JP2878930B2 - Radiation monitoring device - Google Patents

Radiation monitoring device

Info

Publication number
JP2878930B2
JP2878930B2 JP13405993A JP13405993A JP2878930B2 JP 2878930 B2 JP2878930 B2 JP 2878930B2 JP 13405993 A JP13405993 A JP 13405993A JP 13405993 A JP13405993 A JP 13405993A JP 2878930 B2 JP2878930 B2 JP 2878930B2
Authority
JP
Japan
Prior art keywords
signal
radiation
measuring
abnormality
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13405993A
Other languages
Japanese (ja)
Other versions
JPH06324158A (en
Inventor
純一 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13405993A priority Critical patent/JP2878930B2/en
Publication of JPH06324158A publication Critical patent/JPH06324158A/en
Application granted granted Critical
Publication of JP2878930B2 publication Critical patent/JP2878930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、放射線異常を検知す
る放射線監視装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation monitoring apparatus for detecting a radiation abnormality.

【0002】[0002]

【従来の技術】図8は従来の放射線監視装置を示すブロ
ック図であり、図において、1は放射線検出器、2は前
置増巾器、3は前置増巾器2を経由した検出器信号を増
巾する主増巾器、4は増巾器2,3を経た検出器信号の
整形・弁別を行なう波高弁別器、5は信号列を計数値又
は計数率に変換するカウンタ又はレートメータ、6は計
数値又は計数率を表示する表示器、7はこの結果を連続
的に記録する記録計、8は警報発信器、9は信号切替ス
イッチ、10はテスト信号発生器、11は高圧電源、1
2はシャッタ駆動回路、13は放射線検出器1の近傍に
配置されたシャッタ、14は上記放射線検出器1に所定
の放射線量を照射する放射線源、15は被測定流体を入
れる測定容器(又は配管)、16はこの測定容器15内
の流体に含まれる放射能である。上記検出器1は測定容
器15の外側に配置されている。
2. Description of the Related Art FIG. 8 is a block diagram showing a conventional radiation monitoring apparatus, in which 1 is a radiation detector, 2 is a preamplifier, and 3 is a detector via a preamplifier 2. A main amplifier for amplifying the signal, 4 is a wave height discriminator for shaping and discriminating the detector signal passed through the amplifiers 2 and 3, and 5 is a counter or rate meter for converting a signal sequence into a count value or a count rate. , 6 is a display for displaying the count value or count rate, 7 is a recorder for continuously recording the result, 8 is an alarm transmitter, 9 is a signal changeover switch, 10 is a test signal generator, and 11 is a high voltage power supply. , 1
2 is a shutter drive circuit, 13 is a shutter arranged near the radiation detector 1, 14 is a radiation source for irradiating the radiation detector 1 with a predetermined radiation dose, and 15 is a measurement container (or piping) for containing a fluid to be measured. ) And 16 are radioactivity contained in the fluid in the measurement container 15. The detector 1 is arranged outside the measurement container 15.

【0003】次に動作について説明する。測定容器15
内を流れる放射性物質16から放出される放射線は測定
容器15に近接して配置された検出器1により検出され
る。検出パルス信号は前置増巾器2を経由して主増巾器
3に入って増巾され、波高弁別器4で波高弁別・整形さ
れて、カウンタ又はレートメータ5で計数値又は計数率
として計数信号に変換される。計数結果は表示器6に表
示され、同時に記録計7で連続的に記録される。また、
カウンタ又はレートメータ5から分岐した計数信号は、
警報発信器8で設定値と比較され、設定値を超えた場合
は警報を発信して、運転員に当該監視対象の異常を知ら
せる。又、シャッタ駆動回路12を動作させてシャッタ
13を開とし、線源14からの放射線を検出器1に照射
する。検出器1は線源14の放射線を検知して所定のパ
ルス信号を出力し、前述した動作処理により所定の計数
値又は計数率表示を行なう。これによって、運転員は当
該装置が健全に動作していることを確認できる。
Next, the operation will be described. Measurement container 15
Radiation emitted from the radioactive substance 16 flowing in the inside is detected by the detector 1 arranged close to the measurement container 15. The detection pulse signal enters the main amplifier 3 via the preamplifier 2 and is amplified. The amplified pulse signal is subjected to wave height discrimination and shaping by the wave height discriminator 4 and is then counted or counted by the counter or rate meter 5. It is converted into a count signal. The counting result is displayed on the display 6 and simultaneously recorded continuously by the recorder 7. Also,
The counting signal branched from the counter or the rate meter 5 is
The alarm value is compared with the set value by the alarm transmitter 8, and when the set value is exceeded, an alarm is issued to notify the operator of the abnormality of the monitoring target. Further, the shutter 13 is opened by operating the shutter drive circuit 12, and the detector 1 is irradiated with radiation from the radiation source 14. The detector 1 detects radiation from the radiation source 14 and outputs a predetermined pulse signal, and displays a predetermined count value or count rate by the above-described operation processing. This allows the operator to confirm that the device is operating properly.

【0004】[0004]

【発明が解決しようとする課題】従来の放射線監視装置
は以上のように構成されているので、警報設定値が固定
されており、測定値との単純な比較の結果によって運転
員が異常を知ることになる。このため、警報設定値に至
るまでの期間の変動異常,すなわち放射線の微小な変動
を知ることができない欠点があった。また、上述の欠点
を補う目的で、装置の測定値(計数信号)を別の計算機
に入力し測定値の変化率を計算するなどして、変化の異
常を知ることも行なわれている。しかしながらいづれに
おいても、測定値の変化が本来の測定対象である放射線
濃度の変化によるものか、あるいは装置自身の特性変化
によるものかは区別ができない欠点があった。このため
に、放射線異常を特定するためには、被測定流体の放射
能分析を別に行なうなどして異常の確認を行なってい
る。
Since the conventional radiation monitoring apparatus is configured as described above, the alarm set value is fixed, and the operator knows the abnormality from the result of a simple comparison with the measured value. Will be. For this reason, there is a defect that it is not possible to know the fluctuation abnormality during the period up to the alarm set value, that is, the minute fluctuation of the radiation. For the purpose of compensating for the above-mentioned drawbacks, it has also been practiced to input a measured value (counting signal) of the apparatus to another computer and calculate the rate of change of the measured value, for example, to know the abnormality of the change. However, in any case, there is a disadvantage that it is not possible to distinguish whether the change in the measured value is due to a change in the radiation concentration, which is the original measurement target, or a change in the characteristics of the apparatus itself. For this reason, in order to identify the radiation abnormality, the abnormality is confirmed by separately analyzing the radioactivity of the fluid to be measured.

【0005】この発明は上記のような課題を解決するた
めになされたものであり、測定値の微小な変動を検知す
ると共に、その変動が放射線増加によるものなのか、装
置側の特性異常によるものかを識別できる放射線監視装
置を得ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and detects a minute change in a measured value and determines whether the change is due to an increase in radiation or a characteristic abnormality in the apparatus. It is an object of the present invention to obtain a radiation monitoring device that can identify whether the radiation monitoring is performed.

【0006】[0006]

【課題を解決するための手段】この発明に係る放射線監
視装置は、放射線検出手段と、この検出手段からの出力
パルス信号の計数値又は計数率を測定する計数手段(カ
ウンタ又はレートメータ5)と、上記出力パルス信号の
波高値を分析して波高分布信号を測定する分布信号測定
手段(多重波高分析装置17)と、上記出力パルス信号
の信号波形を測定する波形測定手段(波形観測装置1
8)と、正常時と比較して,上記計数値又は計数率に変
動があって分布信号及び信号波形の変動がない場合は放
射線増加による異常であり、分布信号に変動がある場合
は装置側の異常であると判別する異常種判別手段(計算
機19)とを備えたものである。
A radiation monitoring apparatus according to the present invention comprises: a radiation detecting means; a counting means (counter or rate meter 5) for measuring a count value or a counting rate of an output pulse signal from the detecting means. Distribution signal measuring means (multiplexed wave height analyzer 17) for analyzing the peak value of the output pulse signal to measure the peak height distribution signal; and waveform measuring means (waveform observation device 1) for measuring the signal waveform of the output pulse signal.
8) Compared with the normal state, if the count value or the count rate fluctuates and the distribution signal and the signal waveform do not fluctuate, it is an abnormality due to an increase in radiation. Abnormal type discriminating means (computer 19) for discriminating that there is an abnormality.

【0007】[0007]

【作用】この発明における放射線監視装置は、異常種判
別手段により、計数値又は計数率,分布信号,波形の変
動を検知し、これに基づいて放射線増加異常か装置側異
常かを判別する。
In the radiation monitoring apparatus according to the present invention, the abnormal type discriminating means detects a change in a count value or a counting rate, a distribution signal, and a waveform, and determines whether the radiation increase abnormality or the apparatus side abnormality is based on the detection result.

【0008】[0008]

【実施例】【Example】

実施例1.以下、この発明の実施例1を図1,2に基づ
いて説明する。図1は本発明の放射線監視装置のブロッ
ク図であり、図4の従来例と同様な構成は同一符号を付
して説明を省略する。図1において、17は主増巾器3
を経た出力信号パルスの波高分布を測定する多重波高分
析装置、18は信号パルス波形を測定する波形観測装
置、19はカウンタの計数値,多重波高弁別器17から
の波高分布データ,波形観測装置18からの波形データ
を入力して演算処理する計算機、20はCRT、21は
プリンタ、22は演算結果を記憶する記憶装置である。
尚、常時、放射線源14からは所定量の放射線が検出器
1に照射されている。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of a radiation monitoring apparatus according to the present invention. Components similar to those of the conventional example shown in FIG. In FIG. 1, 17 is the main amplifier 3
A pulse height analyzer for measuring a pulse height distribution of an output signal pulse having passed through the apparatus, a waveform observing device for measuring a signal pulse waveform, a count value of a counter, a pulse height distribution data from a multiple pulse height discriminator, and a waveform observing device. , A computer for inputting waveform data from the computer, performing arithmetic processing, 20 is a CRT, 21 is a printer, and 22 is a storage device for storing the calculation results.
It should be noted that the detector 1 is constantly irradiated with a predetermined amount of radiation from the radiation source 14.

【0009】次に動作について説明する。ここでは検出
器1として、プラスチックシンチレーション検出器(以
下PL検出器と略す)を使用した実施例について述べ
る。PL検出器は、通常、周囲環境からの放射線を検知
し、パルス信号を出力する。このパルス信号は前置増巾
器2,主増巾器3で増巾され、波高弁別器4で波高弁別
され、カウンタ5で計数値(測定値1)に変換される。
一方、主増巾器3から分岐したパルス信号は多重波高分
析器17に入力され、波高分布信号(スペクトル)が測
定される(測定値2)。同時に、パルス信号は波形観測
装置18としてのオシロスコープに入力され、信号波形
が観測される(測定値3)。これらの測定値1〜3は計
算機19に入力され、図2に示すフローに従って演算さ
れる。
Next, the operation will be described. Here, an embodiment using a plastic scintillation detector (hereinafter abbreviated as a PL detector) as the detector 1 will be described. The PL detector usually detects radiation from the surrounding environment and outputs a pulse signal. This pulse signal is amplified by the preamplifier 2 and the main amplifier 3, subjected to wave height discrimination by the wave height discriminator 4, and converted into a count value (measured value 1) by the counter 5.
On the other hand, the pulse signal branched from the main amplifier 3 is input to the multiplex pulse height analyzer 17, where the pulse height distribution signal (spectrum) is measured (measured value 2). At the same time, the pulse signal is input to an oscilloscope as the waveform observation device 18, and the signal waveform is observed (measured value 3). These measured values 1 to 3 are input to the computer 19 and are calculated according to the flow shown in FIG.

【0010】いま、プラントに何らかの異常が生じて、
微小な放射能漏洩が生じ、測定容器15に入る被測定流
体にわずかな放射性物質16が流入した場合には上述と
同様な過程を経て放射性物質16からの放射線信号が計
数され、測定値1としての計数値が上昇する。測定値1
は例えば公知の統計処理(白色性検定など)により(ス
テップS1)、指示上昇があった場合、通常の放射線ゆ
らぎと異なった測定値ゆらぎパターンとなることが知ら
れており、これによって測定値1の変動異常を判別す
る。すなわち、統計量の変動を調べ(ステップS2)、
統計量に変動があった場合は放射線異常の可能性があ
り、変動がない場合は放射線異常はない。次に測定値2
は、PL検出器に内蔵したライトパルサによる基準ピー
ク位置を計算し(ステップS3)、あらかじめ記憶され
たスペクトルの正常ピーク位置とのずれを確認する(ス
テップS4)。ピーク位置が所定の正常位置にあれば、
ドリフト(環境変化等で生じる装置異常)はなく、正常
と判断する。もし、所定の位置からずれが生じている場
合(これは装置のゲイン設定を変えた場合等,環境状態
が変化した場合に起きる。)は、“ドリフト異常”の警
報メッセージを発信する。ピーク位置に変化がない場
合、さらに測定値2からスペクトルのあらかじめ定めた
エネルギー領域について正常時のスペクトル(初期スペ
クトル)との差を求めて(ステップS5)比較し、スペ
クトル変動の有無を確かめる(ステップS6)。PL検
出器では特性劣化が進んだ場合、スペクトルに変化が生
じるので、スペクトル変動があれば、“検出器異常”の
警報メッセージを発信する。また、上記ステップS3と
並行して、基準ピークの計数値を求め(ステップS
7)、初期値との比較により(ステップS8)、計数値
との差がある場合は“測定系異常”の警報メッセージを
発信する。計数値と初期値との差がない場合,すなわち
正常であれば、測定値3の波形データと初期波形データ
との比較により(ステップS9)、波形に変化があれ
ば、“信号波形異常”の警報メッセージを発信する。前
置増巾器2からカウンタ5に至る信号波形に変化が認め
られない場合は、PL検出器及び信号処理系は正常であ
り、被測定対象からの“放射線増加(異常)”と判断す
る。すなわち、“放射線異常”と判断されるのは、測定
値1の統計量に変動があり、測定値2が正常で、測定値
3に変化がない場合であり、この論理判断はAND回路
30で行なわれる。要約すると、正常時と比較して分布
信号に変動がある場合に装置側の異常と判別するととも
に、正常時と比較して上記計数値又は計数率に変動があ
って分布信号及び信号波形の変動がない場合は放射線増
加による異常であると判別するAND回路30を含む計
算機19により異常種判別手段を構成する。
[0010] Now, when something abnormal occurs in the plant,
When a minute radioactive leakage occurs and a small amount of the radioactive substance 16 flows into the fluid to be measured entering the measurement container 15, the radiation signal from the radioactive substance 16 is counted through the same process as described above, and the measured value 1 is obtained. Increases. Measurement 1
It is known that, for example, by a known statistical process (whiteness test or the like) (step S1), when the indication rises, the measured value fluctuation pattern differs from the normal radiation fluctuation. Is determined to be abnormal. That is, the fluctuation of the statistic is checked (step S2),
If there is a change in the statistics, there is a possibility of radiation abnormality, and if there is no change, there is no radiation abnormality. Then measured value 2
Calculates the reference peak position by the light pulser built in the PL detector (step S3), and confirms the deviation from the normal peak position of the spectrum stored in advance (step S4). If the peak position is at the predetermined normal position,
There is no drift (device abnormality caused by environmental change, etc.), and it is determined that it is normal. If there is a deviation from the predetermined position (this occurs when the environmental condition changes, such as when the gain setting of the device is changed), a warning message of “drift abnormality” is transmitted. If there is no change in the peak position, the difference between the normal energy spectrum (initial spectrum) and the normal energy spectrum in the predetermined energy region of the spectrum is obtained from the measured value 2 (step S5), and the difference is confirmed (step S5). S6). In the case of the PL detector, if the characteristic deterioration progresses, a change occurs in the spectrum. If there is a change in the spectrum, a warning message of "detector abnormality" is transmitted. In parallel with step S3, the count value of the reference peak is obtained (step S3).
7) By comparing with the initial value (step S8), if there is a difference from the count value, an alarm message of "measurement system abnormality" is transmitted. When there is no difference between the counted value and the initial value, that is, when the waveform is normal, the waveform data of the measured value 3 is compared with the initial waveform data (step S9). Send an alert message. If there is no change in the signal waveform from the preamplifier 2 to the counter 5, the PL detector and the signal processing system are normal, and it is determined that "radiation increase (abnormal)" from the measured object. That is, the determination as “radiation abnormality” is made when the statistic of the measured value 1 fluctuates, the measured value 2 is normal, and the measured value 3 does not change. Done. In summary, when there is a change in the distribution signal compared to the normal state, it is determined that the apparatus is abnormal, and when the count value or the count rate has a change compared to the normal state, the change in the distribution signal and signal waveform. When there is no such information, the computer 19 including the AND circuit 30 that determines that the abnormality is due to an increase in radiation constitutes an abnormal type determining unit.

【0011】実施例2.なお、カウンタ5に代えてレー
トメータを使用し、その出力としての計数率を上記測定
値1として用いるようにしても、上記実施例1と同様な
効果が得られる。
Embodiment 2 FIG. Note that the same effect as in the first embodiment can be obtained by using a rate meter instead of the counter 5 and using the count rate as the output as the measured value 1.

【0012】実施例3.上記実施例1では、検出器1と
してPL検出器を使用した場合について述べたが、他の
種類の検出器,例えばNaI検出器(よう化ナトリウム
検出器)を使用した場合については、図3に示すよう
に、スペクトル測定結果から基準ピークの分解能を計算
することで検出器劣化の有無を確認し、検出器の健全性
を判断する。すなわち図3に示すように、ステップS4
以降に、基準ピークの分解能を計算し(ステップS1
0)、分解能に異常があるか否かを判断し(ステップS
11)、異常があれば“検出器異常”を発信し、異常が
なければ放射線増加の可能性があると判断され、AND
回路30の処理を待つことになる。従って、実施例1と
は点線で囲んだステップS10,ステップS11の処理
100が異なる。
Embodiment 3 FIG. In the first embodiment, the case where the PL detector is used as the detector 1 has been described. However, when another type of detector, for example, a NaI detector (a sodium iodide detector) is used, FIG. As shown, the presence or absence of detector degradation is confirmed by calculating the resolution of the reference peak from the spectrum measurement result, and the soundness of the detector is determined. That is, as shown in FIG.
Thereafter, the resolution of the reference peak is calculated (step S1).
0), it is determined whether or not the resolution is abnormal (step S).
11) If there is an abnormality, a "detector abnormality" is transmitted, and if there is no abnormality, it is determined that there is a possibility of radiation increase, and AND
The process of the circuit 30 is to wait. Therefore, the processing 100 of steps S10 and S11 surrounded by a dotted line is different from the first embodiment.

【0013】実施例4.さらに検出器1としてGM管
(ガイガミューラ管)を使用する場合においては、図4
に示すように、スペクトル測定結果からピークサーチ
(ステップS12)を行なって、初期ピーク以外のアフ
ターパルスのピークの有無を確認し(ステップS1
3)、検出器の健全性を判断する。本実施例の場合、
“検出器異常”の判断の後に“ドリフト異常”の判断が
行なわれる。また、スペクトル測定値と計数信号とによ
り波高弁別レベル(ノイズをカットするために設定され
るレベル)以上のパルスの計数率を比較し(ステップS
14)、計数に差がある場合は放射線異常の可能性があ
り、計数に差がない場合は“測定系異常”と判断する
(ステップS15)。すなわち、実施例1.2の処理と
比べて破線で囲んだ処理200が異なる。
Embodiment 4 FIG. Further, when a GM tube (Gaigummula tube) is used as the detector 1, FIG.
As shown in (1), a peak search is performed from the spectrum measurement result (step S12), and the presence or absence of after-pulse peaks other than the initial peak is confirmed (step S1).
3), determine the soundness of the detector. In the case of this embodiment,
After the determination of “detector abnormality”, the determination of “drift abnormality” is performed. In addition, the count rate of pulses equal to or higher than the pulse height discrimination level (a level set for cutting noise) is compared with the spectrum measurement value and the count signal (Step S).
14) If there is a difference in the count, there is a possibility of a radiation abnormality, and if there is no difference in the count, it is determined that the measurement system is abnormal (step S15). That is, the processing 200 surrounded by a broken line is different from the processing of the embodiment 1.2.

【0014】上記実施例1〜4の要旨を簡単に説明する
と、信号波高値の分布信号の変動指標として、検出器が
PLシンチレーション検出器にあっては、低波高分布領
域の波高分布、NaIシンチレーション検出器を使用し
た装置にあっては検出器分解能、GM管にあってはピー
ク数を採用するものである。
To briefly explain the gist of the first to fourth embodiments, when the detector is a PL scintillation detector, the wave height distribution in the low wave height distribution region, the NaI scintillation In an apparatus using a detector, the resolution of the detector is used, and in a GM tube, the number of peaks is used.

【0015】実施例5.また、被測定流体配管に圧力セ
ンサ、放射線検出器の近傍に温度センサを具備し、測定
流体の圧力変化及び検出器の温度変化による放射線検出
器の計数信号の変動成分を除去するようにすれば、より
正確に放射線異常,装置側異常の有無を確認できる。す
なわち、図5に示すように、測定容器15に圧力センサ
31を付加し、かつ放射線検出器1の近傍に温度センサ
32を付加する。そしてこれらの信号を処理装置33へ
入力する。(ここで信号処理装置33は図1の前置増巾
器2以後の装置を備えたものであり、図2〜4のフロー
処理を行なう。)そこで検出器1の信号変動が生じた場
合、前述のフローに従って異常の有無を判別するが、上
記圧力センサ31,温度センサ32からの出力aがあっ
た場合の計数信号の変動は異常判断の材料としないよう
にする。
Embodiment 5 FIG. In addition, if a pressure sensor is provided on the fluid pipe to be measured and a temperature sensor is provided near the radiation detector, a fluctuation component of the counting signal of the radiation detector due to a pressure change of the measurement fluid and a temperature change of the detector may be removed. Thus, the presence or absence of a radiation abnormality and a device side abnormality can be confirmed more accurately. That is, as shown in FIG. 5, a pressure sensor 31 is added to the measurement container 15 and a temperature sensor 32 is added near the radiation detector 1. Then, these signals are input to the processing device 33. (Here, the signal processing device 33 is provided with a device subsequent to the preamplifier 2 in FIG. 1 and performs the flow processing in FIGS. 2 to 4.) When a signal fluctuation of the detector 1 occurs, The presence or absence of an abnormality is determined according to the above-mentioned flow, but the fluctuation of the count signal when there is an output a from the pressure sensor 31 and the temperature sensor 32 is not used as a material for determining the abnormality.

【0016】実施例6.上記各実施例ではいづれも1台
の検出器1で検出した信号による異常の有無判断を行な
う構成としているが、図6に示すように、検出器A35
(検出器1に相当)と同一放射能漏洩監視対象(測定容
器15)を受け持つが、容器15の違う場所の放射線を
検出する別の検出器B36の信号と原子炉34の出力信
号とを信号処理装置37に入力し、検出器A35の信号
に変動が生じた場合、前述のフローに従って装置の異常
の有無を確認すると共に、検出器B36の出力信号の異
常判定の結果と比較することで、変動事象が放射線によ
るものか装置特性の変化によるものかをより適格に判別
できる。すなわち、容器15が長い場合等に有効であ
り、すばやい異常判別が可能となるとともに、検出器が
2つあるので、より確実な異常判別が行なえる。
Embodiment 6 FIG. Each of the above embodiments is configured to determine the presence or absence of an abnormality based on a signal detected by one detector 1, but as shown in FIG.
Responsible for the same radioactive leakage monitoring target (measurement vessel 15) as (equivalent to detector 1), but outputs a signal from another detector B36 for detecting radiation at a different location in the vessel 15 and an output signal from the reactor 34. When the signal is input to the processing device 37 and the signal of the detector A35 fluctuates, by checking the presence or absence of the abnormality of the device according to the above-described flow, and comparing the result with the result of the abnormality determination of the output signal of the detector B36, It is possible to more appropriately determine whether the fluctuation event is due to radiation or a change in device characteristics. In other words, this is effective when the container 15 is long, etc., and enables quick abnormality determination. In addition, since there are two detectors, more reliable abnormality determination can be performed.

【0017】実施例7.さらに、図7に示すように、原
子炉34と、上記検出器A35と、この検出器の監視対
象プロセス系統A38と関連した別のプロセス系統B3
9に装着された検出器B36と、これら原子炉,各検出
器の出力である複数のプラント情報を信号処理装置40
に入力して、相互に比較するようにすれば、複数プロセ
ス系統の監視が行なえる。
Embodiment 7 FIG. Further, as shown in FIG. 7, the reactor 34, the detector A35, and another process system B3 related to the process system A38 to be monitored by the detector.
9 and a plurality of plant information, which are the outputs of these reactors and detectors, are transmitted to a signal processing device 40.
, And can be compared with each other to monitor a plurality of process systems.

【0018】実施例8.また、炉出力の変化による検出
器周囲環境のバックグラウンド放射線レベルを推定し、
これによる指示への影響を除去するようにすれば、より
正確な測定値変動の異常の有無を確認できる。
Embodiment 8 FIG. In addition, the background radiation level of the environment around the detector due to the change in the reactor power is estimated,
By removing the influence of this on the instruction, it is possible to more accurately confirm the presence or absence of abnormality in the fluctuation of the measured value.

【0019】以上のように、上記各実施例によれば、検
出器信号(測定値)の統計量を求めると同時にスペクト
ル測定と検出器の種類に応じた異常判断フローを用い
て、検出系及び測定系の動作健全性を確認できるように
構成したので、従来の放射線監視装置の警報機能による
異常検知に比べ早期に放射線異常の有無が確認でき、プ
ラントの事故拡大防止に役立てることができる。また、
波形観測装置18により、検出器信号の波形を測定し、
ノイズが重畳していないかなど検出器以外の信号の侵入
の有無、あるいは信号処理系の異常の有無を確認するこ
とにより、測定系外からの外乱異常の確認も行なえる。
また、実施例6のように他の検出器と炉出力信号などを
組み合わせることにより、より適格かつ正確な異常判断
をすることができる。
As described above, according to each of the above-described embodiments, the detection system and the statistic of the detector signal (measured value) are obtained, and at the same time, the spectrum measurement and the abnormality determination flow according to the type of the detector are used. Since the configuration is such that the operation soundness of the measurement system can be confirmed, the presence or absence of a radiation abnormality can be confirmed earlier than the abnormality detection by the alarm function of the conventional radiation monitoring apparatus, which can be used to prevent the spread of plant accidents. Also,
The waveform observation device 18 measures the waveform of the detector signal,
By confirming whether or not a signal other than the detector has entered, such as whether noise is superimposed, or whether there is an abnormality in the signal processing system, it is possible to confirm a disturbance abnormality from outside the measurement system.
Further, by combining other detectors with the furnace output signal and the like as in the sixth embodiment, more appropriate and accurate abnormality determination can be made.

【0020】[0020]

【発明の効果】以上説明したように、本発明の放射線監
視装置によれば、放射線検出手段と、出力パルス信号の
計数手段,分布信号測定手段,波形測定手段と、正常時
と比較して,計数値又は計数率に変動があって分布信号
及び信号波形の変動がない場合は放射線増加による異常
であり,分布信号に変動がある場合は装置側の異常であ
ると判別する異常種判別手段とを備えているので、測定
値の微小な変動も検知できて、かつ、その変動が放射線
増加によるものなのか、装置側の特性異常によるものか
を判別でき、早期に異常を検知できる。また、本発明の
放射線監視装置によれば、測定流体の圧力変動と検出器
の周囲温度変動とによる計数値の変動分を除去する構成
とするか、あるいは複数部位での計数値と原子炉出力と
による異常判別を行なう構成とすることにより、より正
確で確実な異常判別を行なえる効果がある。
As described above, according to the radiation monitoring apparatus of the present invention, the radiation detecting means, the output pulse signal counting means, the distribution signal measuring means, and the waveform measuring means are compared with those in the normal state. An abnormal type discriminating means for judging an abnormality due to an increase in radiation when the count value or the count rate fluctuates and there is no fluctuation in the distribution signal and the signal waveform; , It is possible to detect a minute change in the measured value, and to determine whether the change is due to an increase in radiation or a characteristic abnormality on the device side, and detect an abnormality at an early stage. Further, according to the radiation monitoring apparatus of the present invention, the constitution is such that the fluctuation of the count value due to the fluctuation of the pressure of the measurement fluid and the fluctuation of the ambient temperature of the detector is removed, or the count value and the reactor output at a plurality of parts are removed. With this configuration, the abnormality can be more accurately and reliably determined.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す放射線監視装置のブ
ロック図である。
FIG. 1 is a block diagram of a radiation monitoring apparatus according to a first embodiment of the present invention.

【図2】この発明の実施例1の信号処理フローを示す図
である。
FIG. 2 is a diagram showing a signal processing flow according to the first embodiment of the present invention.

【図3】この発明の実施例3の信号処理フローを示す図
である。
FIG. 3 is a diagram showing a signal processing flow according to a third embodiment of the present invention;

【図4】この発明の実施例4の信号処理フローを示す図
である。
FIG. 4 is a diagram showing a signal processing flow according to a fourth embodiment of the present invention.

【図5】この発明の実施例5を示すブロック図である。FIG. 5 is a block diagram showing Embodiment 5 of the present invention.

【図6】この発明の実施例6を示すブロック図である。FIG. 6 is a block diagram showing a sixth embodiment of the present invention.

【図7】この発明の実施例7を示すブロック図である。FIG. 7 is a block diagram showing Embodiment 7 of the present invention.

【図8】従来の放射線監視装置の一例を示すブロック図
である。
FIG. 8 is a block diagram illustrating an example of a conventional radiation monitoring device.

【符号の説明】[Explanation of symbols]

1 放射線検出器 5 カウンタ又はレートメータ(計数手段) 17 多重波高分析装置(分布信号測定手段) 18 波形観測装置(波形測定手段) 19 計算機(異常種判別手段) DESCRIPTION OF SYMBOLS 1 Radiation detector 5 Counter or rate meter (counting means) 17 Multiple wave height analyzer (distributed signal measuring means) 18 Waveform observing apparatus (waveform measuring means) 19 Calculator (abnormal kind discriminating means)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放射線検出手段と、この検出手段からの
出力パルス信号の計数値を測定する計数手段と、上記出
力パルス信号の波高値を分析して波高分布信号を測定す
る分布信号測定手段と、上記出力パルス信号の信号波形
を測定する波形測定手段と、正常時と比較して,上記計
数値に変動があって分布信号及び信号波形の変動がない
場合は放射線増加による異常であり、分布信号に変動が
ある場合は装置側の異常であると判別する異常種判別手
段とを備えていることを特徴とする放射線監視装置。
1. A radiation detecting means, a counting means for measuring a count value of an output pulse signal from the detecting means, and a distribution signal measuring means for analyzing a peak value of the output pulse signal to measure a peak height distribution signal. And a waveform measuring means for measuring the signal waveform of the output pulse signal, and when the count value fluctuates and the distribution signal and the signal waveform do not fluctuate as compared with the normal state, it is an abnormality due to an increase in radiation. A radiation monitoring apparatus comprising: an abnormal type determination unit configured to determine an abnormality on the device side when a signal fluctuates.
【請求項2】 放射線検出手段と、この検出手段からの
出力パルス信号の計数率を測定する計数手段と、上記出
力パルス信号の波高値を分析して波高分布信号を測定す
る分布信号測定手段と、上記出力パルス信号の信号波形
を測定する波形測定手段と、正常時と比較して,上記計
数率に変動があって分布信号及び信号波形の変動がない
場合は放射線増加による異常であり、分布信号に変動が
ある場合は装置側の異常であると判別する異常種判別手
段とを備えていることを特徴とする放射線監視装置。
2. A radiation detecting means, a counting means for measuring a counting rate of an output pulse signal from the detecting means, a distribution signal measuring means for analyzing a peak value of the output pulse signal and measuring a peak height distribution signal. And a waveform measuring means for measuring the signal waveform of the output pulse signal. If the count rate fluctuates and the distribution signal and the signal waveform do not fluctuate as compared with the normal state, it is an abnormality due to an increase in radiation. A radiation monitoring apparatus comprising: an abnormal type determination unit configured to determine an abnormality on the device side when a signal fluctuates.
【請求項3】 放射線検出手段をプラスチックシンチレ
ーション検出器とし、この検出手段からの出力パルス信
号の計数値を測定する計数手段と、上記出力パルス信号
の波高値を分析して波高分布信号としての低波高分子領
域の波高値分布を測定する分布信号測定手段と、上記出
力パルス信号の信号波形を測定する波形測定手段と、正
常時と比較して,上記計数値に変動があって分布信号及
び信号波形の変動がない場合は放射線増加による異常で
あり、分布信号に変動がある場合は装置側の異常である
と判別する異常種判別手段とを備えていることを特徴と
する放射線監視装置。
3. A radiation detecting means comprising a plastic scintillation detector, a counting means for measuring a count value of an output pulse signal from the detecting means, and a peak value of the output pulse signal being analyzed to determine a low level as a peak height distribution signal. Distribution signal measuring means for measuring the peak value distribution in the wave polymer region; waveform measuring means for measuring the signal waveform of the output pulse signal; and a distribution signal and a signal having a variation in the count value as compared with a normal state. A radiation monitoring apparatus comprising: an abnormal type determination unit configured to determine an abnormality due to an increase in radiation when there is no change in the waveform and to determine an abnormality on the device side when there is a change in the distribution signal.
【請求項4】 放射線検出手段をよう化ナトリウム検出
器とし、この検出手段からの出力パルス信号の計数値を
測定する計数手段と、上記出力パルス信号の波高値を分
析して波高分布信号としての検出器分解能を測定する分
布信号測定手段と、上記出力パルス信号の信号波形を測
定する波形測定手段と、正常時と比較して,上記計数値
に変動があって分布信号及び信号波形の変動がない場合
は放射線増加による異常であり、分布信号に変動がある
場合は装置側の異常であると判別する異常種判別手段と
を備えていることを特徴とする放射線監視装置。
4. A radiation detecting means, which is a sodium iodide detector, a counting means for measuring a count value of an output pulse signal from the detecting means, and a crest value of the output pulse signal which is analyzed as a crest distribution signal. Distribution signal measuring means for measuring the resolution of the detector, waveform measuring means for measuring the signal waveform of the output pulse signal, and fluctuations in the distribution signal and the signal waveform due to a change in the count value as compared with a normal state. A radiation monitoring apparatus comprising: an abnormal type determination unit configured to determine an abnormality due to an increase in radiation when there is no abnormality, and to determine an abnormality on the device side when there is a variation in a distribution signal.
【請求項5】 放射線検出手段をガイガミューラ管と
し、この検出手段からの出力パルス信号の計数値を測定
する計数手段と、上記出力パルス信号の波高値を分析し
て波高分布信号としてのピーク数を測定する分布信号測
定手段と、上記出力パルス信号の信号波形を測定する波
形測定手段と、正常時と比較して,上記計数値に変動が
あって分布信号及び信号波形の変動がない場合は放射線
増加による異常であり、分布信号に変動がある場合は装
置側の異常であると判別する異常種判別手段とを備えて
いることを特徴とする放射線監視装置。
5. The radiation detecting means is a Geiger-Mura tube, a counting means for measuring a count value of an output pulse signal from the detecting means, and a crest value of the output pulse signal is analyzed to determine a peak number as a crest distribution signal. A distribution signal measuring means for measuring, a waveform measuring means for measuring a signal waveform of the output pulse signal, and a radiation signal when the count value fluctuates and the distribution signal and the signal waveform do not fluctuate as compared with a normal state. A radiation monitoring apparatus comprising: an abnormality type determining unit configured to determine that the abnormality is caused by the increase and that the distribution signal fluctuates and is determined to be an abnormality on the device side.
【請求項6】 上記放射線検出手段が測定対象とする測
定流体の圧力を検出する圧力検出手段と、上記放射線検
出器の周囲温度を検出する温度検出手段と、これら温度
検出手段および圧力検出手段からの出力に応じた上記放
射線検出手段での計数値の変動成分を当該放射線検出手
段で測定した計数値から除去する手段とを備えたことを
特徴とする請求項第1項または第3項または第4項また
は第5項記載の放射線監視装置。
6. A pressure detecting means for detecting a pressure of a measurement fluid to be measured by said radiation detecting means, a temperature detecting means for detecting an ambient temperature of said radiation detector, and a temperature detecting means and a pressure detecting means. A means for removing a fluctuation component of the count value of said radiation detecting means in accordance with the output of said radiation detecting means from the count value measured by said radiation detecting means. Item 6. The radiation monitoring device according to item 4 or 5.
【請求項7】 上記放射線検出手段を複数に達成すると
ともに、上記放射線検出手段が測定対象とする測定流体
を供する原子炉の出力を検出する原子炉出力検出手段と
設け、これら複数の放射線検出手段で測定した計数値お
よび原子炉出力検出手段で測定した原子炉出力とにより
放射線増加異常か装置側異常であるかを判別する手段を
上記異常種判別手段に付加したことを特徴とする請求項
第1項または第3項または第4項または第5項記載の放
射線監視装置。
7. A plurality of radiation detection means, wherein the radiation detection means is provided in a plurality, and the radiation detection means is provided with a reactor power detection means for detecting an output of a reactor supplying a measurement fluid to be measured. A means for judging whether there is a radiation increase abnormality or a device side abnormality based on the count value measured in step 1 and the reactor power measured by the reactor power detection means, has been added to the abnormal kind determination means. Item 6. The radiation monitoring device according to item 1, item 3, item 4, item 5, or item 5.
JP13405993A 1993-05-12 1993-05-12 Radiation monitoring device Expired - Lifetime JP2878930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13405993A JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13405993A JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Publications (2)

Publication Number Publication Date
JPH06324158A JPH06324158A (en) 1994-11-25
JP2878930B2 true JP2878930B2 (en) 1999-04-05

Family

ID=15119408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13405993A Expired - Lifetime JP2878930B2 (en) 1993-05-12 1993-05-12 Radiation monitoring device

Country Status (1)

Country Link
JP (1) JP2878930B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879352B2 (en) * 2000-02-03 2007-02-14 三菱電機株式会社 Radiation monitoring system
US7297958B2 (en) 2001-12-03 2007-11-20 Hitachi, Ltd. Radiological imaging apparatus
JP2004061210A (en) * 2002-07-26 2004-02-26 Seiko Instruments Inc Performance evaluation device, method, and program for radioactivity detector
JP4157389B2 (en) * 2003-02-06 2008-10-01 三菱電機株式会社 Radiation monitor
JP4686328B2 (en) * 2005-10-17 2011-05-25 株式会社東芝 Radiation monitoring device
JP4604974B2 (en) * 2005-11-15 2011-01-05 株式会社日立製作所 PET equipment
JP4553977B1 (en) 2009-10-26 2010-09-29 有限会社ケイ・アールアンドデイ Rotary cylinder device
JP5419670B2 (en) 2009-12-14 2014-02-19 三菱電機株式会社 Radiation measuring apparatus and diagnostic method thereof

Also Published As

Publication number Publication date
JPH06324158A (en) 1994-11-25

Similar Documents

Publication Publication Date Title
US8912504B2 (en) Centralized detection of radiation in multiple facilities
EP0496333B1 (en) Nuclear plant diagnosis apparatus and method
JP2878930B2 (en) Radiation monitoring device
US4380924A (en) Method for monitoring flow condition of liquid metal
JP4828962B2 (en) Radioactivity inspection method and apparatus
JP6066835B2 (en) Radiation measurement equipment
US7795599B2 (en) Radioactivity monitoring apparatus and method
JPH0217488A (en) Measuring apparatus of radiation
KR100765969B1 (en) Digital radiation monitoring system for auto radionuclide analysis
JP3807652B2 (en) Radiation measurement apparatus and method
US4551298A (en) Radiation monitoring apparatus
JP2951674B2 (en) Radiation monitoring method and device
JP2967240B2 (en) Automatic continuous analyzer with alarm transmission function
JP2022184277A (en) radiation monitor
JP2571844B2 (en) Gas detection alarm device
JP7079426B2 (en) Gamma ray detector
KR102619779B1 (en) A threshold voltage level determining device using multichannel analysis and a method thereof
JP3138827B2 (en) Process chamber abnormality analyzer
CN111735976B (en) Automatic data result display method based on detection equipment
JPH04184197A (en) Below-critical state monitoring device
JPH0225159B2 (en)
US4522065A (en) Remote pressure sensor
JPH03100425A (en) Method and device for monitoring abnormality of process
JP2008216167A (en) Diagnostic system of semiconductor detector and its diagnostic method
KR100597726B1 (en) Determination method of failed fuel discrimination ratio by applying the correction factors compensated for the flow rate differences among the coolant sampling lines

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 14

EXPY Cancellation because of completion of term