JPH0420745B2 - - Google Patents

Info

Publication number
JPH0420745B2
JPH0420745B2 JP60198974A JP19897485A JPH0420745B2 JP H0420745 B2 JPH0420745 B2 JP H0420745B2 JP 60198974 A JP60198974 A JP 60198974A JP 19897485 A JP19897485 A JP 19897485A JP H0420745 B2 JPH0420745 B2 JP H0420745B2
Authority
JP
Japan
Prior art keywords
abrasive grains
layer
metal
coating
hard abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60198974A
Other languages
Japanese (ja)
Other versions
JPS6257872A (en
Inventor
Tsutomu Takahashi
Masakatsu Inaba
Kazuyoshi Adachi
Naoto Oikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP19897485A priority Critical patent/JPS6257872A/en
Publication of JPS6257872A publication Critical patent/JPS6257872A/en
Publication of JPH0420745B2 publication Critical patent/JPH0420745B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、超硬合金あるいはセラミツクス等
の難削材の研削または切断に使用して好適なメタ
ルボンド砥石に係り、特に超砥粒の集中度を高め
た焼結メタルボンド砥石に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a metal bond grindstone suitable for use in grinding or cutting difficult-to-cut materials such as cemented carbide or ceramics, and particularly relates to a metal bond grindstone suitable for grinding or cutting difficult-to-cut materials such as cemented carbide or ceramics. Regarding sintered metal bond grinding wheels with increased accuracy.

[従来の技術] 周知の通り、超硬合金やセラミツクス、フエラ
イト等の硬脆材料の研削にはダイヤモンド砥石、
CBN(立方晶窒化硼素)砥石などの砥石が賞用さ
れている。この種の砥石は、ダイヤモンド砥粒や
CBN砥粒などの硬質砥粒をレジノイドボンド、
メタルボンド、ビトリフアイドボンドなどの結合
剤と混合して型込めした後、焼結したものであ
る。そして、メタルボンドを結合剤とするもの
は、砥粒保持力、耐磨耗性が高いので、半導体、
セラミツクなどの精密切断や、石材の切断、超硬
工具の研削などに用いられている。
[Prior art] As is well known, diamond grinding wheels,
Whetstones such as CBN (cubic boron nitride) whetstones are widely used. This type of whetstone has diamond abrasive grains and
Resinoid bond hard abrasive grains such as CBN abrasive grains,
It is mixed with a binder such as metal bond or vitrified bond, molded, and then sintered. Products that use metal bond as a binder have high abrasive retention and wear resistance, so they can be used for semiconductors,
It is used for precision cutting of ceramics, stone, and grinding of carbide tools.

[発明が解決しようとする問題点] ところで、上述した従来の混合法によるメタル
ボンド砥石には次のような欠点があつた。
[Problems to be Solved by the Invention] By the way, the metal bond grindstone produced by the conventional mixing method described above has the following drawbacks.

(1) 混合法では、砥粒径の違いや比重差によつて
均一な混合ができず、砥石中の硬質砥粒の分布
が不均一になる。また、集中度の高い砥石の製
造が難しい。ここで、集中度とは、砥粒と結合
剤とからなる砥粒層中に占める砥粒の割合を示
すもので、砥粒率25vol%を集中度100と規定し
ている。
(1) In the mixing method, uniform mixing cannot be achieved due to differences in abrasive grain size and specific gravity, resulting in uneven distribution of hard abrasive grains in the whetstone. In addition, it is difficult to manufacture a grindstone with a high concentration. Here, the degree of concentration indicates the proportion of abrasive grains in the abrasive layer consisting of abrasive grains and a binder, and an abrasive grain ratio of 25 vol% is defined as a degree of concentration of 100.

(2) メタルボンド相の成分分布がマクロ的に不均
一であり、使用時に局部的に急激な摩耗を生じ
る。
(2) The component distribution of the metal bond phase is macroscopically non-uniform, causing rapid local wear during use.

(3) 焼結性不良にともなうメタルボンド層の強度
不足により、薄くて高強度のカツテイングブレ
ードの製造が難しい。
(3) It is difficult to manufacture thin, high-strength cutting blades due to insufficient strength of the metal bond layer due to poor sinterability.

(4) ダイヤモンド砥粒を保持する力が小さく、砥
石摩耗が大きい。
(4) The force that holds the diamond abrasive grains is small, and the grinding wheel wear is large.

(5) 砥粒層中の砥粒分布が不均一であるため、砥
石外周作用部における砥粒分布も不均一にな
り、切刃の連続性(周期性)がなく、被削材表
面粗さが不均一となる。
(5) Since the abrasive grain distribution in the abrasive grain layer is non-uniform, the abrasive grain distribution in the working area around the outer periphery of the grinding wheel is also non-uniform, resulting in a lack of continuity (periodicity) of the cutting edge and a decrease in the surface roughness of the workpiece. becomes uneven.

この発明は、このような背景の下になされたも
ので、硬質砥粒の分布が均一で、かつ高集中度に
して、砥粒保持力およびボンド相強度の高い、耐
久性に優れた焼結メタルボンド砥石を提供するこ
とを目的とする。
This invention was made against this background, and it is a highly durable sintered product with uniform distribution and high concentration of hard abrasive grains, high abrasive grain retention and bond phase strength. The purpose is to provide metal bond grinding wheels.

[発明の基礎となつた着想] 上記問題点を解決するために、次の着想に基づ
いて研究を行つた。
[Ideas that formed the basis of the invention] In order to solve the above problems, research was conducted based on the following ideas.

(1) メタルボンド相を形成する金属を硬質砥粒に
被覆した複合砥粒を焼結する方法によれば、硬
質砥粒の分布を均一かつ高集中度にして、しか
もメタルボンド相の成分分布がマクロ的に均一
なメタルボンド砥石が得られる。
(1) According to the method of sintering composite abrasive grains in which hard abrasive grains are coated with the metal forming the metal bond phase, the distribution of the hard abrasive grains can be made uniform and highly concentrated, and the component distribution of the metal bond phase can be made uniform. A metal bonded grinding wheel with macroscopically uniform properties can be obtained.

(2) 更に、前記複合砥粒の金属層を複層にするこ
とにより、メタルボンド相のミクロ的成分分布
を調整できる。
(2) Furthermore, by forming the metal layer of the composite abrasive grain into multiple layers, the microscopic component distribution of the metal bond phase can be adjusted.

(3) 従つて、メタルボンド相の特性の大幅な向上
が期待できる。
(3) Therefore, a significant improvement in the properties of the metal bond phase can be expected.

[問題点を解決するための手段] この発明は、上記の研究から生まれたもので、
個々の硬質砥粒に、最外層の被覆金属の融点が内
層の被覆金属の融点よりも低融点である2層以上
の金属被膜を、前記硬質砥粒の含有率が5〜
70vol%の範囲となるように被覆した複合砥粒が、
前記金属被膜の外層部分を溶着させて焼結成形さ
れており、前記硬質砥粒の間には、溶着された前
記金属被膜の外層部分の被覆金属より成り、該硬
質砥粒の周囲に残存する前記金属被膜の内層部分
よりも耐摩耗性の低い凝固層が形成されているこ
とを特徴とするものである。
[Means for solving the problem] This invention was born from the above research, and
Each hard abrasive grain is coated with two or more metal coatings in which the melting point of the outermost coating metal is lower than the melting point of the inner layer coating metal, and the content of the hard abrasive grains is 5 to 5.
Composite abrasive grains coated in a range of 70vol%,
The outer layer portion of the metal coating is sintered and formed by welding the outer layer portion of the metal coating, and the coating metal of the outer layer portion of the welded metal coating is formed between the hard abrasive grains and remains around the hard abrasive grains. It is characterized in that a coagulated layer having lower wear resistance than the inner layer portion of the metal coating is formed.

[作用] 上記手段によれば、 (1) 焼結後にメタルボンド相となる凝固層が予め
被覆金属として硬質砥粒に被覆されており、こ
うして被覆形成された複合砥粒のみが充填され
て焼結成形されるので、従来の混合法等の如く
硬質砥粒と結合剤との比重差等による混合の不
均一が生じたり、硬質砥粒の移動凝集を生じる
ことがない。このため、得られたメタルボンド
砥石において、硬質砥粒の分布は均一にして、
かつ高集中度にでき、しかもメタルボンド相の
成分分布はマクロ的に均一である。
[Function] According to the above means, (1) The solidified layer that becomes the metal bond phase after sintering is coated with hard abrasive grains as a coating metal in advance, and only the composite abrasive grains thus coated are filled and sintered. Since it is formed into a compact shape, unlike conventional mixing methods, non-uniform mixing due to differences in specific gravity between the hard abrasive grains and the binder, etc., and movement and aggregation of the hard abrasive grains do not occur. For this reason, in the obtained metal bonded grindstone, the distribution of hard abrasive grains is made uniform,
Moreover, it can be highly concentrated, and the component distribution of the metal bond phase is macroscopically uniform.

なお、前記複合砥粒における硬質砥粒の含有
率を5〜70vol%としたのは、この含有率が
5vol%未満の場合には集中度が低くなつて研削
効果が小さくなるおそれがあり、逆に70vol%
を超える場合は砥粒保持力が弱くなるおそれが
あるからである。
The content of hard abrasive grains in the composite abrasive grains is set at 5 to 70 vol% because this content is
If it is less than 5vol%, the concentration level will be low and the grinding effect may be reduced, whereas if it is less than 70vol%
This is because, if it exceeds the above, the abrasive grain retention may become weak.

(2) 硬質砥粒の近傍に相対的に高融点の金属層が
存在するため、砥粒の保持力が高い。研削時に
は砥石の温度が上昇し、特に、被削材に接する
砥粒およびその近傍は高温となるので、前記金
属層として、常温はもちろん高温でも高い変形
抵抗を維持できる材料を選ぶことにより、より
一層高い砥粒保持力を実現できる。
(2) Since there is a metal layer with a relatively high melting point near the hard abrasive grains, the retention force of the abrasive grains is high. During grinding, the temperature of the whetstone increases, especially the abrasive grains in contact with the workpiece and the vicinity thereof, so by selecting a material for the metal layer that can maintain high deformation resistance not only at room temperature but also at high temperatures, Achieves even higher abrasive grain retention.

(3) 一方、原料粉末である複合砥粒の最外層には
内層より低融点の金属被膜が形成されており、
この最外層の被膜を介して結合するようにして
いるから、焼結時に内層の金属被膜まで溶融す
ることがなく、硬質砥粒自体が近接して間に干
渉層が無くなることが防止され、各硬質砥粒が
金属被膜に弾性的にかつ強固に保持される。さ
らに、焼結時に複合砥粒間の溶着が容易に進む
ため、得られるメタルボンド砥石のボンド強度
が高い。さらにまた、硬質砥粒の間に形成され
た凝固層は、該硬質砥粒の周囲に残存する金属
被膜の内層部分より耐摩耗性が低く、研削の進
行に伴つてこの凝固層が硬質砥粒の近傍より大
きく摩耗して微細な凹部が形成され、これが切
削屑の逃げを助けるため、切れ味が良くなる。
(3) On the other hand, a metal coating with a lower melting point than the inner layer is formed on the outermost layer of the composite abrasive grain, which is the raw material powder.
Because they are bonded through this outermost coating, the inner metal coating does not melt during sintering, and the hard abrasive grains are prevented from coming close to each other and having no interference layer between them. Hard abrasive grains are elastically and firmly held in the metal coating. Furthermore, since welding between composite abrasive grains progresses easily during sintering, the bond strength of the resulting metal bonded grindstone is high. Furthermore, the coagulated layer formed between the hard abrasive grains has lower wear resistance than the inner layer portion of the metal coating remaining around the hard abrasive grains, and as grinding progresses, this coagulated layer becomes smaller than the hard abrasive grains. The blade is worn more than the area near the blade, forming a fine recess, which helps the cutting chips escape, resulting in better cutting performance.

(4) このように、この発明の焼結メタルボンド砥
石は、硬質砥粒の保持力およびボンド強度が高
く、ボンド相の成分分布がマクロ的に均一で摩
耗にムラがないために、耐久性に優れ、更に、
硬質砥粒の分布が均一にして高集中度にでき、
ボンド相の摩耗状態から研削屑の逃げもスムー
ズで、切れ味が良好である。そして、硬質砥粒
の分布が均一であるから砥石切刃が周期的連続
性を有し、被削材表面粗さを均一に細かくする
ことができ、この効果は特に高集中度砥石の場
合に顕著である。
(4) As described above, the sintered metal bonded grinding wheel of the present invention has high hard abrasive grain retention and bond strength, and the component distribution of the bond phase is macroscopically uniform and wear is uniform, so it has excellent durability. Excellent in
Uniform distribution of hard abrasive grains allows for high concentration.
Grinding debris escapes smoothly due to the wear of the bond phase, resulting in good sharpness. Since the distribution of hard abrasive grains is uniform, the cutting edge of the grinding wheel has periodic continuity, and the surface roughness of the workpiece can be made uniformly fine. This effect is especially effective when using a highly concentrated grinding wheel. Remarkable.

[実施例] 以下、本発明の実施例を説明する。[Example] Examples of the present invention will be described below.

本実施例では、第1図に示すようにダイヤモン
ド砥粒1(#140/170)の表面に、まずCVDによ
りWを被覆してW層2を形成し、次に無電解めつ
きによりNi層3を形成し、最後に電気めつきに
よりSn層4を被覆して複合砥粒5を作成した。
In this example, as shown in Fig. 1, the surface of diamond abrasive grains 1 (#140/170) is first coated with W by CVD to form a W layer 2, and then a Ni layer is formed by electroless plating. 3 was formed, and finally a Sn layer 4 was coated by electroplating to create a composite abrasive grain 5.

次に、この複合砥粒5に振動を加えつつ型込め
した後、コールドプレス(5ton/cm2)を行つてダ
イヤモンド砥粒1の充填密度を高め、ホツトプレ
ス(800℃、350Kg/cm2、5分)を施して焼結し、
集中度250のメタルボンド砥石を作製した。
Next, the composite abrasive grains 5 were placed in a mold while being vibrated, and then cold pressed (5 ton/cm 2 ) to increase the packing density of the diamond abrasive grains 1, and then hot pressed (800°C, 350 kg/cm 2 , 5 ton/cm 2 ). ) and sintered.
We created a metal bond grindstone with a concentration of 250.

作製したメタルボンド砥石は、鋼製の芯金の外
周に、幅6mm、厚さ3mmの砥石層が形成されたも
ので、この砥石層の組織は第2図に示すようであ
つた。
The produced metal bonded grindstone had a grindstone layer with a width of 6 mm and a thickness of 3 mm formed around the outer periphery of a steel core, and the structure of this grindstone layer was as shown in FIG. 2.

すなわち本実施例では、硬質砥粒であるダイヤ
モンド砥粒1に被覆された金属被膜のうち、最外
層であるSn層4が溶融し、液相のSnがNi層3と
反応して液相拡散凝固層8となつて個々の複合砥
粒5が結合されている。凝固後はSnとNiとの間
で相互に固相拡散が進み、ダイヤモンド砥粒1間
の中央部程Sn量が高く、一方W層2に近いNi部
程Sn量が少ないNi−Sn固相拡散層7が形成す
る。また、個々のダイヤモンド砥粒1は、その周
囲に残存する前記金属被膜の内層部分であるW層
2と、このW層2のさらに周囲に形成されるNi
−Sn凝固拡散層7,8とによつて保持されてい
る。
In other words, in this example, the outermost Sn layer 4 of the metal coating coated on the diamond abrasive grains 1, which are hard abrasive grains, melts, and the liquid phase Sn reacts with the Ni layer 3 to cause liquid phase diffusion. The individual composite abrasive grains 5 are combined to form a coagulated layer 8. After solidification, mutual solid phase diffusion progresses between Sn and Ni, and the Sn content is higher in the central part between the diamond abrasive grains 1, while the Ni-Sn solid phase has a lower Sn content in the Ni part closer to the W layer 2. A diffusion layer 7 is formed. Further, each diamond abrasive grain 1 has a W layer 2 which is an inner layer portion of the metal coating remaining around it, and a Ni layer formed further around this W layer 2.
-Sn solidified diffusion layers 7 and 8.

そして本実施例では、この第2図に示されるよ
うにダイヤモンド砥粒1の分布は均一であり、か
つ高集中度とすることができる。このため、砥石
切刃が周期的連続性を有し、個々の砥粒の仕事量
を一定にし得て、さらに砥石表面の摩耗が一様で
荒れを小さくできるので、被削材表面粗さを均一
に細かくして良好な仕上げ面を得ることができる
とともに、チツピング等の加工損傷の発生を防ぐ
ことが可能となる。また、メタルボンド相となつ
たNi−Sn層7,8(凝固拡散層)の成分分布も、
ミクロ的にその濃度分布が制御されるとともに、
マクロ的に均一であつて偏析等の発生が抑えら
れ、かつ真密度を高くすることができるため、強
度および耐久性の高い砥石を提供することができ
る。
In this embodiment, as shown in FIG. 2, the distribution of the diamond abrasive grains 1 is uniform and can be highly concentrated. For this reason, the grinding wheel cutting edge has periodic continuity, making it possible to keep the amount of work of each abrasive grain constant, and furthermore, the wear of the grinding wheel surface is uniform and roughness can be reduced, so the surface roughness of the workpiece material can be reduced. It is possible to obtain a good finished surface by uniformly grinding the material, and it is also possible to prevent machining damage such as chipping. In addition, the component distribution of the Ni-Sn layers 7 and 8 (solidification diffusion layer) that has become the metal bond phase is also as follows:
The concentration distribution is microscopically controlled, and
Since it is macroscopically uniform, the occurrence of segregation and the like can be suppressed, and the true density can be increased, a grindstone with high strength and durability can be provided.

さらに、ダイヤモンド砥粒1はその周囲に残
存・形成されたW層2によつて強固に保持され
る。特に、このW層2は高融点の被覆金属より成
るものであるから、研削熱によつて砥石が高温に
なつた場合でも高い変形抵抗を維持してダイヤモ
ンド砥粒1を保持する。従つてダイヤモンド砥粒
1の脱落が抑えられて砥石の摩耗速度が低減で
き、砥石寿命の延長が図られるとともに、砥粒の
切れ味の持続性が保たれて砥石修正サイクルを長
く設定することができる。また前記W層2、Ni
層3、およびSn層4は、複合砥粒5を形成する
時にダイヤモンド砥粒1に被覆されるものである
から、該ダイヤモンド砥粒1の周囲に空隙等が生
じることはなく、かつ砥粒保持力を均一化するこ
とができる。
Furthermore, the diamond abrasive grains 1 are firmly held by the W layer 2 remaining and formed around them. In particular, since this W layer 2 is made of a coating metal with a high melting point, it maintains high deformation resistance and holds the diamond abrasive grains 1 even when the grinding wheel becomes hot due to grinding heat. Therefore, the falling off of the diamond abrasive grains 1 is suppressed, the wear rate of the grinding wheel can be reduced, the life of the grinding wheel can be extended, and the sharpness of the abrasive grains can be maintained for a long time, so that the grinding wheel correction cycle can be set for a long time. . In addition, the W layer 2, Ni
Since the layer 3 and the Sn layer 4 are coated on the diamond abrasive grains 1 when forming the composite abrasive grains 5, no voids are formed around the diamond abrasive grains 1, and the abrasive grains are retained. Force can be equalized.

一方、ダイヤモンド砥粒1間に形成されるNi
−Sn層7,8(凝固拡散層)は、前記W層2に
比べて耐摩耗性が低く、このため研削の進行に伴
い、このNi−Sn層7,8が摩耗して個々のダイ
ヤモンド砥粒1の間に、その中央部程摩耗した微
細な凹部が形成される。このNi−Sn層7,8は、
ダイヤモンド砥粒1の間の中央部に形成される液
相拡散凝固層のNi−Sn層8の方が、W層2に近
接接する固相拡散Ni−Sn層7より耐摩耗性が小
さい。そして、これによりダイヤモンド砥粒1が
相対的に突出して十分に露出するとともに、前記
凹部がチツプポケツトとして作用するので、円滑
な研削屑の逃げが促され、また砥石切刃の切れ味
向上がなされて、結果的に研削抵抗の低減を図る
ことができる。
On the other hand, Ni formed between diamond abrasive grains 1
- The Sn layers 7 and 8 (solidified diffusion layer) have lower wear resistance than the W layer 2, and therefore, as the grinding progresses, the Ni-Sn layers 7 and 8 are worn away and the individual diamond abrasives are A fine concave portion is formed between the grains 1, where the central portion is worn away. These Ni-Sn layers 7 and 8 are
The liquid-phase diffusion solidified Ni-Sn layer 8 formed in the center between the diamond abrasive grains 1 has lower wear resistance than the solid-phase diffusion Ni-Sn layer 7 adjacent to the W layer 2. As a result, the diamond abrasive grains 1 are relatively protruded and sufficiently exposed, and the recesses act as chip pockets, which facilitates smooth escape of grinding debris and improves the sharpness of the abrasive cutting edge. As a result, grinding resistance can be reduced.

さらにまた、前記のW層2及び液相を生じない
Ni部の存在により、ダイヤモンド砥粒1同志が
必要以上に近接することが避けられて、個々のダ
イヤモンド砥粒1の間に干渉層が確保される。こ
れにより、前記凹部が局部的に小かくなつて研削
屑詰まりが生じるような事態が未然に防がれると
ともに、ダイヤモンド砥粒1の近傍には前記W層
2及び固相拡散層のNi−Sn層7の周囲に、常に
ある程度の液相拡散凝固層のNi−Sn層8が存在
することになり、従つてダイヤモンド砥粒1を前
記W層2及び凝固拡散層7,8ごと弾性的に保持
することも可能となる。
Furthermore, the W layer 2 and the liquid phase are not formed.
The presence of the Ni portion prevents the diamond abrasive grains 1 from coming closer together than necessary, and ensures an interference layer between the individual diamond abrasive grains 1. This prevents the concave portion from becoming locally small and clogging with grinding debris. Around the layer 7, a certain amount of the Ni-Sn layer 8, which is a liquid phase diffusion solidification layer, is always present, and therefore the diamond abrasive grains 1 are elastically held together with the W layer 2 and the solidification diffusion layers 7 and 8. It is also possible to do so.

この砥石について、ガラスを被削材とし、研削
条件としては、砥石車の周速1500m/min、切り
込み0.7mm、テーブル送り10m/min、テーブル
クロス送り2mm/pass、湿式として、研削試験を
実施したところ、研削比は17000で、研削抵抗は
小さく良好であつた。研削試験後の砥石表面を走
査型電子顕微鏡で観察したところ、第3図のよう
になつていた。
A grinding test was conducted on this grindstone using glass as the work material, and the grinding conditions were: peripheral speed of the grinding wheel 1500 m/min, depth of cut 0.7 mm, table feed 10 m/min, table cloth feed 2 mm/pass, and wet grinding. However, the grinding ratio was 17000, and the grinding resistance was small and good. When the surface of the grindstone after the grinding test was observed using a scanning electron microscope, it looked like the one shown in Figure 3.

すなわち、ダイヤモンド砥粒1の近傍にW層2
が残存してダイヤモンド砥粒1をしつかりと保持
し、このW層2の周辺に存在するNi−Sn層7,
8(凝固拡散層)が摩耗していた。さらにこの摩
耗は、W層2近傍のNi−Sn固相拡散層7よりも
個々のダイヤモンド砥粒1間の中央部分のNi−
Sn液相拡散凝固層8の方が大きかつた。前述の
ように研削抵抗が小さかつたのは、このようにダ
イヤモンド砥粒1が十分に露出し、かつ個々のダ
イヤモンド砥粒1間のNi−Sn層7,8(凝固拡
散層)が摩耗しているため、研削屑の逃げが良好
であつたためである。
That is, there is a W layer 2 near the diamond abrasive grains 1.
remains and holds the diamond abrasive grains 1 firmly, and the Ni-Sn layer 7, which exists around this W layer 2,
8 (solidification diffusion layer) was worn out. Furthermore, this wear is caused by Ni−Sn in the central portion between individual diamond abrasive grains 1 more than in the Ni−Sn solid phase diffusion layer 7 near the W layer 2.
The Sn liquid phase diffusion solidification layer 8 was larger. The reason why the grinding resistance was small as mentioned above is that the diamond abrasive grains 1 are sufficiently exposed and the Ni-Sn layers 7 and 8 (solidified diffusion layer) between the individual diamond abrasive grains 1 are worn out. This is because the escaping of grinding debris was good.

[発明の効果] 以上説明したように本発明では、硬質砥粒と結
合剤との比重差等による混合の不均一や硬質砥粒
の移動凝集による組織の不均一がなく、硬質砥粒
の分布が均一で、かつ高集中度であるとともに、
メタルボンド相となる凝固拡散層もマクロ的に偏
析がなく均一である。このため、硬質砥粒が周期
的連続性を有し、被削材の表面粗さを細かくし得
て良好な仕上げ面を得ることができ、また砥石強
度の向上を図ることができる。
[Effects of the Invention] As explained above, in the present invention, there is no non-uniform mixing due to the difference in specific gravity between the hard abrasive grains and the binder, no non-uniform structure due to the movement and aggregation of the hard abrasive grains, and the distribution of the hard abrasive grains is improved. is uniform and highly concentrated,
The solidified diffusion layer, which becomes the metal bond phase, is also uniform with no macroscopic segregation. Therefore, the hard abrasive grains have periodic continuity, the surface roughness of the workpiece can be made fine, a good finished surface can be obtained, and the strength of the grindstone can be improved.

さらに、硬質砥粒は複合砥粒を形成する際に被
覆される高融点の被覆金属によつて保持されるた
め、砥粒の周囲に空隙が生じることはなく、また
高温状態にあつても強固に保持される。これによ
り、砥粒の脱落が抑えられて砥石寿命を延長する
ことができる。
Furthermore, since the hard abrasive grains are held by the high-melting-point coating metal that is coated when forming the composite abrasive grains, no voids are created around the abrasive grains, and they remain strong even under high temperature conditions. is maintained. This prevents the abrasive grains from falling off and extends the life of the abrasive wheel.

一方、硬質砥粒の間には複合砥粒の外層部分が
溶着して耐摩耗性の低い凝固層が形成され、この
凝固層が研削に伴い摩耗してチツプポケツトとな
る凹部形成を促進するので、円滑に研削屑を逃が
して研削抵抗の低減を図ることができる。
On the other hand, the outer layer of the composite abrasive grains is welded between the hard abrasive grains to form a coagulated layer with low wear resistance, and this coagulated layer wears out during grinding and promotes the formation of recesses that become chip pockets. Grinding debris can be smoothly released to reduce grinding resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に用いた複合砥粒
5の断面略図、第2図は同実施例による砥石層の
組織を示す断面略図、第3図は同実施例による砥
石層の研削後の表面組織を示す断面略図である。 1……ダイヤモンド砥粒(硬質砥粒)、2……
W層、3……Ni層、4……Sn層、5……複合砥
粒、7……Ni−Sn固相拡散層、8……Ni−Sn液
相拡散凝固層。
Fig. 1 is a schematic cross-sectional view of composite abrasive grains 5 used in an embodiment of the present invention, Fig. 2 is a schematic cross-sectional view showing the structure of the grinding wheel layer according to the same embodiment, and Fig. 3 is a schematic cross-sectional view showing the structure of the grinding wheel layer according to the same embodiment. It is a cross-sectional schematic diagram showing the subsequent surface structure. 1...Diamond abrasive grains (hard abrasive grains), 2...
W layer, 3...Ni layer, 4...Sn layer, 5...composite abrasive grains, 7...Ni-Sn solid phase diffusion layer, 8...Ni-Sn liquid phase diffusion solidification layer.

Claims (1)

【特許請求の範囲】 1 個々の硬質砥粒に、最外層の被覆金属の融点
が内層の被覆金属の融点よりも低融点である2層
以上の金属被膜を、前記硬質砥粒の含有率が5〜
70vol%の範囲となるように被覆した複合砥粒が、
前記金属被膜の外層部分を互いに溶着させて焼結
成形されてなり、前記硬質砥粒の間には、溶着さ
れた前記金属被膜の外層部分の被覆金属より成
り、該硬質砥粒の周囲に残存する前記金属被膜の
内層部分よりも耐摩耗性の低い凝固層が形成され
ていることを特徴とする焼結メタルボンド砥石。 2 前記凝固層と、前記硬質砥粒の周囲に残存す
る前記被覆金属の内層部分との間には、該凝固層
を構成する被覆金属と前記内層部分を構成する金
属との拡散層が形成されていることを特徴とする
請求項1の焼結メタルボンド砥石。
[Scope of Claims] 1. Each hard abrasive grain is coated with two or more metal coatings in which the melting point of the outermost coating metal is lower than that of the inner layer coating metal, and the content of the hard abrasive grains is 5~
Composite abrasive grains coated in a range of 70vol%,
The outer layer portions of the metal coating are sintered and formed by welding them together, and between the hard abrasive grains, the coating metal of the outer layer portion of the welded metal coating remains around the hard abrasive grains. A sintered metal bonded grindstone, characterized in that a solidified layer having lower wear resistance than the inner layer portion of the metal coating is formed. 2. A diffusion layer of the coating metal constituting the coagulation layer and the metal constituting the inner layer portion is formed between the coagulation layer and the inner layer portion of the coating metal remaining around the hard abrasive grains. The sintered metal bond grindstone according to claim 1, characterized in that:
JP19897485A 1985-09-09 1985-09-09 Sintered metal bond grinding wheel Granted JPS6257872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19897485A JPS6257872A (en) 1985-09-09 1985-09-09 Sintered metal bond grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19897485A JPS6257872A (en) 1985-09-09 1985-09-09 Sintered metal bond grinding wheel

Publications (2)

Publication Number Publication Date
JPS6257872A JPS6257872A (en) 1987-03-13
JPH0420745B2 true JPH0420745B2 (en) 1992-04-06

Family

ID=16400025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19897485A Granted JPS6257872A (en) 1985-09-09 1985-09-09 Sintered metal bond grinding wheel

Country Status (1)

Country Link
JP (1) JPS6257872A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6354488A (en) * 1986-04-19 1988-03-08 Noritake Dia Kk Granulated abrasive for cutting wheel and grinding wheel, its manufacture, and grindstone made by using same
JPH01214502A (en) * 1988-02-18 1989-08-28 Daifuku Co Ltd Article collecting equipment
JPH0551107A (en) * 1991-01-18 1993-03-02 Nippon Syst Akad:Kk Commodity classification method and device
GB0810184D0 (en) * 2008-06-04 2008-07-09 Element Six Production Pty Ltd Method for producing a compact

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565075A (en) * 1978-11-09 1980-05-16 Asahi Daiyamondo Kogyo Kk Production of metal bond diamond grind stone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5565075A (en) * 1978-11-09 1980-05-16 Asahi Daiyamondo Kogyo Kk Production of metal bond diamond grind stone

Also Published As

Publication number Publication date
JPS6257872A (en) 1987-03-13

Similar Documents

Publication Publication Date Title
US5997597A (en) Abrasive tool with knurled surface
US7124753B2 (en) Brazed diamond tools and methods for making the same
US8104464B2 (en) Brazed diamond tools and methods for making the same
US9868100B2 (en) Brazed diamond tools and methods for making the same
US9409280B2 (en) Brazed diamond tools and methods for making the same
CN104057404B (en) A kind of multiple grinding three-dimensional for preparing sintered carbide tools works in coordination with arrangement method
US9221154B2 (en) Diamond tools and methods for making the same
US20040112359A1 (en) Brazed diamond tools and methods for making the same
JP2008514446A (en) CMP pad dresser with oriented particles and related methods
JPH11165261A (en) Porous abrasive grain grinding wheel and its manufacture
US9199357B2 (en) Brazed diamond tools and methods for making the same
JPH0543462B2 (en)
WO2002022310A1 (en) Ultra abrasive grain wheel for mirror finish
US9238207B2 (en) Brazed diamond tools and methods for making the same
CN112677061A (en) Brazed diamond grinding disc for steel grinding and preparation method thereof
KR100407227B1 (en) Composite bond wheel and wheel having resin bonding phase
JPS6288579A (en) Grinding tool
JPH0420745B2 (en)
JPH0536191B2 (en)
JP7261246B2 (en) Metal bond grindstone for hard and brittle materials
JPH0629401B2 (en) Abrasive grain coated with super hard material
JPH11300620A (en) Grinding wheel with extra-abrasive grain
JPH085012B2 (en) Metal bond whetstone
JP2004181597A (en) Metal-bonded grinding wheel and its method of manufacture
JPH07251378A (en) Porous ferrous metal bond diamond grinding wheel and its manufacture