JPH04207996A - Controlling method for scherbius equipment - Google Patents

Controlling method for scherbius equipment

Info

Publication number
JPH04207996A
JPH04207996A JP2329848A JP32984890A JPH04207996A JP H04207996 A JPH04207996 A JP H04207996A JP 2329848 A JP2329848 A JP 2329848A JP 32984890 A JP32984890 A JP 32984890A JP H04207996 A JPH04207996 A JP H04207996A
Authority
JP
Japan
Prior art keywords
current
phase
secondary current
gto
induction machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2329848A
Other languages
Japanese (ja)
Other versions
JP2816020B2 (en
Inventor
Chikage Sasa
佐々 千景
Mitsuyuki Abe
阿部 充幸
Hirokazu Kaneko
金子 寛和
Ryoji Sugawara
菅原 良二
Takayoshi Sano
孝義 佐野
Kazuo Hachiya
蜂屋 一雄
Hiroshi Uchino
内野 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Electric Power Development Co Ltd
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd, Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Electric Power Development Co Ltd
Priority to JP2329848A priority Critical patent/JP2816020B2/en
Publication of JPH04207996A publication Critical patent/JPH04207996A/en
Application granted granted Critical
Publication of JP2816020B2 publication Critical patent/JP2816020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Protection Of Generators And Motors (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To cut out an accident current when cutting out the current of a short-circuit accident occurred at the primary side of a wound-rotor induction machine by turning on/off a switching element in response to the value of secondary current, superimposing a DC component to the secondary current and creating a zero cross point for the primary current. CONSTITUTION:When a U-phase secondary current becomes larger than zero, the output of an AND circuit 46 becomes '1' and GTO 15 is turned on. At this time, the secondary current flows from the secondary U-phase to GTO15 diode 10 returning to the secondary V-phase thereby acting in the direction for increasing the secondary current, so that U-phase current is shifted to the positive direction. Then, when the U-phase secondary current reaches the value of GTO controllable current, then U-phase GTO ON signal becomes '0' and GTO 15 is turned off. The U-phase secondary current and W-phase secondary current are shifted to the positive side, and the V-phase secondary current is shifted to the negative side. In this way, a zero cross point can be created in the primary current by superimposing a DC component to the secondary current of a wound-rotor induction machine 1.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、巻線形誘導機の二次電流をインバータで制御
するセルビウス装置に於て、巻線形誘導機の一次側で発
生した短絡事故の電流を遮断器で遮断する時のインバー
タの制御方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention provides a Cerbius device for controlling the secondary current of a wound induction machine using an inverter. The present invention relates to a method of controlling an inverter when using a circuit breaker to interrupt the current caused by a short-circuit accident.

(従来の技術) 第5図は、従来の実施例の構成図である。図に於て、1
は巻線形誘導機、2は巻線形誘導機1の二次電流を制御
するインバータ、3はインバータ2に直流電圧を供給す
る直流電源、4は巻線形誘導機1の一次側の遮断器、5
は電源系統である。インへ−タ2は、例えばダイオード
6〜11、CTO12〜17、コンデンサ18で構成さ
れる。
(Prior Art) FIG. 5 is a block diagram of a conventional embodiment. In the figure, 1
2 is an inverter that controls the secondary current of the wound induction machine 1; 3 is a DC power source that supplies DC voltage to the inverter 2; 4 is a circuit breaker on the primary side of the wound induction machine 1; 5
is the power supply system. The inputter 2 includes, for example, diodes 6 to 11, CTOs 12 to 17, and a capacitor 18.

また直流電源3は、ダイオード19〜24、GT025
〜30.変圧器33で構成される。直流電源3にはGT
O31、放電抵抗器32か含まれ、直流電圧か定格値を
越えた所定の値に達したとき、GTO31をオンして放
電抵抗器32に電流を流し、直流電圧が過大にならない
ように制御される。
In addition, the DC power supply 3 includes diodes 19 to 24, GT025
~30. It is composed of a transformer 33. GT for DC power supply 3
It includes O31 and discharge resistor 32, and when the DC voltage reaches a predetermined value exceeding the rated value, GTO31 is turned on and current flows through the discharge resistor 32, and the DC voltage is controlled so as not to become excessive. Ru.

第6図は、従来の実施例による運転波形図である。図に
おいて(1〉は巻線形誘導機1のU相−次電流、(2)
はV相−次電流、(3)W相−次電流、(4)はU相二
次電流、(5)はV相二次電流、(6)はW相二次電流
、(7)はインバータ2の直流電圧、(8)は放電抵抗
器32に流れる電流、(9)はインバータ2から流れ出
る直流電流である。
FIG. 6 is an operating waveform diagram according to a conventional embodiment. In the figure, (1> is the U-phase current of the wound induction machine 1, (2)
is V-phase secondary current, (3) W-phase secondary current, (4) is U-phase secondary current, (5) is V-phase secondary current, (6) is W-phase secondary current, (7) is The DC voltage of the inverter 2, (8) is the current flowing through the discharge resistor 32, and (9) is the DC current flowing out from the inverter 2.

時刻t1以前は、巻線形誘導機1の一次電流(1) 、
(2)、(3)は電源系統5の周波数の交流となり、一
方、二次電流(4) 、 (5) 、 (6)はインバ
ータ2で制御されるすべり周波数の交流となる。時刻t
1に於て、第5図“A”点に三相短絡事故か発生すると
、巻線形誘導機1の一次側には、短絡時の内部誘起電圧
ベクトルの方向で決まる直流成分を含む過大な短絡電流
が流れ、この電流は巻線形誘導機1の一次回路の時定数
で減衰する。−次電流の直流成分により巻線形誘導機1
の二次側には回転子の回転速度に相当した周波数の誘起
電圧か発生する。インバータ2のGTO12〜17は短
絡事故と同時にオフされるものとすれば、二次側の誘起
電圧によって流れる二次電流(4) 、 (5)、 <
6)はダイオード6〜11で整流されて(9)に示す様
な波形で直流回路に流れ込む。この電流により直流電圧
(7)が上昇する。時刻t2に於て直流電圧か上限値に
達したことによりGTO31をオンすると、放電電流(
8)が流れ、電圧(7)の上昇を制御する。
Before time t1, the primary current (1) of the wound induction machine 1 is
(2) and (3) are alternating currents at the frequency of the power supply system 5, while secondary currents (4), (5), and (6) are alternating currents at the slip frequency controlled by the inverter 2. Time t
1, if a three-phase short circuit accident occurs at point "A" in Figure 5, an excessive short circuit containing a DC component determined by the direction of the internal induced voltage vector at the time of the short circuit will occur on the primary side of the wound wire induction machine 1. A current flows, and this current is attenuated by the time constant of the primary circuit of the wound induction machine 1. - Wound induction machine 1 due to the direct current component of the secondary current
An induced voltage with a frequency corresponding to the rotational speed of the rotor is generated on the secondary side of the rotor. Assuming that GTOs 12 to 17 of inverter 2 are turned off at the same time as a short-circuit accident, secondary currents (4), (5), <
6) is rectified by diodes 6 to 11 and flows into the DC circuit with a waveform as shown in (9). This current increases the DC voltage (7). At time t2, when the GTO31 is turned on because the DC voltage has reached the upper limit value, the discharge current (
8) flows and controls the increase in voltage (7).

時刻t3に於て直流電圧が下限値に達するとGTO31
をオフする。
When the DC voltage reaches the lower limit value at time t3, GTO31
Turn off.

(発明が解決しようとする課題) 以上述べた従来の構成では、短絡事故により発生する過
大な電流を遮断器4で遮断する場合、巻線形誘導機1の
一次側に流れる過大な直流電流(L) 、(2)、(3
)を遮断する必要ある。一般に高圧大電流の交流遮断器
は直流を遮断する能力はない。
(Problems to be Solved by the Invention) In the conventional configuration described above, when the circuit breaker 4 interrupts an excessive current generated due to a short circuit accident, an excessive DC current (L ), (2), (3
) is necessary. Generally, high-voltage, large-current AC circuit breakers do not have the ability to interrupt DC.

従って、大形で高価な直流遮断器を適用する必要があり
、経済性を著しく損なうことになる。
Therefore, it is necessary to use a large and expensive DC circuit breaker, which significantly impairs economic efficiency.

本発明は、以上述べた従来のセルビウス装置の欠点を除
去するために、短絡事故発生後、インバータ2により巻
線形誘導機lの二次電流(4) (5)(6)に直流成
分を重畳させ、−次電流(1) 、 (2) 、 (3
)に零クロス点をつくることにより、小形で安価な交流
遮断器で事故電流を遮断できるようにすることを目的と
している。
In order to eliminate the drawbacks of the conventional Servius device described above, the present invention superimposes a DC component on the secondary current (4) (5) (6) of the wound induction machine l using the inverter 2 after a short circuit accident occurs. and -order current (1), (2), (3
) by creating a zero-crossing point at the AC circuit breaker.

[発明の構成] (課題を解決するための手段及び作用)本発明は、短絡
事故発生後インバータのGTOがオフされ、巻線形誘導
機の二次電流がダイオードを介して直流回路に流れてい
るとき、二次電流を検出して、二次電流値がGTOの可
制御電流以下で所定の極性の範囲のみGTOを短時間オ
ンして、巻線形誘導機の二次巻線を短時間短絡するルー
プをつくり、所定の方向にのみ二次電流を増加させ、二
次電流に直流成分を重畳させるようにしたものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) In the present invention, after a short-circuit accident occurs, the GTO of the inverter is turned off, and the secondary current of the wound induction machine flows through the diode to the DC circuit. When the secondary current is detected, the GTO is turned on for a short time only in a predetermined polarity range when the secondary current value is less than the controllable current of the GTO, and the secondary winding of the wound induction machine is short-circuited for a short time. A loop is created, the secondary current is increased only in a predetermined direction, and a DC component is superimposed on the secondary current.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。第1
図は、本発明の一実施例の構成図である。図に於て1〜
33は、第5図で述べた従来の実施例の構成図の同一記
号と同一である。34は電圧降下を検出して巻線形誘導
機1の一次側で発生した短絡事故を高速で検出する短絡
検出器、35は巻線形誘導機1の二次電流を検出する電
流検出器、36はタイマーである。37は論理回路で、
電流検出器35により検出される二次電流値に応じてイ
ンバータ2のGTOスイッチング信号38を発生する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a configuration diagram of an embodiment of the present invention. In the diagram 1~
Reference numeral 33 is the same as the same symbol in the configuration diagram of the conventional embodiment described in FIG. 34 is a short circuit detector that detects a voltage drop and detects a short circuit accident occurring on the primary side of the wound induction machine 1 at high speed; 35 is a current detector that detects the secondary current of the wound induction machine 1; 36 is a current detector that detects a secondary current of the wound induction machine 1; It's a timer. 37 is a logic circuit,
A GTO switching signal 38 for the inverter 2 is generated in accordance with the secondary current value detected by the current detector 35.

第2図は、第1図に示す論理回路37の詳細な構成図、
39は極性反転器、40〜45は比較器、46〜48は
アンド回路、4つは短絡事故信号、50はU相二次電流
、51はV相二次電流、52はW相二次電流、53はG
TO可制御電流、54は零基準、55はU相GTOオン
信号、56はV相GTOオン信号、57はW相GTOオ
ン信号である。
FIG. 2 is a detailed configuration diagram of the logic circuit 37 shown in FIG.
39 is a polarity inverter, 40 to 45 are comparators, 46 to 48 are AND circuits, 4 are short-circuit fault signals, 50 is U-phase secondary current, 51 is V-phase secondary current, 52 is W-phase secondary current , 53 is G
TO controllable current, 54 is a zero reference, 55 is a U-phase GTO on signal, 56 is a V-phase GTO on signal, and 57 is a W-phase GTO on signal.

第3図は、本発明の作用を現す波形図である。FIG. 3 is a waveform diagram showing the effect of the present invention.

図に於て、(1)〜(9)は第6図の従来例による運転
波形図で述べた(1)〜(9)と同一箇所の波形である
。(10)は第2図U相GTOオン信号55の波形で、
“1”の期間節1図U相GTO15をオンする。(11
)はU相GTO15に流れる電流波形である。同様に(
12)はV相GTOオン信号56の波形で、“1″の期
間V相GTO13をオンする。
In the figure, (1) to (9) are waveforms at the same locations as (1) to (9) described in the operating waveform diagram of the conventional example in FIG. (10) is the waveform of the U-phase GTO ON signal 55 in FIG.
During the period of "1", the U-phase GTO 15 in Figure 1 is turned on. (11
) is the current waveform flowing through the U-phase GTO 15. Similarly (
12) is the waveform of the V-phase GTO on signal 56, which turns on the V-phase GTO 13 for a period of "1".

(13)はV相GTO13に流れる電流波形である。(13) is a current waveform flowing through the V-phase GTO 13.

(14)はW相GTOオン信号57の波形で、“1“の
期間WmGTO17をオンする。(15)はW相GTO
17に流れる電流波形である。
(14) is the waveform of the W-phase GTO on signal 57, which turns on the WmGTO 17 for a period of "1". (15) is W-phase GTO
This is the waveform of the current flowing through the circuit 17.

時刻t1に於て、第1図“A”点で三相短絡事故が発生
すると、巻線形誘導機1の一次側には、短絡時の内部誘
起電圧ベクトルの方向で決まる直流成分を含む過大な電
流(1)〜(3)が流れ、−次巻線に電磁的に結合して
いる二次巻線にも過大な電流(4)〜(6)が流れる。
At time t1, when a three-phase short circuit accident occurs at point "A" in Figure 1, the primary side of the wound wire induction machine 1 has an excessive DC component that is determined by the direction of the internal induced voltage vector at the time of the short circuit. Currents (1) to (3) flow, and excessive currents (4) to (6) also flow to the secondary winding that is electromagnetically coupled to the -order winding.

巻線形誘導機1の一次側の短絡を、短絡事故検出器34
で検出し、インバータ2のGTO12〜17を一旦総て
オフする。
A short circuit on the primary side of the wound induction machine 1 is detected by a short circuit fault detector 34.
, and once all GTOs 12 to 17 of inverter 2 are turned off.

短絡事故検出器34で短絡が検出されると、第2図の短
絡事故信号4つが“1“になり、アンド回路55〜57
の第3の入力信号か“1゛になる。
When a short circuit is detected by the short circuit accident detector 34, the four short circuit accident signals shown in FIG. 2 become "1", and the AND circuits 55 to 57
The third input signal becomes "1".

次に、比較器40てはGTO可制御電流53とU相二次
電流50が比較され、U相二次電流50かGTO可制御
電流53より小さい範囲で比較器40の出力が“1“に
なる。比較器41ては零基準54とU相二次電流50が
比較され、U相二次電流50が零より大きい範囲で比較
器41の出力か“1”になる。比較器40と比較器41
の出力は、アンド回路46に入力され、U相二次電流5
0が零より太きく GTOの可制御電流53より小さい
範囲でアンド回路46の入力が総て1″になりその出力
が“1”になる。
Next, the comparator 40 compares the GTO controllable current 53 and the U-phase secondary current 50, and the output of the comparator 40 becomes "1" in a range smaller than the U-phase secondary current 50 or the GTO controllable current 53. Become. The comparator 41 compares the zero reference 54 and the U-phase secondary current 50, and the output of the comparator 41 becomes "1" in a range where the U-phase secondary current 50 is greater than zero. Comparator 40 and comparator 41
The output of is input to the AND circuit 46, and the U-phase secondary current 5
In a range where 0 is greater than zero and smaller than the controllable current 53 of the GTO, all the inputs of the AND circuit 46 become 1'' and its output becomes ``1''.

同様に、比較器42では零基準54とV相二次電流51
が比較され、V相二次電流51が零より小さい範囲で比
較器42の出力が“1″になる。
Similarly, in the comparator 42, the zero reference 54 and the V-phase secondary current 51
are compared, and the output of the comparator 42 becomes "1" within a range where the V-phase secondary current 51 is smaller than zero.

比較器43ではGTO可制御電流53の負の値とV相二
次電流51か比較され、V相二次電流51がGTO可制
御電流53の負の値より大きい範囲で比較器43の出力
が“1″になる。比較器42と比較器43の出力は、ア
ンド回路47に入力され、V相二次電流51がGTO可
制御電流53の負の値より大きく零より小さい範囲でア
ンド回路47に入力が総て“1″になりその出力が“1
″になる。
The comparator 43 compares the negative value of the GTO controllable current 53 and the V-phase secondary current 51, and the output of the comparator 43 is in the range where the V-phase secondary current 51 is larger than the negative value of the GTO controllable current 53. It becomes “1”. The outputs of the comparators 42 and 43 are input to an AND circuit 47, and in the range where the V-phase secondary current 51 is greater than the negative value of the GTO controllable current 53 and less than zero, all inputs to the AND circuit 47 are "1" and its output becomes "1".
"become.

同様に、比較器44ではGTO可制御電流53とW相二
次電流52が比較され、W相二次電流52がGTO可制
御電流53より小さい範囲で比較器44の出力か“1“
になる。比較器45では零基準54とW相二次電流52
が比較され、W相二次電流52が零より大きい範囲で比
較器45の出力が“1“になる。比較器44と比較器4
5の出力は、アンド回路48に人力され、W相二次電流
52が零より太きく GTOの可制御電流53より小さ
い範囲でアンド回路48の入力が総て“1゛になりその
出力が“1″になる。
Similarly, the comparator 44 compares the GTO controllable current 53 and the W-phase secondary current 52, and if the W-phase secondary current 52 is smaller than the GTO controllable current 53, the output of the comparator 44 will be "1".
become. In the comparator 45, the zero reference 54 and the W-phase secondary current 52
are compared, and the output of the comparator 45 becomes "1" in a range where the W-phase secondary current 52 is greater than zero. Comparator 44 and comparator 4
The outputs of the AND circuit 48 are input to the AND circuit 48, and in the range where the W-phase secondary current 52 is larger than zero and smaller than the controllable current 53 of the GTO, all the inputs of the AND circuit 48 become "1" and the output becomes " It becomes 1″.

時刻t1に於て、“A′点て三相短絡事故か発生した直
後、V相二次電流51はGTO可制御電流53の負の値
より大きく零より小さい範囲にある。従って、アンド回
路47の出力56(v相GToオン信号(12))か“
1”になり、GTO1Bをオンする。また、W相二次電
流52は零より太きく GTOの可制御電流53より小
さい範囲にある。従って、アンド回路48の出力57(
W相GToオン信号(14))が“1゛になり、GTO
17をオンする。GTO13とGTO17をオンしない
場合、二次電流は第1図の点線矢印で示すように、巻線
形誘導機1の二次W相からダイオード8−直流電流3の
正側−直流電源3の負側−ダイオード10−二次V相へ
戻る経路で流れ、直流電源3は二次電流の増加を抑制す
る方向に作用する。
At time t1, immediately after a three-phase short circuit accident occurs at point "A," the V-phase secondary current 51 is in a range greater than the negative value of the GTO controllable current 53 and less than zero. Output 56 (v-phase GTo on signal (12))
1" and turns on GTO1B. Also, the W-phase secondary current 52 is in a range larger than zero and smaller than the GTO controllable current 53. Therefore, the output 57 of the AND circuit 48 (
The W-phase GTo on signal (14)) becomes “1”, and the GTO
Turn on 17. When GTO13 and GTO17 are not turned on, the secondary current flows from the secondary W phase of the wound induction machine 1 to the diode 8 - the positive side of the DC current 3 - the negative side of the DC power supply 3, as shown by the dotted arrow in Fig. 1. - Diode 10 - The current flows through the path returning to the secondary V phase, and the DC power supply 3 acts in a direction to suppress the increase in secondary current.

しかし、GTO13とGTO17をオンすることにより
、二次電流は実線の矢印で示すように、巻線形誘導機1
の二次W相からGTO17−直流電源3の負側−直流電
源3の正側−GTO13−二次V相へ戻る経路で流れ、
直流電源3は二次電流を増加させる方向に作用するから
、■相電流を負の方向に、W相電流を正の方向にシフト
させることかできる。時刻t4に於て、W相二次電流5
2がGTOの可制御電流53に達すると、W相GTOオ
ン信号(14)か“O“になり、GTO17をオフする
。このとき、巻線形誘導機1の二次電流は、二次W相か
らダイオード8→GTO13→二次V相へ戻る経路で流
れ、やはり二次電流を増加させる方向に作用するから、
V相電流を負の方向にシフトさせることができる。時刻
t5に於てV相二次電流51がGTOの可制御電流53
の負の値に達するとV相GTOオン信号(12)が“0
″になり、GTO13をオフする。
However, by turning on GTO13 and GTO17, the secondary current flows through the wound induction machine 1 as shown by the solid arrow.
Flows from the secondary W phase of GTO 17 - the negative side of the DC power supply 3 - the positive side of the DC power supply 3 - GTO 13 - in a path returning to the secondary V phase,
Since the DC power supply 3 acts in the direction of increasing the secondary current, it is possible to shift the ■ phase current in the negative direction and the W phase current in the positive direction. At time t4, W-phase secondary current 5
2 reaches the controllable current 53 of the GTO, the W-phase GTO on signal (14) becomes "O" and turns off the GTO 17. At this time, the secondary current of the wound wire induction machine 1 flows from the secondary W phase to the diode 8 → GTO 13 → back to the secondary V phase, and also acts in the direction of increasing the secondary current.
The V-phase current can be shifted in the negative direction. At time t5, the V-phase secondary current 51 becomes the controllable current 53 of the GTO.
When the negative value of
'' and turns off GTO13.

次に、時刻t6に於て、U相二次電流50が零より大き
くなるとアンド回路46の出力55(U相GTOオン信
号(1,O’) )が“]゛になりGTO]5をオンす
る。このとき二次電流は、二次U相からGTO15−ダ
イオード]0→二次V相へ戻る経路で流れ、やはり二次
電流を増加させる方”向に作用するから、U相電流を正
の方向にシフトさせる二とかできる。時刻t7に於てU
岨二次電流50かGTOの専制a電流53の値に達する
とし相GTOオン信号(10)か°0゛になり、GTO
15をオフする。以下同様に作用し、U相二次電流50
とW相二次電流52は第3図(4)と(6〉の波形で示
す様に正側にシフトされ、V相二次電流51は(5)の
波形で示すように負側にシフトされる。この様にして、
巻線形誘導機1.の二次電流(4) 、 (5) 、 
(8)に直流成分を重畳させることにより、−次電流(
1) 、(2)、(3)に零クロス点をつくることがで
きる。
Next, at time t6, when the U-phase secondary current 50 becomes larger than zero, the output 55 of the AND circuit 46 (U-phase GTO on signal (1, O')) becomes "]", turning on the GTO]5. At this time, the secondary current flows from the secondary U-phase through the GTO15-diode]0 to the secondary V-phase, and also acts in the direction of increasing the secondary current, so the U-phase current is You can do something like shift it in the direction of . At time t7, U
When the secondary current 50 reaches the value of the GTO's arbitrary a current 53, the phase GTO on signal (10) becomes 0, and the GTO
Turn off 15. Below, it acts in the same way, and the U-phase secondary current 50
The W-phase secondary current 52 is shifted to the positive side as shown in the waveforms (4) and (6> in Figure 3), and the V-phase secondary current 51 is shifted to the negative side as shown in the waveform (5). In this way,
Wound induction machine 1. Secondary current (4) , (5) ,
By superimposing a DC component on (8), the negative current (
Zero cross points can be created at 1), (2), and (3).

第4図は、本発明の他の実施例の作用を現す波形図であ
る。図に於て、(1)〜(15)は第3図本発明の作用
を現す波形図述べた(1)〜(15)と同一箇所の波形
である。
FIG. 4 is a waveform diagram showing the operation of another embodiment of the present invention. In the figure, (1) to (15) are waveforms at the same locations as (1) to (15) described in FIG. 3, which is a waveform diagram showing the effect of the present invention.

第6図時刻t6に於て、第1図“A”点で二相短絡事故
か発生すると、これを短絡事故検出器34で検出し、イ
ンバータ2のGT012〜17を総てオフする。巻線形
誘導機1の一次側には、短絡時の内部誘起電圧ベクトル
の方向で決まる直流成分を含む過大な短絡電流が流れ、
この電流は巻線形誘導機1の一次回路の時定数で減衰し
、各部の波形は(1)〜(8)で示すように推移する。
At time t6 in FIG. 6, when a two-phase short circuit accident occurs at point "A" in FIG. An excessive short circuit current containing a direct current component determined by the direction of the internal induced voltage vector at the time of a short circuit flows on the primary side of the wound induction machine 1.
This current is attenuated by the time constant of the primary circuit of the wound induction machine 1, and the waveforms at each part change as shown in (1) to (8).

短絡事故発生後の時間をタイマー36で検出し、例えば
100m5ec経過後の第4図時刻t7に於て、第2図
短絡事故信号49を“1”にすれば、第2図の論理回路
が作動しU相のGTOオン信号(10)、V相GTOオ
ン信号(12)、W相GTO信号(14)が、所定のタ
イミングで“1゛、′0゛に変化し、それぞれU相GT
O15、V相GTO13、W相GTO17をオンオフ制
御する。
If the timer 36 detects the time after the occurrence of the short circuit accident and, for example, at time t7 in FIG. 4 after 100 m5ec has passed, the short circuit accident signal 49 in FIG. Then, the U-phase GTO ON signal (10), V-phase GTO ON signal (12), and W-phase GTO signal (14) change to "1" and '0" at predetermined timing, respectively, and the U-phase GT
On/off control is performed on O15, V-phase GTO13, and W-phase GTO17.

<1.1)、 (13)、 (1,5)はそれぞれのG
TOに流れる電流波形である。これらの動作は第3図で
説明したのと同様であるから説明は省略するが、第4図
ではGTO可制御電流53を第3図の50%としている
。この様に短絡事故から一定時間経過後制御をオンする
ことにより、小さいGTO電流で、巻線形誘導機1の一
次電流(1)〜(3)に零クロス点をつくることができ
るから、事故時にインバータ2に流れる電流を低減する
ことができる。従って、インバータ2をより小形で安価
にすることができる。
<1.1), (13), (1,5) are the respective G
This is the current waveform flowing through TO. Since these operations are the same as those explained in FIG. 3, the explanation will be omitted, but in FIG. 4, the GTO controllable current 53 is set to 50% of that in FIG. 3. In this way, by turning on the control after a certain period of time has elapsed after a short-circuit accident, it is possible to create a zero-crossing point in the primary currents (1) to (3) of the wound induction machine 1 with a small GTO current. The current flowing through the inverter 2 can be reduced. Therefore, the inverter 2 can be made smaller and cheaper.

以上の説明では、インバータを構成するスイッチング素
子としてGTOを使用した場合について説明したか、ト
ランジスタや他の自己消弧形スイッチング素子あるいは
、強制転流回路を有するサイリスタ回路など、他のスイ
ッチング手段を用いてインバータを構成しても良い。
In the above explanation, the case where GTO is used as the switching element constituting the inverter has been explained, or other switching means such as transistors, other self-extinguishing switching elements, or thyristor circuits with forced commutation circuits are used. The inverter may also be constructed using the following methods.

[発明の効果コ 以上述べた様に本発明によれば、セルビウス装置を構成
する巻線形誘導機の一次側で短絡事故が発生したとき、
インバータを構成するスイッチング素子に比較的小さい
電流を流し、巻線形誘導機の二次電流に直流成分を重畳
させることができる。従って、−次側に流れる事故電流
に零クロス点をつくることができるから、−次側の遮断
器に小形で安価な交流用遮断器を適用することが出来る
。また、事故発生後一定時間後に直流成分を重畳させる
制御をオンする様にすれば、スイッチング素子に流す電
流をより小さくすることができるから、事故電流に対応
するためのインバータ容量の増大を防止することかでき
る。従って、インバータか大形になり高価になるのを防
ぐことができる。この様に、本発明によれば小形で安価
なセルビウス装置を実現できるから、その経済的な効果
は顕著である。
[Effects of the Invention] As described above, according to the present invention, when a short circuit accident occurs on the primary side of the wound induction machine constituting the Cerbius device,
By passing a relatively small current through the switching elements that constitute the inverter, a direct current component can be superimposed on the secondary current of the wound induction machine. Therefore, since a zero cross point can be created for the fault current flowing to the negative side, a small and inexpensive AC circuit breaker can be used as the negative side circuit breaker. Additionally, by turning on the control that superimposes the DC component after a certain period of time after an accident occurs, the current flowing through the switching elements can be made smaller, which prevents the inverter capacity from increasing to handle the accident current. I can do it. Therefore, it is possible to prevent the inverter from becoming large and expensive. As described above, according to the present invention, a small and inexpensive Cerbius device can be realized, and its economical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2図は本発
明を構成する第11図の論理回路の詳細な構成図、第3
図は本発明の詳細な説明するための波形図、第4図は本
発明の他の実施例の動作を説明するための波形図、第5
図は従来の実施例を示す構成図、第6図は従来の実施例
による運転波形図である。 1・・・巻線形誘導機、2・・・インバータ、3・・・
直流電源、4・・・遮断器、5・・・電源系統、6〜1
1・・・ダイオード、12〜17・・・GTo、18・
・・コンデンサ、19〜24・・・ダイオード、25〜
31・・・GTO132・・放電抵抗器、33・・・変
圧器、34・・短絡事故検出器、35・・・電流検出器
、36・・・タイマー、37・・・論理回路、38・G
TOスイッチング信号、39・・・極性反転器、40〜
45・・・比較器、46〜48・・アンド回路、49・
・・短絡事故信号、50・・・U相二次電流、51・・
・V相二次電流、52・・・W相二次電流、53・・・
GTO可制御電流、54・・・零基準、55・・・U相
GTOオン信号、56・・V相GTOオン信号、57・
・・W相GTOオン信代理人 弁理士  鈴 江 武 
彦 第2図 手続補正書 平成 ℃、刀11日
FIG. 1 is a block diagram showing one embodiment of the present invention, FIG. 2 is a detailed block diagram of the logic circuit of FIG. 11 constituting the present invention, and FIG.
4 is a waveform diagram for explaining the operation of another embodiment of the present invention. FIG. 5 is a waveform diagram for explaining the operation of another embodiment of the present invention.
The figure is a configuration diagram showing a conventional embodiment, and FIG. 6 is an operating waveform diagram according to the conventional embodiment. 1... Wound induction machine, 2... Inverter, 3...
DC power supply, 4... Breaker, 5... Power supply system, 6-1
1...Diode, 12-17...GTo, 18.
...Capacitor, 19~24...Diode, 25~
31...GTO132...Discharge resistor, 33...Transformer, 34...Short circuit accident detector, 35...Current detector, 36...Timer, 37...Logic circuit, 38.G
TO switching signal, 39... polarity inverter, 40~
45...Comparator, 46-48...AND circuit, 49.
...Short circuit fault signal, 50...U phase secondary current, 51...
・V phase secondary current, 52...W phase secondary current, 53...
GTO controllable current, 54... Zero reference, 55... U-phase GTO on signal, 56... V-phase GTO on signal, 57.
・・W phase GTO Onshin agent Patent attorney Takeshi Suzue
Hiko Diagram 2 Procedural Amendment Heisei ℃, Katana 11th

Claims (2)

【特許請求の範囲】[Claims] (1)巻線形誘導機と、その巻線形誘導機の二次電流を
制御するインバータと、そのインバータに直流電圧を供
給する直流電源と、前記巻線形誘導機の一次側の遮断器
と、前記巻線形誘導機の一次側の短絡事故検出器と、前
記二次電流を検出する電流検出器と、その電流検出器の
出力により前記インバータのスイッチング素子のオンオ
フ信号を発生する論理回路を具備し、前記巻線形誘導機
の一次側で発生した短絡事故の電流を前記遮断器で遮断
する時、前記二次電流値に応じて前記スイッチング素子
をオンオフすることにより、前記二次電流に直流成分を
重畳させ、これにより前記巻線形誘導機の一次電流に零
クロス点をつくることを特徴とするセルビウス装置の制
御方法。
(1) A wound induction machine, an inverter that controls the secondary current of the wound induction machine, a DC power supply that supplies DC voltage to the inverter, a breaker on the primary side of the wound induction machine, and the comprising a short-circuit accident detector on the primary side of a wound induction machine, a current detector that detects the secondary current, and a logic circuit that generates an on/off signal for a switching element of the inverter based on the output of the current detector, When the circuit breaker interrupts a current caused by a short circuit accident occurring on the primary side of the wound wire induction machine, a DC component is superimposed on the secondary current by turning on and off the switching element according to the secondary current value. A control method for a Servius device, characterized in that a zero crossing point is created in the primary current of the wound induction machine.
(2)前記請求項(1)のセルビウス装置に於て、短絡
事故発生後の時間を検出するタイマを備え、前記巻線形
誘導機の一次側で発生した短絡事故の電流を前記遮断器
で遮断する時、短絡事故発生から一定時間後、前記巻線
形誘導機の二次電流値に応じて、前記インバータのスイ
ッチング素子をオンオフすることにより、前記二次電流
に直流成分を重畳させ、これにより、前記巻線形誘導機
の一次電流に零クロス点をつくることを特徴とするセル
ビウス装置の制御方法。
(2) The Serbius device according to claim (1), further comprising a timer for detecting the time after the occurrence of a short circuit accident, and interrupting the current caused by the short circuit accident occurring on the primary side of the wound induction machine with the breaker. At this time, after a certain period of time from the occurrence of a short circuit accident, a DC component is superimposed on the secondary current by turning on and off the switching element of the inverter according to the secondary current value of the wound wire induction machine, and thereby, A control method for a Servius device, characterized in that a zero crossing point is created in the primary current of the wound induction machine.
JP2329848A 1990-11-30 1990-11-30 Control method for Servius device Expired - Fee Related JP2816020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329848A JP2816020B2 (en) 1990-11-30 1990-11-30 Control method for Servius device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329848A JP2816020B2 (en) 1990-11-30 1990-11-30 Control method for Servius device

Publications (2)

Publication Number Publication Date
JPH04207996A true JPH04207996A (en) 1992-07-29
JP2816020B2 JP2816020B2 (en) 1998-10-27

Family

ID=18225910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329848A Expired - Fee Related JP2816020B2 (en) 1990-11-30 1990-11-30 Control method for Servius device

Country Status (1)

Country Link
JP (1) JP2816020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631667A (en) * 2017-03-23 2018-10-09 株式会社东芝 Around the control system of linear induction machine, control device and control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631667A (en) * 2017-03-23 2018-10-09 株式会社东芝 Around the control system of linear induction machine, control device and control method
JP2018161016A (en) * 2017-03-23 2018-10-11 株式会社東芝 Control system of winding induction machine, control device, and control method
US10291159B2 (en) 2017-03-23 2019-05-14 Kabushiki Kaisha Toshiba Control system, controller, and control method for wound induction machine
CN108631667B (en) * 2017-03-23 2021-09-07 株式会社东芝 Control system, control device and control method of winding-shaped induction machine

Also Published As

Publication number Publication date
JP2816020B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
Pei et al. Short-circuit fault protection strategy for high-power three-phase three-wire inverter
JPS61112583A (en) Power converter
US5617012A (en) Power converter protecting apparatus for electric power system
JP2009516998A (en) A system for protection and control against symmetric and asymmetrical faults for asynchronous generators.
JP2010239736A (en) Power conversion apparatus
US3716775A (en) Short circuit protection means for power circuits
US4105897A (en) Cycloconverter apparatus and method for working into an active load
JP7153796B2 (en) Doubly excited generator motor
JP3237719B2 (en) Power regeneration controller
JPH04207996A (en) Controlling method for scherbius equipment
JP5454993B2 (en) Matrix converter protection device
JP2005192354A (en) Alternating-current switch device and power supply device using the same
US4642747A (en) Fault-protection apparatus for static AC-to-AC converters and unrestricted frequency changer (UFC) system including such fault-protection apparatus
JP3178962B2 (en) Control device for AC motor
JPH07193982A (en) Variable speed power generation system
JP2000312480A (en) Current inverter
JP2825382B2 (en) Servius device
JPH01503430A (en) Capacitor switch type induction motor drive device
KR100191753B1 (en) Overcurrent interrupting circuit for inverter
JPH08154374A (en) Protection device of power conversion apparatus
JPS5943832Y2 (en) Commutation failure protection circuit for multi-voltage inverter
JP2002027757A (en) Circuit for detecting phase of power supply
JPH05168289A (en) Scherbius apparatus
JPS60245475A (en) Protecting device for inverter
JPS5943834Y2 (en) Commutation failure detection device for current source inverter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees