JPH04208893A - Area radiation monitor - Google Patents

Area radiation monitor

Info

Publication number
JPH04208893A
JPH04208893A JP34025090A JP34025090A JPH04208893A JP H04208893 A JPH04208893 A JP H04208893A JP 34025090 A JP34025090 A JP 34025090A JP 34025090 A JP34025090 A JP 34025090A JP H04208893 A JPH04208893 A JP H04208893A
Authority
JP
Japan
Prior art keywords
radiation
energy
level
output
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34025090A
Other languages
Japanese (ja)
Inventor
Koichi Onodera
浩一 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34025090A priority Critical patent/JPH04208893A/en
Publication of JPH04208893A publication Critical patent/JPH04208893A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To easily know radiation energy and half life by providing a radiation detection means to output a number of pulses corresponding to the radiation intensity and a radiation level surveillance means to count the outputs and survey a gross radiation-level. CONSTITUTION:In a radiation monitor part 20, pulse number per second is counted in a counting rate meter 21 for the pulse signals sent from a radiation detection part 10 and it is measured to output as a gross radiation level. On the other hand, at each pulse height discriminater 22a,...,22n of the radiation monitor part 20, a predetermined discrimination level for each energy and the radiation level from the radiation detector part 10 are compared. Only when the radiation level is higher than the discrimination level, the radiation level is selectively taken in and output, and then the species is easily identified from the output state.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、原子力発電所その他の放射性物質を取扱う施
設内の作業環境、放射線レベル、プロセス放射線レベル
等の監視に利用されるエリア放射線モニタに係わり、特
に放射線のレベル監視のほか、放射線のエネルギー監視
(核種監視)およびそのエネルギー校正等の技術を付加
したエリア放射線モニタに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to monitoring work environments, radiation levels, process radiation levels, etc. in nuclear power plants and other facilities that handle radioactive materials. The present invention relates to area radiation monitors, and in particular to area radiation monitors that are equipped with technologies such as radiation level monitoring, radiation energy monitoring (nuclide monitoring), and energy calibration.

(従来の技術) 一般に、この種のエリア放射線モニタは、第4図に示す
ように放射性物質を取扱う施設内の所望とする場所に設
置する放射線検出部1と、この放射線検出部1の出力を
当該検出場所から離れた所で計測し監視する放射線モニ
タ部4とによって構成され、前者の放射線検出部1には
放射線の強さに応した数のパルスを出力するGM管検出
器や半導体検出器2の他、増幅器3等が設けられ、後者
の放射線モニ°り部4には前記増幅器2から出力される
パルスを例えば毎秒当りのパルス数として計数する計数
率計5が設けられ、かかる構成によってグロス放射線レ
ベルのみを監視している。なお、以上のようなエリア放
射線モニタはプラントの規模によって異なるものの、通
常、1プラント当り数十チャンネルが設置され、種々の
場所の放射線レベルを測定し監視している。
(Prior Art) In general, this type of area radiation monitor includes a radiation detection section 1 installed at a desired location in a facility that handles radioactive materials, and an output of this radiation detection section 1 as shown in Fig. 4. and a radiation monitor section 4 that measures and monitors at a location away from the detection location, and the former radiation detection section 1 includes a GM tube detector or semiconductor detector that outputs a number of pulses corresponding to the intensity of radiation. In addition to 2, an amplifier 3 and the like are provided, and the latter radiation monitoring section 4 is provided with a count rate meter 5 that counts the pulses output from the amplifier 2, for example, as the number of pulses per second. Only gross radiation levels are monitored. Although the above-mentioned area radiation monitors vary depending on the scale of the plant, usually several dozen channels are installed per plant to measure and monitor radiation levels in various locations.

ところで、放射線の測定にあたっては、■ 放射線の強
さ、■ 放射線のエネルギー、■ 放射線の半減期から
成る3つの情報が必要になるが、エリア放射線モニタの
設置目的が被曝量、放射線の外部放出量の監視にあるこ
とから、主として前記■の放射線の強さ、すなわち放射
線のレベルを測定し監視している。
By the way, when measuring radiation, three pieces of information are required: ■ Radiation intensity; ■ Radiation energy; ■ Radiation half-life; however, the purpose of installing an area radiation monitor is to measure the amount of exposure and the amount of radiation released to the outside. Since this is the monitoring of radiation, the intensity of the radiation described in (2) above, that is, the level of radiation, is mainly measured and monitored.

しかし、実際上、放射線レベルの測定時にレベルが変化
したとき、放射線レベルの測定だけでなく、放射線の核
種を同定しその核種から放射線発生源を追跡することが
非常に重要になってくる。
However, in practice, when the radiation level changes during measurement, it becomes extremely important not only to measure the radiation level, but also to identify the nuclide of the radiation and trace the source of the radiation from that nuclide.

そこで、従来ては、エリア放射線モニタとは別に核種分
析装置か設置され、必要なときに核種分析装置を動作さ
せて核種を同定することが行われている。
Therefore, conventionally, a nuclide analyzer is installed separately from the area radiation monitor, and the nuclide analyzer is operated when necessary to identify the nuclide.

(発明が解決しようとする課題) しかし、以上のような核種分析装置は、価格的に非常に
高価であることからその設置台数は1プラント当りせい
ぜい1セツトであり、そのため複数の場所で同時にレベ
ル変化か発生したときそれに十分対応できない。また、
プラントの内容、規模、プラントへの設置等の観点から
手軽に扱えないと、その本来の機能を十分に発揮しえな
いこともあり、実際面で融通性に欠ける問題がある。
(Problem to be solved by the invention) However, the above-mentioned nuclide analyzers are extremely expensive, and the number of such devices installed is at most one per plant. Inability to adequately respond to changes when they occur. Also,
If it cannot be handled easily in terms of plant content, scale, installation, etc., it may not be able to fully demonstrate its original function, and there is a problem of lack of flexibility in practice.

一方、放射線検出器2として半導体検出器を用いれば、
従来のGM管検出器に比べてエネルギー分解能力か高い
ので、放射線エネルギーの測定が可能であり、さらに放
射線エネルギーから半減期も同時に決定できる。
On the other hand, if a semiconductor detector is used as the radiation detector 2,
Since it has a higher energy resolution ability than conventional GM tube detectors, it is possible to measure radiation energy and also determine half-life from the radiation energy at the same time.

従って、以上のように半導体検出器を用いて放射線エネ
ルギーを測定することか考えられるが、この場合にはエ
ネルギーの校正が必要であり、おのずと校正用線源を使
用するため校正作業が非常に煩雑となり実用的でない。
Therefore, it is conceivable to measure radiation energy using a semiconductor detector as described above, but in this case, energy calibration is required, and since a calibration source is used, the calibration work is extremely complicated. Therefore, it is not practical.

本発明は上記実情にかんかみてなされたもので、通常の
放射線モニタと同様な構成を用いて放射線レベル、放射
線エネルギーおよび半減期等を決定でき、価格的に安価
で取扱いに便利な融通性に富んだエリア放射線モニタを
提供すること・を目的とする。
The present invention has been developed in view of the above circumstances, and it is possible to determine radiation levels, radiation energy, half-life, etc. using the same configuration as a normal radiation monitor, and it is flexible in terms of cost, convenience, and ease of handling. The purpose is to provide a rich area radiation monitor.

さらに、本発明のもう1つの目的は、簡単、かつ、8晶
に放射線エネルギーの校正が可能であり、ひいては核種
の監視を正確に行いうるエリア放射線モニタを提供する
ことにある。
Furthermore, another object of the present invention is to provide an area radiation monitor that allows simple and 8-crystal radiation energy calibration and that allows accurate monitoring of nuclides.

[発明の構成] (課題を解決するための手段) 本発明は上記課題を解決するために、放射線の強さに応
じた数のパルスを出力するとともに、エネルギー分解能
力かあ・す、かつ、゛可−視光に反応す“る放射線検出
器ど、この放射線検出器の出力を=1数してグロス放射
線レベルを監視する放射線レベル監視手段と、放射線エ
ネルギー毎にグループ分けされ、前記放射線検出器の出
力を放射線エネルギーの毎に放射線レベルを監視する放
射線エネルギー監視手段と、放射線エネルギーに比例し
た校正用光パルス信号を前記放射線検出器に入射して放
射線エネルギーの校正を行うエネルギー校正手段とを備
えた構成である。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention outputs a number of pulses corresponding to the intensity of radiation, and has an energy resolution ability, and Radiation level monitoring means, such as a radiation detector that responds to visible light, counts the output of the radiation detector as 1 to monitor the gross radiation level; radiation energy monitoring means for monitoring the radiation level of the output of the detector for each radiation energy; and energy calibration means for calibrating the radiation energy by inputting a calibration optical pulse signal proportional to the radiation energy into the radiation detector. This configuration is equipped with the following features.

(作用) 従って、本発明は以上のような手段を講じたことにより
、放射線レベル監視手段にて放射線検出器からのパルス
を毎秒当りのパルス数として計数すれば放射線レベルを
監視てき、また放射線エネルギー監視手段において放射
線検出器から出力されるパルスの高さごと、つまり放射
線エネルギーごとに分けて測定すれば核種を監視できる
(Function) Therefore, by taking the above-mentioned measures, the present invention can monitor the radiation level by counting the pulses from the radiation detector as the number of pulses per second with the radiation level monitoring means, and can also monitor the radiation energy. The nuclide can be monitored by measuring the pulse output from the radiation detector by height, that is, by radiation energy, in the monitoring means.

さらに、前記放射線検出器が光反応を有するものであれ
ば、光の光量が放射線エネルギーに相当することを利用
し、その放射線エネルギーに応じて光の強さまたはパル
ス幅を変えて校正用光ノくルス信号を放射線検出器に与
えれば、正確に放射線エネルギーを校正できる。
Furthermore, if the radiation detector has a photoreaction, the light intensity or pulse width of the light is changed according to the radiation energy by utilizing the fact that the amount of light corresponds to the radiation energy. By feeding the pulse signal to a radiation detector, radiation energy can be accurately calibrated.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明装置の一実施例を示す構成図である。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of the apparatus of the present invention.

同図において10は原子力発電所その他の放射性物質を
取扱う施設内の作業環境、放射線レベル、プロセス放射
線レベル、放射線エネルギー等を検出するための放射線
検出部であって、この放射線検出部10には放射線の強
さに応じた数の電気的なパルスに変換し、かつ、エネル
ギー分解能力があり、可視光にも反応する機能を有する
例えば半導体検出器11および所要とする増幅度でパル
ス信号を増幅して出力する増幅器12の他、この半導体
検出器11の近傍に・LED等の発光素子13が設置さ
れ、かつ、この発光素子13から校正用光パルス信号を
出力させるための光信号制御回路14が設けられている
In the figure, reference numeral 10 denotes a radiation detection unit for detecting the working environment, radiation level, process radiation level, radiation energy, etc. in a nuclear power plant or other facility that handles radioactive materials. For example, the semiconductor detector 11 converts the pulse signal into a number of electrical pulses corresponding to the intensity of the pulse signal, has an energy resolution ability, and has a function of responding to visible light. In addition to the amplifier 12 that outputs the signal, a light emitting element 13 such as an LED is installed near the semiconductor detector 11, and an optical signal control circuit 14 is installed to output a calibration optical pulse signal from the light emitting element 13. It is provided.

20は放射線検出部10の出力からグロス放射線レベル
および放射線のエネルギーを測定し監視する放射線モニ
タ部である。一般に、放射線レベル10の出力のうち、
毎秒当りのパルス数が放射線の強度に相当し、またパル
スの高さ(波高)か放射線のエネルギーに相当する。
20 is a radiation monitor unit that measures and monitors the gross radiation level and radiation energy from the output of the radiation detection unit 10. Generally, among the outputs of radiation level 10,
The number of pulses per second corresponds to the intensity of the radiation, and the height of the pulse (wave height) corresponds to the energy of the radiation.

ゆえに、この放射線モニタ部20には、放射線検出部1
0から出力されるパルスを毎秒当りのパルス数として計
数してグロス放射線レベルAを測定し出力する計数率計
21と、・複数の放射線エネルギーal’+  a2+
 ・・・、aゎ、つまり複数の核種を測定し監視する機
能をもった放射線エネルギー監視手段としての波高弁別
回路22a、・・・。
Therefore, this radiation monitor section 20 includes the radiation detection section 1.
a counting rate meter 21 that measures and outputs the gross radiation level A by counting the pulses output from 0 as the number of pulses per second; and a plurality of radiation energies al'+ a2+
..., aゎ, that is, the wave height discrimination circuit 22a as a radiation energy monitoring means having the function of measuring and monitoring a plurality of nuclides.

2’2nとが設けられている。これら核種の監視にあっ
ては、放射線エネルギー毎にnグループに分割し、放射
線エネルギー毎に波高弁別回路22a。
2'2n are provided. In monitoring these nuclides, the radiation energy is divided into n groups, and a pulse height discrimination circuit 22a is provided for each radiation energy.

・・、22nを対応させ、各放射線エネルギーグループ
ごとに選択し出力する。従って、どの波高弁別回路22
a、・・122nから弁別結果信号が多く得られるかに
応して核種を同定できる。このとき、第2図に示すごと
く計数率計計測範囲(時間)内においてn分割グループ
の波高弁別回路22a。
..., 22n are made to correspond, and each radiation energy group is selected and output. Therefore, which wave height discrimination circuit 22
The nuclide can be identified depending on whether many discrimination result signals are obtained from a, . . . 122n. At this time, as shown in FIG. 2, the wave height discrimination circuit 22a is divided into n groups within the measurement range (time) of the count rate meter.

・・、22nを1/n範囲ごとに区分して放射線レベル
を弁別してもよい。
..., 22n may be divided into 1/n ranges to discriminate the radiation level.

次に、以上のように構成された装置の動作について説明
する。
Next, the operation of the apparatus configured as above will be explained.

先ず、放射線監視時、放射線検出部10では、半導体放
射線検出器11にて例えば設装置エリアの放射線の強さ
を検出し、その放射線の強さに応した数および放射線エ
ネルギーに応じた高さのパルスに変換した後、増幅器1
2を経由して放射線モニタ部20に送られる。
First, during radiation monitoring, the radiation detecting unit 10 detects the intensity of radiation in the installation area using the semiconductor radiation detector 11, and detects the number of cells corresponding to the intensity of the radiation and the height corresponding to the radiation energy. After converting to pulse, amplifier 1
2 to the radiation monitor section 20.

ここで、放射線モニタ部20では、放射線検出部10か
ら送られてくるパルス信号について計数率計21で毎秒
当りのパルス数を計数してグロス放射線1ベルとして測
定し出力する。
Here, in the radiation monitor section 20, the number of pulses per second is counted by the counting rate meter 21 for the pulse signal sent from the radiation detection section 10, and the result is measured and output as 1 bell of gross radiation.

一方、放射線モニタ部20の各波高弁別器22a、・・
・、22nでは予め定めたエネルギー毎の弁別レベルと
放射線、検出部10からの放射線レベルとを比較し、当
該放射線レベルが各弁別レベルよりも高い場合にの゛み
その放射線レベルを選択的に取り込んで出力すれば、そ
の出力状態から核種を容易に同定できる。
On the other hand, each wave height discriminator 22a of the radiation monitor section 20,...
・, 22n compares the predetermined discrimination level for each energy with the radiation level from the radiation detection unit 10, and selectively captures the radiation level if the radiation level is higher than each discrimination level. If the output is outputted using the nuclides, the nuclide can be easily identified from the output status.

次に、エネルギーの校正について述べる。このエネルギ
ーの校正は、各波高弁別器22a〜22nの弁別レベル
を一定に保つ必要から行うものであって、通常、校正用
線源が用いられるが、本装置では光信号を使用する。そ
の理由は、光の強さは放射線のエネルギーに相当するこ
とから、光の強さを変えてやればエネルギーの校正が可
能となるためである。なお、光の強さを変えてもよいが
、実際上、動作条件や設置環境の影響等を受けることか
ら光の強さのみを変えることは精度上から難しいので、
光信号をパルス幅変調することによりエネルギーの校正
を行う。具体的には、パルス発信機能をもつ光信号制御
回路14から駆動用パルス信号を出力して発光素子13
からパルス状の光信号を発光させて半導体検出器11に
入射する。なお、発光素子13の毎秒当りの発光回数(
周波数)は放射線レベルに相当し、またその光の強さ(
発光量)は放射線エネルギーに相当する。
Next, we will discuss energy calibration. This energy calibration is performed because it is necessary to keep the discrimination level of each pulse height discriminator 22a to 22n constant, and normally a calibration radiation source is used, but in this device, an optical signal is used. The reason for this is that since the intensity of light corresponds to the energy of radiation, it is possible to calibrate the energy by changing the intensity of light. Although it is possible to change the intensity of the light, in practice it is difficult to change only the intensity of the light due to the effects of operating conditions and installation environment, etc.
Energy calibration is performed by pulse width modulating the optical signal. Specifically, a driving pulse signal is output from the optical signal control circuit 14 having a pulse transmission function to control the light emitting element 13.
A pulsed optical signal is emitted from the semiconductor detector 11 and enters the semiconductor detector 11 . Note that the number of times the light emitting element 13 emits light per second (
frequency) corresponds to the radiation level, and the intensity of the light (
The amount of light emitted) corresponds to radiation energy.

この場合、発光回数は正確に制御できるものの、光、量
は前述したように正確に制御できない。
In this case, although the number of times the light is emitted can be accurately controlled, the amount of light cannot be accurately controlled as described above.

そこで、本装置では、光信号制御回路14において駆動
用パルス信号のパルス幅を変えることにより光量を調整
し校正用光パルス信号を得るものであるが、その正確性
の根拠を説明する。一般に、増幅器12を含む半導体検
出器11等ではある時定数をもっているので、増幅器1
2からは第3図(b)に示すような出力波形が得られる
Therefore, in this apparatus, the optical signal control circuit 14 adjusts the amount of light by changing the pulse width of the driving pulse signal to obtain a calibration optical pulse signal, and the basis for its accuracy will be explained. Generally, the semiconductor detector 11 and the like including the amplifier 12 have a certain time constant, so the amplifier 1
2, an output waveform as shown in FIG. 3(b) is obtained.

ここで、増幅器12の出力■は、時定数をτとすれば次
の式から求めることができる。
Here, the output {circle around (2)} of the amplifier 12 can be obtained from the following equation, assuming that the time constant is τ.

v−v。(1−e−”’)      −(1)但し、
上式においてV。は発光素子12の光量に応じたパルス
高さである。
v-v. (1-e-”') -(1) However,
In the above formula, V. is a pulse height corresponding to the amount of light from the light emitting element 12.

この(1)式においてパルス幅Tを時定数τに比べて小
さくすれば、(1)式は(2)式と等価になる。
In equation (1), if the pulse width T is made smaller than the time constant τ, equation (1) becomes equivalent to equation (2).

v+=v、)・ (T/τ)      ・・・(2)
従って、増幅器12の出力Vはパルス幅Tに比例するこ
とになる。ここで、時定数τおよびパルス幅Tは正確に
制御可能であるので、パルス幅変調によって精度の高い
校正か可能となる。
v+=v, )・(T/τ) ...(2)
Therefore, the output V of the amplifier 12 is proportional to the pulse width T. Here, since the time constant τ and the pulse width T can be accurately controlled, highly accurate calibration is possible by pulse width modulation.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

すなわち、放射線検出器として例えば半導体検出器11
を用いたが、同一機能をもつものであれば他の検出器で
あってもよい。また、上記実施例では、放射線モニタ部
20側でエネルギーグループ毎の出力を取り出している
か、これを放射線検出部10側で行った後、個別または
多重化によって放射線モニタ部20側に伝送してもよい
That is, for example, the semiconductor detector 11 is used as a radiation detector.
However, other detectors may be used as long as they have the same function. Furthermore, in the above embodiment, the output for each energy group is extracted on the radiation monitoring section 20 side, or after this is performed on the radiation detection section 10 side, it is transmitted to the radiation monitoring section 20 side individually or by multiplexing. good.

その他、本発明はその要旨を逸脱しない範囲で種々変形
して実施できる。
In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

[発明の効果] 以上説明したように本発明によれば、通常のエリア放射
線モニタに波高弁別手段を設けるだけであるので、構成
簡単で取扱いに便利であり、しかも容易に放射線エネル
ギーや半減期等を知ることかできる。また、簡単に放射
線エネルギーの校正かでき、を行え、ひいては核種の監
視を正確、安定に実施できるエリア放射線モニタを提供
できる。
[Effects of the Invention] As explained above, according to the present invention, a normal area radiation monitor is simply provided with a wave height discrimination means, so the configuration is simple and convenient to handle, and moreover, radiation energy, half-life, etc. can be easily determined. It is possible to know. In addition, it is possible to provide an area radiation monitor that can easily calibrate radiation energy and monitor nuclides accurately and stably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明に係わるエリア放射線モニ
タの実施例を説明するために示したもので、第1図は本
発明装置の一実施例を示す構成図、第2図は放射線レベ
ルと放射線エネルギーの測定区分の関係を説明する図、
第3図は校正用光パルス信号を用いて校正を行うときの
時定数の関係を説明する図、第4図は従来装置の概略構
成図である。 10・・・放射線検出部、11・・・半導体検出器、1
2・・・増幅器、13・・・発光素子、14・・・光信
号制御回路、20・・・放射線モニタ部、21・・・計
数率計、22a〜22n・・・波高弁別回路。 出願人代理人 弁理士 鈴江武彦 第1図 第2図
Figures 1 to 3 are shown to explain an embodiment of the area radiation monitor according to the present invention. Figure 1 is a configuration diagram showing an embodiment of the device of the present invention, and Figure 2 is a radiation level A diagram explaining the relationship between the measurement classification of radiation energy and radiation energy,
FIG. 3 is a diagram illustrating the relationship between time constants when performing calibration using a calibration optical pulse signal, and FIG. 4 is a schematic configuration diagram of a conventional device. 10...Radiation detection section, 11...Semiconductor detector, 1
2... Amplifier, 13... Light emitting element, 14... Optical signal control circuit, 20... Radiation monitor section, 21... Count rate meter, 22a-22n... Wave height discrimination circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)放射線の強さに応じた数のパルスを出力するとと
もに、エネルギー分解能力があり、かつ、可視光に反応
する放射線検出器と、この放射線検出器の出力を計数し
てグロス放射線レベルを監視する放射線レベル監視手段
と、放射線エネルギー毎にグループ分けされ、前記放射
線検出器の出力を放射線エネルギーの毎に放射線レベル
を監視する放射線エネルギー監視手段と、放射線エネル
ギーに比例した校正用光パルス信号を前記放射線検出器
に入射して放射線エネルギーの校正を行うエネルギー校
正手段とを備えたことを特徴とするエリア放射線モニタ
(1) A radiation detector that outputs a number of pulses according to the intensity of radiation, has energy resolution ability, and responds to visible light, and calculates the gross radiation level by counting the output of this radiation detector. radiation level monitoring means for monitoring the radiation level; radiation energy monitoring means for monitoring the radiation level of the output of the radiation detector for each radiation energy grouped by radiation energy; An area radiation monitor comprising: energy calibration means for calibrating radiation energy by entering the radiation detector.
(2)エネルギー校正手段は、前記放射線検出器の近傍
に設けられた発光素子と、この発光素子から発生する光
信号に対してパルス幅変調を行って前記発光素子から放
射線エネルギーに比例した校正用光パルス信号を発生さ
せる光信号制御回路とを有することを特徴とする請求項
1記載のエリア放射線モニタ。
(2) The energy calibration means includes a light emitting element provided in the vicinity of the radiation detector, and performs pulse width modulation on the optical signal generated from the light emitting element to calibrate the radiation energy proportional to the radiation energy from the light emitting element. 2. The area radiation monitor according to claim 1, further comprising an optical signal control circuit that generates an optical pulse signal.
JP34025090A 1990-11-30 1990-11-30 Area radiation monitor Pending JPH04208893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34025090A JPH04208893A (en) 1990-11-30 1990-11-30 Area radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34025090A JPH04208893A (en) 1990-11-30 1990-11-30 Area radiation monitor

Publications (1)

Publication Number Publication Date
JPH04208893A true JPH04208893A (en) 1992-07-30

Family

ID=18335140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34025090A Pending JPH04208893A (en) 1990-11-30 1990-11-30 Area radiation monitor

Country Status (1)

Country Link
JP (1) JPH04208893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108141A (en) * 2005-10-17 2007-04-26 Toshiba Corp Radiation monitoring device
CN104749603A (en) * 2015-03-14 2015-07-01 华北电力大学(保定) Nuclear radiation detection method suitable for complex radiation background

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108141A (en) * 2005-10-17 2007-04-26 Toshiba Corp Radiation monitoring device
JP4686328B2 (en) * 2005-10-17 2011-05-25 株式会社東芝 Radiation monitoring device
CN104749603A (en) * 2015-03-14 2015-07-01 华北电力大学(保定) Nuclear radiation detection method suitable for complex radiation background

Similar Documents

Publication Publication Date Title
US7655912B2 (en) Direction finding radiation detector, and radiation monitoring method and apparatus
US20080135767A1 (en) Gamma Imagery Device
EP3637147B1 (en) Gain correction apparatus and method for scintillation detector
JPH08338876A (en) Method and device for particle measurement and atomic power plant
JP6524484B2 (en) Radiation measurement method and radiation measurement apparatus
US6064068A (en) System and method for monitoring the stability of a scintillation detector
JP6066835B2 (en) Radiation measurement equipment
KR101808577B1 (en) Neutrons, gamma rays, x-ray radiation detection and integrated control system for the detection
JP4828962B2 (en) Radioactivity inspection method and apparatus
KR102016965B1 (en) Apparatus for wireless transmitting/receiving of radiation detecting information
JPH04208893A (en) Area radiation monitor
CN111366967A (en) System and method for measuring irradiation dose rate of strong radiation field
JP2878930B2 (en) Radiation monitoring device
JP2895330B2 (en) Gamma ray measuring device
JP2008122088A (en) Radioactivity measuring device
WO2004061448A1 (en) Apparatus for the detection of radon gas concentration variation in the environment, method for such detection and their use in forecasting of seismic events.
JP2942727B2 (en) Optical fiber radiation monitor system
JP2001194460A (en) Radiation monitor
KR101918241B1 (en) Gamma nuclide measurement assay method
GB1561405A (en) Method of measuring the disintegration rate of a beta-emitting radionuclide in liquid sample
WO2015052822A1 (en) Testing apparatus and testing method
Reddy et al. Remote online performance evaluation of photomultiplier tube and electronics of DPCAM
GB2120782A (en) Radioactivity monitoring
JPH07248383A (en) Radiation monitor device and natural radiation calculating method
JP6139391B2 (en) Radioactivity inspection apparatus and method