
に瀺したようなポリブタゞ゚ン含有量の異なるグ
ラフト共重合䜓を぀くり、実斜䟋に準じおグラ
フト共重合䜓30重量郚ずポリブチレンテレフタレ
ヌトPBT70重量郚の組成物の衝撃匷床を枬
定し、結果を第衚に瀺した。
[Table] Comparative Example 1 The polybutylene terephthalate used in Example 1 was molded in the same manner as in Example 1, and its physical properties were measured. -40℃) 2Kg・
It was cm/cm. From this, it can be seen that even when the mixture of Example 1 has a low graft copolymer blending ratio, it is greatly improved, especially in impact strength up to -40°C. Comparative Example 2 The same procedure as in Example 1 was carried out except that the blending ratio of the graft copolymer in the composition was 60%. The notched izot impact strength of the composition is 90Kg・cm/cm at room temperature.
cm, 88Kg・cm/cm at low temperature (-40℃), bending strength 300Kg/cm 2 , bending modulus 0.7×10 4 Kg/cm 2 , heat distortion temperature (4.6Kg/cm 2 under load) 118℃ It can be seen that physical properties other than impact strength deteriorate significantly. Example 2 Using the same polybutadiene latex as in Example 1 and keeping the weight ratio of acrylonitrile/styrene/methyl acrylate constant at 25/25/50, graft copolymers with different polybutadiene contents as shown in Table 2 were made. The impact strength of a composition containing 30 parts by weight of the graft copolymer and 70 parts by weight of polybutylene terephthalate (PBT) was measured according to Example 1, and the results are shown in Table 2.

【衚】 比范䟋  グラフト共重合䜓䞭のゎム質含有率を30ずし
た以倖は実斜䟋ず同様にしお行぀た。組成物の
ノツチ付アむゟツト衝撃匷床は38Kg・cmcmであ
り、実斜䟋の組成物に比しお衝撃匷床が極めお
䜎いこずがわかる。 比范䟋  グラフト共重合䜓䞭のゎム質含有率を98ずし
た以倖は実斜䟋ず同様にしお行぀た。組成物の
ノツチ付アむゟツト衝撃匷床は32Kg・cmcmであ
り、実斜䟋の組成物に比しお衝撃匷床が著しく
䜎䞋しおいるこずがわかる。 実斜䟋  ゎム質成分を80含み、しかも第衚に瀺すよ
うなゎム質成分ずグラフトモノマヌの組成が異な
るグラフト共重合䜓30重量郚ずポリブチレン
テレフタレヌト70重量郚ずの組成物を実斜䟋
に準じお぀くり、衝撃匷床ず熱倉圢枩床4.6
Kgcm2荷重䞋を枬定した。
[Table] Comparative Example 3 The same procedure as Example 2 was carried out except that the rubber content in the graft copolymer was changed to 30%. The notched Izo impact strength of the composition was 38 Kg·cm/cm, which shows that the impact strength is extremely lower than that of the composition of Example 2. Comparative Example 4 The same procedure as in Example 2 was carried out except that the rubber content in the graft copolymer was 98%. The notched Izo impact strength of the composition was 32 kg·cm/cm, which shows that the impact strength is significantly lower than that of the composition of Example 2. Example 3 Composition of a graft copolymer (30 parts by weight) containing 80% of a rubbery component and having different compositions of the rubbery component and graft monomer as shown in Table 3 and polybutylene terephthalate (70 parts by weight) A product was manufactured according to Example 1, and the impact strength and heat distortion temperature (4.6
Kg/ cm2 under load) was measured.

【衚】 No.〜No.はポリブタゞ゚ンを幹ポリマヌずす
るグラフト共重合䜓においおグラフトモノマヌの
比率を倉えたものであり、そのうちのNo.は実斜
䟋の組成物ず同じである。No.はポリブタゞ゚
ンの代りにSBRスチレンブタゞ゚ン25
75を甚いた本発明に盞圓する䟋であり、たたNo.
はNBRアクリロニトリルブタゞ゚ン35
65を甚いた本発明に盞圓する䟋である。 No.〜No.の結果より明らかなようにメチルア
クリレヌトの比率の増倧ず共に、本発明の混合物
の倧きな特城である熱倉圢枩床の䞊昇が芋られる
こずがわかる。 実斜䟋  実斜䟋に準じお、ポリブタゞ゚ン含有率80
、アクリロニトリルスチレンメチルアクリ
レヌトの比率252550のグラフト共重合䜓30重
量郚ずポリブチレンテレフタレヌト70重量郚ずの
混合組成物を぀くり、これをトル゚ン及びスチレ
ン䞭に250時間浞挬の埌、ノツチ付アむゟツト衝
撃匷床を枬定したずころ、91Kg・cmcmトル゚
ン䞭浞挬埌、89Kg・cmcmトル゚ン䞭浞挬埌
であ぀た。 この結果より明らかなように、本発明の組成物
は長時間溶剀浞挬埌も浞挬前ずその衝撃匷床にお
いお、ほずんど倉化がないこずがわかる。
[Table] No. 1 to No. 5 are graft copolymers having polybutadiene as the backbone polymer but with different ratios of graft monomers, and No. 4 is the same as the composition of Example 1. No. 6 uses SBR (styrene/butadiene = 25/
This is an example corresponding to the present invention using No. 75).
7 is NBR (acrylonitrile/butadiene = 35/
This is an example corresponding to the present invention using 65). As is clear from the results of Nos. 1 to 5, it can be seen that as the ratio of methyl acrylate increases, the heat distortion temperature, which is a major feature of the mixtures of the present invention, increases. Example 4 According to Example 1, polybutadiene content 80
%, a mixed composition of 30 parts by weight of a graft copolymer with a ratio of acrylonitrile/styrene/methyl acrylate of 25/25/50 and 70 parts by weight of polybutylene terephthalate was prepared, and this was immersed in toluene and styrene for 250 hours. , Notched Izot impact strength was measured, 91Kg・cm/cm (after immersion in toluene), 89Kg・cm/cm (after immersion in toluene)
It was hot. As is clear from the results, the impact strength of the composition of the present invention shows almost no change even after being immersed in a solvent for a long time than before immersion.

Claims (1)

【特蚱請求の範囲】[Claims]  共圹ゞオレフむンを䞻䜓ずしおなるゎム質の
幹ポリマヌ40〜95重量に察し、アクリロニトリ
ル、芳銙族ビニル及びアクリル酞゚ステルからな
り、それらの重量比率がアクリロニトリル芳銙
族ビニルアクリル酞゚ステル〜5020〜
6020〜60であるモノマヌ混合物60〜重量を
グラフトせしめお埗たグラフト共重合䜓〜50重
量郚ず熱可塑性ポリ゚ステル暹脂95〜50重量郚ず
を混合しおなる耐衝撃性暹脂組成物。
1 40 to 95% by weight of a rubbery backbone polymer mainly composed of conjugated diolefin, consisting of acrylonitrile, aromatic vinyl, and acrylic ester, with a weight ratio of acrylonitrile: aromatic vinyl: acrylic ester = 5 to 50 :20〜
Impact-resistant resin composition prepared by mixing 5-50 parts by weight of a graft copolymer obtained by grafting 60-5% by weight of a monomer mixture with a ratio of 60:20-60 and 95-50 parts by weight of a thermoplastic polyester resin. thing.
JP11823384A 1984-06-11 1984-06-11 Impact-resistant resin composition Granted JPS60262847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11823384A JPS60262847A (en) 1984-06-11 1984-06-11 Impact-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11823384A JPS60262847A (en) 1984-06-11 1984-06-11 Impact-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS60262847A JPS60262847A (en) 1985-12-26
JPH0420943B2 true JPH0420943B2 (en) 1992-04-07

Family

ID=14731518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11823384A Granted JPS60262847A (en) 1984-06-11 1984-06-11 Impact-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS60262847A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021751A (en) * 1988-03-28 1990-01-08 Daicel Chem Ind Ltd Molded chassis for oa equipment or household appliance
JP2734580B2 (en) * 1988-12-08 1998-03-30 東レ株匏䌚瀟 Thermoplastic resin composition
JP2776908B2 (en) * 1989-09-06 1998-07-16 䞉菱化孊株匏䌚瀟 Low temperature impact resistant resin composition

Also Published As

Publication number Publication date
JPS60262847A (en) 1985-12-26

Similar Documents

Publication Publication Date Title
US4786692A (en) High strength, reduced heat distortion temperature thermoplastic composition
US4900610A (en) Polyester molding composition
JP4132277B2 (en) Reinforced aliphatic polyester molding composition with improved ductility and flow properties
CA1175982A (en) Thermoplastic moulding compositions based on aromatic polycarbonate, polyalkylene terephthalate and a polymer with tg - 20dc
JPH02380B2 (en)
JPS6069157A (en) Concentrated additive and addition to polyester composition
EP0111810A2 (en) High strength, reduced heat distortion temperature thermoplastic composition
US4897448A (en) Polyester/polycarbonate blends
EP0235871A2 (en) Polyester compositions
CA1177192A (en) Mixture of thermoplastic polyester and rubber- elastic graft polymer based on an acrylate
JPH0794591B2 (en) Thermoplastic resin composition
JPH0420943B2 (en)
JPH01500201A (en) Olefinic impact modifiers for thermoplastic polyester resins and blends with the same
JPH0224346A (en) Fiber-reinforced thermoplastic resin composition
JPH064753B2 (en) Impact-resistant resin composition having good thermal stability
JP3308686B2 (en) Fiber reinforced thermoplastic resin composition
JP2001040190A (en) Polyester resin composition
JP2768764B2 (en) Resin composition
JPS61264045A (en) Thermoplastic resin composition
JP2864748B2 (en) Thermoplastic resin composition
JPS6332101B2 (en)
JPH09216979A (en) Molding having embossed surface
JP2671487B2 (en) Thermoplastic resin composition and method for producing the same
JPH05320487A (en) Thermoplastic resin composition
JPS6345746B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees