JPH04207606A - Device for preventing transmission loss of dielectric with respect to radio wave - Google Patents
Device for preventing transmission loss of dielectric with respect to radio waveInfo
- Publication number
- JPH04207606A JPH04207606A JP33777490A JP33777490A JPH04207606A JP H04207606 A JPH04207606 A JP H04207606A JP 33777490 A JP33777490 A JP 33777490A JP 33777490 A JP33777490 A JP 33777490A JP H04207606 A JPH04207606 A JP H04207606A
- Authority
- JP
- Japan
- Prior art keywords
- radio wave
- transmission loss
- flat plate
- dielectric
- wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 29
- 230000002265 prevention Effects 0.000 claims description 11
- 239000003989 dielectric material Substances 0.000 claims description 8
- 239000004020 conductor Substances 0.000 abstract description 21
- 230000003111 delayed effect Effects 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract 2
- 239000005357 flat glass Substances 0.000 description 30
- 238000010586 diagram Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000003449 preventive effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、例えば窓ガラスのような誘電体を介して電波
を受信する場合に、上記誘電体による透過損失を防止す
る防止具に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a preventive device that prevents transmission loss caused by a dielectric material such as a window glass when receiving radio waves through the dielectric material. be.
[従来の技術]
一般に、t!PJB図に示すように窓ガラス10を介し
て電波を受信する場合、透過損失か生じるが、この透過
損失は、窓ガラス10の厚さtを調整することによって
減少させることかてきる。即ち、窓ガラス10に入射角
θ、て向った電波Aは、窓ガラスlOの一面10aてC
方向に反射され、残りは窓ガラス10の内部に入り、屈
折角θまたけ屈折され、b方向に向う。この屈折された
電波は、窓ガラス10の他方の面10bにおいてC方向
に反射され、残りは他方の面10bから窓ガラスlOの
外部の方向dに飛び出す。そして、C方向の電波は、一
方の面10aにおいて他方の面10b側のC方向に反射
され、残りは一方の面10aから外部の方向fに飛び出
す。このf方向の電波は、窓ガラス10内を往復する間
に位相の遅れを生じている。一方、電波Aと平行な電波
A′か一方の平面10aで反射され、これはf方向の電
波と同一方向となる。従って、a′の方向の電波とf方
向の電波との位相差が180°てあれば、両者は互いに
打ち消しあうのて、電波A′のエネルギは、はとんどC
方向に向う。[Prior Art] Generally, t! As shown in the PJB diagram, when receiving radio waves through the window glass 10, a transmission loss occurs, but this transmission loss can be reduced by adjusting the thickness t of the window glass 10. That is, the radio wave A that is directed toward the window glass 10 at an incident angle θ is transmitted from one surface 10a of the window glass lO to C.
The remaining light enters the window glass 10, is refracted across the refraction angle θ, and heads in the b direction. This refracted radio wave is reflected in the C direction on the other surface 10b of the window glass 10, and the rest of the wave flies out from the other surface 10b in the direction d outside the window glass 10. Then, the radio waves in the C direction are reflected from one surface 10a in the C direction on the other surface 10b side, and the remaining waves fly out from the one surface 10a in the external direction f. This f-direction radio wave has a phase delay while reciprocating within the window glass 10. On the other hand, a radio wave A' parallel to the radio wave A is reflected by one plane 10a, and this is in the same direction as the radio wave in the f direction. Therefore, if the phase difference between the radio wave in the direction a' and the radio wave in the f direction is 180 degrees, they will cancel each other out, and the energy of the radio wave A' will be approximately C.
Head in the direction.
a′の方向の電波とf方向の電波の位相差を180°と
するためには、詳細な計算式は省略するか、窓ガラス1
0の厚さtは、
t=λ/2 (丁e w s+n”fJ l)とな
る。但し、入は受信電波の波長、εヨは窓ガラス10の
比誘電率である。ε、は窓ガラス10の場合、4乃至7
てあり、日本て例えば衛星放送を受信する場合にはθ1
は50°未満であるのて、上式は、 七=入/2\「
−に−−−λ′/2となる。但し、λ′は窓ガラスIO
内での波長である。これを計算すると、tは5乃至6璽
蔵と厚くなる。一般に窓ガラス10には厚さか2乃至4
1薦のものか使用されているのて、この場合、a′の方
向の電波とf方向の電波の位相差か360°となり、第
9図に示すように大きな透過損失か生じていた。In order to set the phase difference between the radio waves in the a' direction and the f direction to be 180°, the detailed calculation formula may be omitted or the window glass 1
The thickness t of 0 is t=λ/2 (dew s+n"fJ l). However, input is the wavelength of the received radio wave, and ε is the relative permittivity of the window glass 10. ε is the window glass 10. For glass 10, 4 to 7
For example, when receiving satellite broadcasting in Japan, θ1
is less than 50°, so the above formula is 7=in/2\"
- becomes---λ'/2. However, λ′ is the window glass IO
It is the wavelength within. If you calculate this, t will be as thick as 5 to 6 squares. Generally, the window glass 10 has a thickness of 2 to 4 mm.
In this case, the phase difference between the radio waves in the a' direction and the radio waves in the f direction was 360°, causing a large transmission loss as shown in FIG. 9.
そこで、従来窓ガラス10に、その誘電率に近い誘電体
を貼り、窓ガラスIOの厚みを等価的にλ′/2に近付
けて、透過損失を小さくすることか行なわれていた。Therefore, a conventional approach has been to attach a dielectric material having a dielectric constant close to that of the window glass 10 to make the thickness of the window glass IO equivalently close to λ'/2 to reduce the transmission loss.
[発明か解決しようとする課@]
しかし、上記のように誘電体を窓ガラスIOに貼る場合
、窓ガラス10の厚さに地して、誘電体の厚さを変更し
なければならず、しかも貼られる誘電体そのものの重量
かかなり大きく、強力な接着剤を使用しないと、誘電体
か窓ガラス]0から剥離するという問題点かあった。ま
た、強力な接着剤で接着すると、誘電体か不要になった
場合に、はかすことか困難となったり、また誘電体板か
大きくなるので、輸送か困難となるという問題点もあっ
た。[Invention or problem to be solved @] However, when attaching a dielectric to the window glass IO as described above, the thickness of the dielectric must be changed based on the thickness of the window glass 10. Moreover, the weight of the dielectric material itself is quite large, and unless a strong adhesive is used, the dielectric material may peel off from the window glass. Another problem is that if the dielectric is bonded with a strong adhesive, it will be difficult to remove the dielectric when it is no longer needed, and the dielectric plate will be large, making it difficult to transport.
本発明は、フィルム上に平板状導体素子を設け、これを
誘電体上に貼りつけて、電波の位相を遅らせることによ
って、上記の問題点を解決した透過損失防止具を提供す
ることを目的とする。An object of the present invention is to provide a transmission loss prevention device that solves the above problems by providing a flat conductive element on a film and pasting this on a dielectric to delay the phase of radio waves. do.
[課題を解決するための手段]
上記の目的を達成するため、本発明は、電波か透過する
誘電体上に設けられる平板状フィルムと、このフィルム
の一面に所定の間隔を隔てて設けられており、上記電波
の波長の1/2より小さレー寸法を有する平面状導体素
子とを、具備するものである。[Means for Solving the Problems] In order to achieve the above object, the present invention provides a flat film provided on a dielectric material through which radio waves pass, and a flat film provided on one surface of the film at a predetermined interval. and a planar conductive element having a diameter smaller than 1/2 of the wavelength of the radio wave.
[作用コ
本発明によれば、平板状フィルム上の平面状導体素子に
入射した電波の一部は、遅延されて誘電体の入射面から
誘電体内に入射し、入射面と反対側の反射面て反射され
、入射面て屈折されて外部に飛び出す。この入射面から
反射面、反射面から入射面への移動の間に電波の位相は
遅延を受け、平板状フィルム上の平面状導体素子を通過
する際に、さらに位相は遅延される。この合計の位相の
遅延を第1の位相遅延とする。一方、平板状導体素子に
入射した電波の残りの部分は入射面て反射され、やはり
位相か遅延する。この遅延量を第2の位相遅延とすると
、第1の位相遅延と第2の位相遅延とか反対位相となる
ように、平面状導体素子を所定の間隔を隔てて設け、上
記電波の波長の1/2より小さい寸法としであるので、
第1の位相遅延と第2の位相遅延とが互いに打ち消しあ
い、透過損失を防止できる。[Function] According to the present invention, a part of the radio waves incident on the planar conductive element on the flat film is delayed and enters the dielectric from the incident surface of the dielectric, and then passes through the reflective surface opposite to the incident surface. It is reflected by the incident surface, refracted by the incident surface, and emitted to the outside. The phase of the radio wave is delayed during the movement from the incident surface to the reflective surface and from the reflective surface to the incident surface, and the phase is further delayed when passing through the planar conductive element on the flat film. This total phase delay is defined as a first phase delay. On the other hand, the remaining part of the radio wave incident on the flat conductor element is reflected by the incident surface, and the phase is also delayed. Assuming that this amount of delay is the second phase delay, planar conductive elements are provided at a predetermined interval so that the first phase delay and the second phase delay are opposite in phase. Since the size is smaller than /2,
The first phase delay and the second phase delay cancel each other out, and transmission loss can be prevented.
[実施例]
この実施例の透過損失防止具11は、第3図に示すよう
に例えば窓ガラス12に貼りつけて、屋内に配置されて
いる衛星放送受信用アンテナ14によって良好に衛星放
送を受信することかできるようにするためのものて、第
1図及び第2図に示すように平板状フィルム16、例え
ば厚さか300に■のポリエチレンフィルムを有してい
る。なお、この平板状フィルム16の大きさは、衛星放
送受信用アンテナ14の大きさに応じた大きさとされて
いる。[Example] The transmission loss prevention device 11 of this example is attached to, for example, a window glass 12 as shown in FIG. As shown in FIGS. 1 and 2, a flat film 16, for example, a polyethylene film with a thickness of about 300 mm is provided. Note that the size of this flat film 16 is determined according to the size of the satellite broadcast receiving antenna 14.
この平板状フィルム16の一方の面に、平板状導体素子
18か、エツチング、印刷または蒸着等の種々の公知の
技術によって形成されている。この平板状導体素子18
は、例えば円板状に形成されており、それぞれ所定の間
隔、例えば受信しようとする衛星放送の波長入(12G
Hz)の約172の間隔にそれぞれ配置されており、ま
た直径は172人より小さく、例えば0.3乃至0.3
5人とされている。A flat conductive element 18 is formed on one side of the flat film 16 by various known techniques such as etching, printing, or vapor deposition. This flat conductor element 18
are formed, for example, in the shape of a disk, and each has a predetermined interval, for example, the wavelength input (12G) of the satellite broadcast to be received.
Hz), and the diameter is smaller than 172 people, for example 0.3 to 0.3
There are said to be five people.
この透過損失防止具11は、第3図に示すように、窓ガ
ラス12に粘着テープ等を用いて貼りつけられる。雨滴
等の付着を防止するためには、窓ガラス12の屋内側の
面に貼りつけるのか望ましい。As shown in FIG. 3, this transmission loss prevention device 11 is attached to a window glass 12 using an adhesive tape or the like. In order to prevent the adhesion of raindrops, etc., it is preferable to attach it to the indoor side surface of the window glass 12.
また、窓ガラス12の誘電率の影響を受けるのを防止す
るためには、窓ガラス12の厚みか約3CIの場合、円
板状導体素子を設けたのとは反対側のフィルム面に直接
貼り付けるか或いは窓ガラス12の厚みか約1〜2■I
の場合に位相をあわせるため、ガラス面と円板状導体素
子を設けたのとは反対側のフィルム面に幾分かの空間を
設けて配置するのか望ましい。なお、第2図及び第3図
ては平板状導体素子18の厚さは、かなり誇張して描い
ている。In addition, in order to prevent the influence of the dielectric constant of the window glass 12, if the thickness of the window glass 12 is approximately 3 CI, it is necessary to attach the film directly to the film surface on the opposite side from where the disc-shaped conductive element is provided. The thickness of the window glass 12 is about 1~2■I
In order to match the phase in this case, it is desirable to provide some space between the glass surface and the film surface on the opposite side to where the disc-shaped conductor element is provided. Note that in FIGS. 2 and 3, the thickness of the flat conductor element 18 is considerably exaggerated.
次に、この透過損失防止具11によって透過損失を防止
てきる点について第4図及び第5図を参照しながら説明
する。なお、第4図ては、説明を簡易化するために、透
過損失防止具11は窓ガラス12の屋外側に取り付けら
れているとする。入射電波E、は透過損失防止具11を
通過して、第5図に示すようにθたけ位相か遅れた電波
E izとなり、この電波E igは、窓ガラス12の
第4図における左端から右端まで進行し、右端て反射さ
れ、左端まで進行する。この電波をE rgとする。電
波E、1か左端から右端に進行するまての間に位相かδ
遅れ、かつ誘電率の関係て電波E 、、は逆相となる。Next, how the transmission loss can be prevented by the transmission loss prevention device 11 will be explained with reference to FIGS. 4 and 5. In addition, in FIG. 4, in order to simplify the explanation, it is assumed that the transmission loss preventive device 11 is attached to the outdoor side of the window glass 12. The incident radio wave E passes through the transmission loss prevention device 11 and becomes a radio wave E iz whose phase is delayed by θ as shown in FIG. It travels to the right end, is reflected, and travels to the left end. Let this radio wave be E rg. The phase of the radio wave E, 1 or δ while it travels from the left end to the right end
Due to the delay and the dielectric constant, the radio waves E, , have an opposite phase.
結局、右端まて進行したときには、E88どの位相差は
π+δとなる。また右端から左端まで進行する間に位相
かδ遅れて、電波ErgのE LKとの位相差はπ+2
6となる。この電波Er8は透過損失防止具11を通過
する際にθの位相遅れを受けて、E rg′となる。一
方、電波E1′の一部は透過損失防止具11及び窓ガラ
ス12の右端て反射され、Φたけ電波E、よりも位相か
遅れて、電波E 、、、となる。Φとθとは平板状導体
素子18の直径を大きくすればするほど大きくなる。従
って、平板状導体)素子18の直径を変化させることに
よってE rfgとE rx′とを逆相にすることかて
きる。従って、反射波E 、、′を打ち消すことかでき
、透過損失を減少させることかてきる。After all, when it advances to the right end, the phase difference of E88 becomes π+δ. Also, while traveling from the right end to the left end, the phase is delayed by δ, and the phase difference between the radio wave Erg and E LK is π+2
It becomes 6. This radio wave Er8 undergoes a phase delay of θ when passing through the transmission loss prevention device 11, and becomes E rg'. On the other hand, a part of the radio wave E1' is reflected by the transmission loss prevention device 11 and the right end of the window glass 12, and becomes a radio wave E, which is delayed in phase from the radio wave E by Φ. Φ and θ become larger as the diameter of the flat conductor element 18 becomes larger. Therefore, by changing the diameter of the flat conductor element 18, E rfg and E rx' can be made to have opposite phases. Therefore, the reflected waves E,,' can be canceled out, and the transmission loss can be reduced.
平板状導体素子18の直径を変化させたときの厚さ3■
の窓ガラス12の透過損失の変化を第6図に示す。同図
において、電波E、の入射角は30°、各平板状導体素
子18の間隔は1:1mm(約λ/2)である。同図に
おいて、二点鎖線て示したのは平板状導体素子18を設
けていない場合てあり、−点鎖線は直径か7■朧の場合
、実線は直径か8■の場合、点線は直径か91の場合を
示している。これから明らかなように直径か0.28Å
以上であって0.36人未満てあれば、充分に実用とな
る透過損失を得られる。Thickness 3■ when changing the diameter of the flat conductor element 18
FIG. 6 shows the change in transmission loss of the window glass 12. In the figure, the incident angle of the radio wave E is 30°, and the interval between each flat conductor element 18 is 1:1 mm (about λ/2). In the same figure, the dashed-dotted line indicates the case where the flat conductor element 18 is not provided, the dashed-dotted line indicates the diameter. 91 is shown. As is clear from this, the diameter is 0.28 Å.
If the number is above and less than 0.36, a transmission loss that is sufficiently practical can be obtained.
また平板状導体素子18間の間隔は、小さくすればする
ほど透過損失防止具11自身の反射量を大きく、透過量
を少なくするように変化させることが可能となるため、
ガラスの反射量と打ち消し合うように間隔を定めればよ
いか、平板状導体素子の直径か0.35人ては約172
人が望ましい。Furthermore, as the interval between the flat conductor elements 18 is made smaller, the amount of reflection of the transmission loss prevention device 11 itself can be increased and the amount of transmission can be decreased.
Should I set the interval so that it cancels out the amount of reflection from the glass?If the diameter of the flat conductor element is 0.35, then it is about 172.
People are preferable.
上記の実施例ては、平板状導体素子18は円形のものを
示したか、円形のものでなくてもよく、例えば第7図(
a)乃至(e)に示すような各種形状のものてもよく、
それぞれの最大幅の部分は、入/2よりも大きくなると
急激に反射量か増えるので、入/2よりも小さなものて
あればよい。なお、上記の実施例ては、この誘電体損失
防止具を窓ガラスに設けたか、パラボラアンテナのレド
ーム等に使用てきる。In the above embodiments, the flat conductive element 18 is shown to be circular, but it does not have to be circular; for example, as shown in FIG.
It may have various shapes as shown in a) to (e),
The maximum width of each portion needs to be smaller than I/2, since the amount of reflection increases rapidly when the width becomes larger than I/2. In the above embodiments, the dielectric loss preventive device is provided on a window glass or can be used in a radome of a parabolic antenna.
[発明の効果]
以上のように、本発明による透過損失防止具によれば、
透過損失を減少させることかてき、しかもその構成はフ
ィルム状に平板状導体素子を設けたものであるのて、小
型軽量てあり、取付か簡単てあり、運搬等も容易に行な
える。[Effects of the Invention] As described above, according to the transmission loss prevention device according to the present invention,
It is possible to reduce transmission loss, and since the structure is such that a flat conductor element is provided in a film shape, it is small and lightweight, easy to install, and easy to transport.
第1図は本発明による透過損失防止具の一実施例の平面
図、第2図は同実施例の側面図、第3図は同実施例の使
用状態を示す図、第4図は同実施例の動作状態の説明図
、第5図は同実施例の動作状態のベクトル図、第6図は
同実施例における平板状導体素子の大きさをパラメータ
とする透過損失対周波数特性図、第7図は同実施例に使
用する平板状導体素子の変形例を示す図、第8図はガラ
スを電波か透過する状態の説明図、第9図はガラスの厚
さと透過損失との関係を示す図である。
12・・・・窓ガラス(誘電体)、16・・・・平板状
フィルム、18・・・・平板状導体素子。
特許出願人 デイエックスアンテナ株式会社代 理
人 清 水 哲 はか2名第 1 (
2)
!IA2 IS!]
b
第 3 凹
第4 関 晃 5 艷
第 6(2]Fig. 1 is a plan view of an embodiment of the transmission loss prevention device according to the present invention, Fig. 2 is a side view of the embodiment, Fig. 3 is a diagram showing the usage state of the embodiment, and Fig. 4 is the same implementation. FIG. 5 is a vector diagram of the operating state of the example, FIG. 6 is a transmission loss vs. frequency characteristic diagram using the size of the flat conductor element as a parameter in the example, and FIG. The figure shows a modified example of the flat conductor element used in the same example, Figure 8 is an explanatory diagram of the state in which radio waves are transmitted through glass, and Figure 9 is a diagram showing the relationship between glass thickness and transmission loss. It is. 12... Window glass (dielectric material), 16... Flat film, 18... Flat conductor element. Patent applicant DAYX Antenna Co., Ltd. Agent
Person Satoshi Shimizu Number 1 of 2 people (
2)! IA2 IS! ] b No. 3 Concave No. 4 Akira Seki 5 No. 6 (2)
Claims (1)
ルムと、このフィルムの一面に所定の間隔を隔てて設け
られており上記電波の波長の1/2より小さい寸法を有
する平面状導体素子とを、具備する電波の誘電体透過損
失防止具。(1) A flat film provided on a dielectric material through which radio waves pass, and a planar conductive element provided on one side of this film at a predetermined interval and having dimensions smaller than 1/2 of the wavelength of the radio waves. A radio wave dielectric transmission loss prevention device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337774A JP2558554B2 (en) | 1990-11-30 | 1990-11-30 | Device for preventing dielectric transmission loss of radio waves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2337774A JP2558554B2 (en) | 1990-11-30 | 1990-11-30 | Device for preventing dielectric transmission loss of radio waves |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04207606A true JPH04207606A (en) | 1992-07-29 |
JP2558554B2 JP2558554B2 (en) | 1996-11-27 |
Family
ID=18311839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2337774A Expired - Fee Related JP2558554B2 (en) | 1990-11-30 | 1990-11-30 | Device for preventing dielectric transmission loss of radio waves |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2558554B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313521A (en) * | 2000-04-28 | 2001-11-09 | Tdk Corp | Radio wave attenuation body |
JP2005323380A (en) * | 2005-05-09 | 2005-11-17 | Tdk Corp | Electric wave attenuating body |
US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna |
WO2022091986A1 (en) * | 2020-10-30 | 2022-05-05 | 京セラ株式会社 | Communication system, communication method, and method for installing radio wave refracting plate |
-
1990
- 1990-11-30 JP JP2337774A patent/JP2558554B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001313521A (en) * | 2000-04-28 | 2001-11-09 | Tdk Corp | Radio wave attenuation body |
US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna |
JP2005323380A (en) * | 2005-05-09 | 2005-11-17 | Tdk Corp | Electric wave attenuating body |
WO2022091986A1 (en) * | 2020-10-30 | 2022-05-05 | 京セラ株式会社 | Communication system, communication method, and method for installing radio wave refracting plate |
Also Published As
Publication number | Publication date |
---|---|
JP2558554B2 (en) | 1996-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6545645B1 (en) | Compact frequency selective reflective antenna | |
EP0420137B1 (en) | Two layer matching dielectrics for radomes and lenses for wide angles of incidence | |
JP3535423B2 (en) | Radome | |
CA2011298A1 (en) | Dual polarization dipole array antenna | |
CN109687164B (en) | Anti-transmission integrated multifunctional planar air-feed array antenna and wireless communication system | |
US4585317A (en) | Reflector with attenuating connecting plates | |
US4897664A (en) | Image plate/short backfire antenna | |
US4733244A (en) | Polarization separating reflector, especially for microwave transmitter and receiver antennas | |
JPH04207606A (en) | Device for preventing transmission loss of dielectric with respect to radio wave | |
EP0079062A1 (en) | Reflector and method for making the same | |
JPH04134909A (en) | Diffraction ring type antenna | |
EP0015804A3 (en) | Polarizing device and microwave antenna comprising same | |
KR19990016811A (en) | Frequency selective reflector with triple square loop slot form | |
JP2002076681A (en) | Electromagnetic wave absorbing body and method for absorbing the same | |
JP2679643B2 (en) | Antenna device | |
JP3038768B2 (en) | Thin antenna | |
JPH0378947B2 (en) | ||
JPS6216040Y2 (en) | ||
JPH0223042B2 (en) | ||
JP4115829B2 (en) | Transmission type electromagnetic wave absorber | |
JPS59114906A (en) | Antenna device | |
JPH03250797A (en) | Laminated plate with low radio wave reflection property | |
JP2557439B2 (en) | Frequency selection plate | |
JPS6271909U (en) | ||
GB2318236A (en) | Radiation detector arrangements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |