JPH04207121A - Storage device - Google Patents

Storage device

Info

Publication number
JPH04207121A
JPH04207121A JP2338944A JP33894490A JPH04207121A JP H04207121 A JPH04207121 A JP H04207121A JP 2338944 A JP2338944 A JP 2338944A JP 33894490 A JP33894490 A JP 33894490A JP H04207121 A JPH04207121 A JP H04207121A
Authority
JP
Japan
Prior art keywords
gas
storage
pressure
valve
exhaust valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2338944A
Other languages
Japanese (ja)
Other versions
JPH07102035B2 (en
Inventor
Ichiji Yamashita
山下 市二
Masaki Kawai
河合 正毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORIN SUISANSYO YASAI CHIYAGIYOU SHIKENJO
Tokico Ltd
Original Assignee
NORIN SUISANSYO YASAI CHIYAGIYOU SHIKENJO
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORIN SUISANSYO YASAI CHIYAGIYOU SHIKENJO, Tokico Ltd filed Critical NORIN SUISANSYO YASAI CHIYAGIYOU SHIKENJO
Priority to JP33894490A priority Critical patent/JPH07102035B2/en
Publication of JPH04207121A publication Critical patent/JPH04207121A/en
Publication of JPH07102035B2 publication Critical patent/JPH07102035B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)
  • Storage Of Harvested Produce (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

PURPOSE:To prevent quality deterioration of fruits and vegetables by closing a gas feed valve after substitution of gas in a storage house and closing an exhaust valve when pressure in the storage house is returned approximately to atmospheric pressure. CONSTITUTION:Opening and closing of a gas feed valve 8a and an exhaust valve 11 are regulated by a control circuit 7 according to change of a gas concentration ratio in a storage house 2. After replacement of a gas in the storage house is over, the gas feed valve and the exhaust valve are closed. When pressure in the storage house is returned approximately to atmospheric pressure, the exhaust valve is closed and pressure is adjusted so as not to damage fruits and vegetables.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は貯蔵装置に係り、特に貯蔵庫内に貯蔵物の鮮度
維持を図るガスを充填する貯蔵装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a storage device, and more particularly to a storage device in which a storage chamber is filled with a gas to maintain the freshness of stored items.

従来の技術 例えば野菜、果物等の生鮮食料品は、一般に出荷までの
間、貯蔵装置内に貯蔵され鮮度の維持か図られている。
2. Description of the Related Art Fresh foods such as vegetables and fruits are generally stored in storage devices to maintain their freshness until they are shipped.

また、これら貯蔵物の長期保存には、貯蔵庫内を貯蔵物
か凍結しない程度に低温として不活性化すると共に、庫
内雰囲気の酸素濃度を必要最小限に低下させ、さらに窒
素あるいは二酸化炭素与えて呼吸作用を制御させるのが
最良手段とされており、昨今この種の研究が続けられて
いる。この現象を利用した貯蔵方法は、CA(雰囲気制
御またはコンドロールド・アトモスフィア)貯蔵法と呼
ばれている。
In addition, for long-term storage of these stored items, the inside of the storage room must be kept at a low temperature so that the stored items do not freeze and become inert, the oxygen concentration in the inside atmosphere must be reduced to the minimum necessary, and nitrogen or carbon dioxide must be added. The best method is to control the respiratory action, and this type of research is currently continuing. A storage method that utilizes this phenomenon is called a CA (controlled atmosphere or chondral atmosphere) storage method.

このCA貯蔵法を用いた貯蔵装置は、青果物等を貯蔵す
る貯蔵庫と、青果物等を貯蔵するのに最適な環境、即ち
庫内の雰囲気ガスを所定濃度割合(例えば、酸素(02
)2〜3%、二酸化炭素(CO2)5%のガス)に調整
するガス生成装置とから構成されている。この種の貯蔵
装置では、当初青果物等を貯蔵庫に搬入した後、貯蔵庫
とガス生成装置とを接続する配管に設けられたガス供給
弁を開弁するとともに貯蔵庫の排気配管に設けられた排
気弁を開弁して上記最適なガスを貯蔵庫内へ供給し、貯
蔵庫内の空気を最適なガスと置換する。
A storage device using this CA storage method has a storage warehouse for storing fruits and vegetables, and an environment that is optimal for storing fruits and vegetables, that is, an atmospheric gas in the warehouse at a predetermined concentration ratio (for example, oxygen (02
) 2 to 3% and carbon dioxide (CO2) 5% gas). In this type of storage device, after fruits and vegetables are initially brought into the storage, the gas supply valve installed in the piping connecting the storage and the gas generation device is opened, and the exhaust valve installed in the exhaust piping of the storage is opened. The valve is opened to supply the optimal gas into the storage, replacing the air in the storage with the optimal gas.

そして、所定時間経過後、貯蔵庫内の空気がガス生成装
置からのガスに置換されると、上記ガス供給弁及び排気
弁を閉弁する。
Then, after a predetermined period of time has passed, when the air in the storage is replaced with gas from the gas generator, the gas supply valve and exhaust valve are closed.

このようにして、貯蔵庫内に貯蔵された青果物は呼吸す
るため、庫内の酸素ガスを消費しなから二酸化炭素(C
o2ガス)を発生する。従って、経時とともに庫内のガ
ス濃度割合は、その青果物の最適ガス条件の上、下限値
を越えてしまい、そのままにしておくと青果物はガス障
害により鮮度が劣化してしまう。
In this way, the fruits and vegetables stored in the storage room breathe, so instead of consuming the oxygen gas in the storage room, the fruits and vegetables stored in the storage room breathe.
o2 gas). Therefore, as time passes, the gas concentration ratio in the refrigerator exceeds the lower limit value due to the optimal gas conditions for the fruits and vegetables, and if left as is, the freshness of the fruits and vegetables will deteriorate due to gas disturbance.

そのため、貯蔵装置では庫内のガス濃度割合か上、下限
値を越えると上記ガス供給弁及び排気弁を開弁してガス
生成装置により生成された最適ガスを庫内に供給してガ
ス置換を行い最適ガス条件となるようにガス濃度割合を
修整する。
Therefore, in the storage device, when the gas concentration ratio in the refrigerator exceeds the upper or lower limit, the gas supply valve and the exhaust valve are opened, and the optimal gas generated by the gas generator is supplied into the refrigerator to replace the gas. and adjust the gas concentration ratio to achieve the optimal gas condition.

発明が解決しようとする課題 しかるに、従来の貯蔵装置においては、上記のように庫
内にガスを供給する際、ガス供給弁及び排気弁を同時に
開弁させて庫内のガス置換を行うようになっており、庫
内のガス置換が終了したときもガス供給弁及び排気弁を
同時に閉弁させていた。ところか、ガス供給弁を介して
貯蔵庫に供給されるガスは加圧されているため、庫内の
ガス置換を行うとき庫内全体か加圧状態になる。そのた
め、ガス供給弁及び排気弁を同時に閉弁させてしまうと
、ガス置換終了後も庫内か加圧されたままとなり、庫内
に貯蔵された青果物は加圧された雰囲気ガス中で保存さ
れることになる。従って、従来は青果物が加圧状態で長
期間保存されるといたみかはげしくなり品質の低下を招
くおそれかあるといった課題がある。
Problems to be Solved by the Invention However, in conventional storage devices, when supplying gas into the refrigerator as described above, the gas supply valve and the exhaust valve are simultaneously opened to replace the gas in the refrigerator. Even when gas replacement in the refrigerator was completed, the gas supply valve and exhaust valve were closed at the same time. However, since the gas supplied to the storage via the gas supply valve is pressurized, the entire interior of the storage is pressurized when replacing the gas inside the storage. Therefore, if the gas supply valve and exhaust valve are closed at the same time, the inside of the refrigerator will remain pressurized even after the gas replacement is completed, and fruits and vegetables stored in the refrigerator will be stored in a pressurized atmospheric gas. That will happen. Therefore, conventionally, there has been a problem that if fruits and vegetables are stored under pressure for a long period of time, they may become hard and lose quality.

そこで、本発明は貯蔵庫内に圧力か残らないようにして
上記課題を解決した貯蔵装置を提供することを目的とす
る。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a storage device that solves the above problems by preventing pressure from remaining inside the storage.

課題を解決するための手段 本発明は、貯蔵物が貯蔵された貯蔵庫と、該貯蔵庫に所
定濃度の気体を供給する気体供給源と、該貯蔵庫と該気
体供給源とを連通ずる供給配管に設けられた気体供給弁
と、該貯蔵庫と外部とを連通ずる排出配管に設けられた
排気弁とを有し、該気体供給弁及び排気弁の開弁により
貯蔵庫内の気体を気体供給源からの気体に置換する貯蔵
装置において、 前記貯蔵庫内の気体の置換が終了し、前記気体供給弁を
閉弁させるとき、前記排気弁の開弁を所定時間延長し前
記貯蔵庫内の圧力か略大気圧になったとき前記排気弁を
閉弁させる圧力調整手段を具備してなる。
Means for Solving the Problems The present invention provides a storage where stored items are stored, a gas supply source that supplies gas at a predetermined concentration to the storage, and a supply pipe that communicates the storage with the gas supply source. and an exhaust valve provided on a discharge pipe communicating the storage with the outside, and when the gas supply valve and the exhaust valve are opened, the gas in the storage is removed from the gas from the gas supply source. In the storage device, when the gas replacement in the storage is completed and the gas supply valve is closed, the opening of the exhaust valve is extended for a predetermined time so that the pressure in the storage reaches approximately atmospheric pressure. The exhaust valve is further provided with pressure regulating means for closing the exhaust valve when the exhaust valve is closed.

作用 圧力調整手段の動作により貯蔵庫内の圧力を略大気圧に
維持することが可能となり、貯蔵庫内の貯蔵物が庫内の
圧力の影響を受けないようにする。
The operation of the working pressure adjusting means makes it possible to maintain the pressure inside the storage at approximately atmospheric pressure, so that the stored items in the storage are not affected by the pressure inside the storage.

実施例 第1図及び第3図に本発明の一実施例である貯蔵装置を
示す。各図中、貯蔵装置Iは大略すると、貯蔵庫2.気
体分離ユニット3.圧縮ユニット4゜及び制御回路7等
により構成されている。
Embodiment FIGS. 1 and 3 show a storage device which is an embodiment of the present invention. In each figure, storage device I is roughly referred to as storage 2. Gas separation unit 3. It is composed of a compression unit 4°, a control circuit 7, etc.

貯蔵庫2には、庫内のガス濃度割合を検出する0□セン
サ5.Co2センサ6が設けられ、且つ気体分離ユニッ
ト3と接続された窒素供給配管8(以下、N2配管とい
う)及び、排出配管10の一端か接続される。
In the storage 2, there is a 0□ sensor 5 for detecting the gas concentration ratio in the storage. A Co2 sensor 6 is provided, and one end of a nitrogen supply pipe 8 (hereinafter referred to as N2 pipe) connected to the gas separation unit 3 and a discharge pipe 10 are connected.

上記N2配管8には電磁弁よりなるガス供給弁8aか、
排出配管10には電磁弁よりなる排気弁11か夫々配設
されている。また、N2配管8は貯蔵庫2の比較的上部
位置に接続されており、−方、排出配管IOは貯蔵庫2
の下部位置に接続位置を選定されている。気体分離ユニ
ット3は、圧縮ユニット4からの圧縮空気を供給されて
、製品ガスたる窒素を分離生成する装置である。
The N2 pipe 8 has a gas supply valve 8a made of a solenoid valve,
Each of the exhaust pipes 10 is provided with an exhaust valve 11 made of a solenoid valve. Further, the N2 pipe 8 is connected to a relatively upper position of the storage 2, and the discharge pipe IO is connected to the storage 2 at a relatively upper position.
The connection position is selected at the bottom position. The gas separation unit 3 is a device that is supplied with compressed air from the compression unit 4 and separates and produces nitrogen as a product gas.

圧縮ユニット4は吸気配管14に吸気フィルタ付すイレ
ンサ15A、コンプレッサ15B、  ドライヤ15C
を配設してなる。圧縮ユニット4はコンプレッサ15B
の運転によりサイレンサ15Aから吸い込んだ空気を圧
縮し、ドライヤ15Cにより除湿された圧縮空気を供給
配管16を介して気体分離ユニット3に供給する。
The compression unit 4 includes an eraser 15A with an intake filter attached to the intake pipe 14, a compressor 15B, and a dryer 15C.
It will be arranged. Compression unit 4 is compressor 15B
The air sucked from the silencer 15A is compressed by the operation, and the compressed air dehumidified by the dryer 15C is supplied to the gas separation unit 3 via the supply pipe 16.

続いて気体分離ユニット3の構成について説明する。第
1図中、21.22は第1.第2の吸着槽で、各吸着槽
21.22内には夫々酸素を吸着する吸着剤としての分
子ふるいカーホン21A。
Next, the configuration of the gas separation unit 3 will be explained. In Figure 1, 21.22 is the 1st. In the second adsorption tank, each adsorption tank 21.22 contains a molecular sieve carphone 21A as an adsorbent that adsorbs oxygen.

22A(第1図中、梨地て示す)が充填されている。22A (shown as satin in FIG. 1) is filled.

23.24は脱着時に吸着槽21.22からの気体を排
出する配管で、夫々共通排出配管25に接続されており
、排出配管25は吸着されたガス(本実施例では吸着さ
れた酸素)を大気中に排出するようになっている。そし
て、前記配管23゜24の途中には夫々吸着槽21.2
2内の脱着ガスを半サイクル毎に交互に排出する電磁弁
からなる気体排出切換弁26.27が設けられている。
Pipes 23 and 24 discharge gas from the adsorption tanks 21 and 22 during desorption, and are connected to a common discharge pipe 25, respectively, and the discharge pipe 25 discharges the adsorbed gas (in this example, adsorbed oxygen). It is supposed to be released into the atmosphere. Adsorption tanks 21 and 2 are located in the middle of the pipes 23 and 24, respectively.
Gas discharge switching valves 26 and 27 are provided, each of which is a solenoid valve that alternately discharges the desorbed gas in each half cycle.

一方、28.29は吸着槽21.22からの窒素を夫々
取出す取出配管、30は該各配管28゜29と接続され
た取出配管で、各配管28.29の途中には半サイクル
の間だけ交互に開弁する電磁弁からなる還流取出用切換
弁31.32か夫々設けられている。また前記取出配管
30は生成される窒素ガスを貯溜する窒素タンク33と
接続されている。
On the other hand, 28.29 is an extraction pipe for taking out nitrogen from the adsorption tank 21.22, and 30 is an extraction pipe connected to each of the pipes 28 and 29. Recirculation extraction switching valves 31 and 32 each consisting of a solenoid valve that opens alternately are provided. Further, the extraction pipe 30 is connected to a nitrogen tank 33 that stores generated nitrogen gas.

また、還流取出用の切換弁31.32は吸着槽21.2
2内を昇圧させるとき、空気供給用の切換弁34.35
の開弁と略同時に開弁され、窒素タンク33内の窒素ガ
スを吸着槽21.22内に還流させる。尚、切換弁34
.35は供給配管16と各吸着槽21.22の間に配設
されている。
In addition, the switching valve 31.32 for taking out the reflux is connected to the adsorption tank 21.2.
When increasing the pressure inside 2, selector valve 34.35 for air supply
The valve is opened substantially at the same time as the valve is opened, and the nitrogen gas in the nitrogen tank 33 is refluxed into the adsorption tank 21.22. In addition, the switching valve 34
.. 35 is arranged between the supply pipe 16 and each adsorption tank 21,22.

36は配管28.29間を連通ずる配管、37は配管3
6の途中に設けられた電磁弁からなる均圧用切換弁で、
均圧用切換弁37は吸着槽21゜22による半サイクル
の終了時に所定の短時間たけ開弁し、各吸着槽21.2
2間を均圧にする。
36 is a pipe communicating between pipes 28 and 29, 37 is pipe 3
A pressure equalization switching valve consisting of a solenoid valve installed in the middle of 6.
The pressure equalization switching valve 37 is opened for a predetermined short time at the end of a half cycle by the adsorption tanks 21 and 22, and each adsorption tank 21.
Equalize the pressure between the two.

窒素タンク33には窒素タンク33の窒素ガスを貯蔵庫
2に供給するN2配管8が接続されており、N2配管8
の途中には前記のようにガス供給弁8aが配設されてい
る。
An N2 pipe 8 that supplies nitrogen gas from the nitrogen tank 33 to the storage 2 is connected to the nitrogen tank 33.
As mentioned above, the gas supply valve 8a is disposed in the middle.

上記構成の気体分離ユニット3は、昇圧、均圧、脱着の
各工程を繰返し行ないN2ガスを生成する。
The gas separation unit 3 configured as described above repeatedly performs the steps of pressure increase, pressure equalization, and desorption to generate N2 gas.

尚、気体分離ユニット3の詳細な動作説明はここでは省
略する。
Note that a detailed explanation of the operation of the gas separation unit 3 will be omitted here.

上記ガス供給弁8a及び排気弁11は制御回路7に接続
されて通常閉弁しており、制御回路7から供給される駆
動信号により開弁動作する構成とされている。即ち、制
御回路7は第3図に示すようなシーケンス回路により構
成されており、貯蔵庫2内のガス濃度割合の変化に応じ
てガス供給弁8a、排気弁11を開閉制御する。
The gas supply valve 8a and the exhaust valve 11 are connected to the control circuit 7 and are normally closed, and are configured to open in response to a drive signal supplied from the control circuit 7. That is, the control circuit 7 is constituted by a sequence circuit as shown in FIG. 3, and controls the opening and closing of the gas supply valve 8a and the exhaust valve 11 according to changes in the gas concentration ratio in the storage 2.

貯蔵庫2内に貯′蔵された青果物は呼吸するため、庫内
の酸素(02)を消費しながら二酸化炭素(0,)を発
生する。従って、青果物を長期間保存する場合、経時と
ともに庫内のガス濃度割合は、CO2濃度が高まり青果
物の最適ガス条件の許容範囲を越えてしまう。
Since the fruits and vegetables stored in the storage 2 breathe, they generate carbon dioxide (0,) while consuming oxygen (02) in the storage. Therefore, when fruits and vegetables are stored for a long period of time, the gas concentration ratio in the refrigerator increases with time and the CO2 concentration exceeds the allowable range of optimal gas conditions for fruits and vegetables.

庫内の02濃度、CO,濃度は02センサ5゜02セン
サ6により監視されており、制御回路7は02センサ5
.Co、センサ6の検出信号により気体分離ユニット3
で生成されたN2ガスの供給を制御する。
The 02 concentration, CO, and concentration in the refrigerator are monitored by the 02 sensor 5 and 02 sensor 6, and the control circuit 7 is controlled by the 02 sensor 5.
.. Co, the gas separation unit 3 by the detection signal of the sensor 6
Controls the supply of N2 gas generated in

ここで、第2図に示す制御回路7の制御動作について説
明する。第2図中、41はガス供給弁8aのソレノイド
で、42は排気弁11のソレノイドを表わす。又43,
44はリレーで夫々閉成したときソレノイド41.42
を励磁する。45は遅延リレー(圧力調整手段)で、後
述するようにガス供給弁8aが閉弁した後所定時間を秒
間排気弁11を開弁状態に保持する。尚、遅延リレー4
5は入力信号かオフになっても時間tの間オン状態を保
持するようになっており、この遅延時間(1)は任意の
時間に変更することかできる。
Here, the control operation of the control circuit 7 shown in FIG. 2 will be explained. In FIG. 2, 41 represents a solenoid for the gas supply valve 8a, and 42 represents a solenoid for the exhaust valve 11. Also 43,
44 is a relay, and when closed respectively, solenoids 41 and 42
Excite. Reference numeral 45 denotes a delay relay (pressure adjustment means) which keeps the exhaust valve 11 open for a predetermined period of time after the gas supply valve 8a is closed, as will be described later. In addition, delay relay 4
5 remains on for a time t even if the input signal is turned off, and this delay time (1) can be changed to any desired time.

例えば、貯蔵庫2内に青果物等の貯蔵物が搬入された後
、庫内のガスは最適ガス雰囲気(02が2〜3%、Co
、が5%)に調整される。その後、青果物等の呼吸作用
により庫内のガス濃度割合か変化すると、制御回路7は
上記最適ガス雰囲気を維持するようにガス供給弁8a、
排気弁11を開閉制御する。
For example, after the stored items such as fruits and vegetables are brought into the storage warehouse 2, the gas inside the warehouse is set to an optimal gas atmosphere (2 to 3% 02, Co
, is adjusted to 5%). Thereafter, when the gas concentration ratio in the refrigerator changes due to the respiration of fruits and vegetables, the control circuit 7 controls the gas supply valve 8a,
Controls the opening and closing of the exhaust valve 11.

従って、庫内のCO2濃度が最適ガスの許容上限値を越
えたとき、制御回路7のスイ・ノチ46か閉成される。
Therefore, when the CO2 concentration in the refrigerator exceeds the permissible upper limit of the optimal gas, the switch 46 of the control circuit 7 is closed.

これにより、リレー43か励磁されるとともにリレー4
3の各接点43a〜43cか閉成する。
As a result, the relay 43 is energized and the relay 43 is energized.
3, each of the contacts 43a to 43c is closed.

リレー43の接点43aが閉成すると、ソレノイド41
は励磁され、ガス供給弁8aは開弁する。
When the contact 43a of the relay 43 is closed, the solenoid 41
is excited, and the gas supply valve 8a is opened.

よって、気体分離ユニット3の窒素タンク33に貯溜さ
れたN2ガスはN2配管8.ガス供給弁8aを介して貯
蔵庫2内に供給される。尚、窒素タンク33の製品ガス
はN2ガス99〜99.9%。
Therefore, the N2 gas stored in the nitrogen tank 33 of the gas separation unit 3 is transferred to the N2 pipe 8. The gas is supplied into the storage 2 via the gas supply valve 8a. Note that the product gas in the nitrogen tank 33 is N2 gas 99 to 99.9%.

02が1〜0.1%程度の高純度のN2ガスである。02 is high purity N2 gas with a content of about 1 to 0.1%.

そのため、窒素タンク33からのN2ガスが貯蔵庫2内
に供給されるにつれて貯蔵庫2内の圧力が上昇するとと
もに庫内のCO2濃度が低下する。
Therefore, as the N2 gas from the nitrogen tank 33 is supplied into the storage 2, the pressure within the storage 2 increases and the CO2 concentration within the storage decreases.

又、上記リレー43が励磁されると同時に遅延リレー4
5も励磁され遅延リレー45の接点45aが閉成するた
め、リレー44も励磁される。そのため、リレー44の
接点44a、44bが閉成してソレノイド42か励磁さ
れる。従って、上記ガス供給弁8aの開弁と同時に排気
弁11が開弁する。庫内は窒素タンク33からのN2ガ
ス供給により加圧状態となるため、排気弁11の開弁に
より庫内のガスは排出配管11を介して外部(こ排出さ
れる。これにより、庫内のCO2濃度の高し・ガスか外
部に排出されて、庫内のCO2濃度は徐々に低下する。
Also, at the same time as the relay 43 is energized, the delay relay 4 is activated.
5 is also energized and contact 45a of delay relay 45 is closed, so relay 44 is also energized. Therefore, contacts 44a and 44b of relay 44 are closed, and solenoid 42 is energized. Therefore, the exhaust valve 11 opens simultaneously with the opening of the gas supply valve 8a. The inside of the refrigerator is pressurized by the supply of N2 gas from the nitrogen tank 33, so when the exhaust valve 11 is opened, the gas inside the refrigerator is exhausted to the outside via the exhaust pipe 11. High CO2 concentration - Gas is exhausted to the outside, and the CO2 concentration inside the refrigerator gradually decreases.

第3図に上記制御回路7の動作により、ガス供給弁8a
が及び排気弁11のソレノイド41゜42に入力される
信号及び庫内の圧力変化のタイムチャートを示す。
In FIG. 3, the gas supply valve 8a is opened by the operation of the control circuit 7.
3 shows a time chart of signals input to the solenoids 41 and 42 of the exhaust valve 11 and changes in pressure inside the refrigerator.

上記ガス供給弁7及び排気弁11の開弁により庫内のガ
スが最適ガスになると、スイッチ46か開成される。こ
れにより、リレー43か消勢され、リレー43の各接点
43a〜43cか開弁する。
When the gas in the refrigerator becomes the optimum gas by opening the gas supply valve 7 and the exhaust valve 11, the switch 46 is opened. As a result, the relay 43 is deenergized and the contacts 43a to 43c of the relay 43 are opened.

そのため、ソレノイド41は消勢され、ガス供給弁8a
は閉弁する。
Therefore, the solenoid 41 is deenergized and the gas supply valve 8a
is closed.

しかるに、排気弁11のソレノイド42は遅延リレー4
5によりガス供給弁8aか閉弁した後もリレー44が励
磁された状態に保持され、時間tの間開弁している。そ
のため、貯蔵庫2内に残留したガスは、加圧されている
か排気弁11より外部に排出されて、庫内の圧力は略大
気圧まで減圧される。このような庫内の圧力は第3図中
線図■に示すように変化し、庫内が略大気圧になったと
き排気弁11は閉弁する。
However, the solenoid 42 of the exhaust valve 11 is connected to the delay relay 4.
5, even after the gas supply valve 8a is closed, the relay 44 is kept in an excited state and remains open for a time t. Therefore, the gas remaining in the storage 2 is either pressurized or exhausted to the outside from the exhaust valve 11, and the pressure inside the storage is reduced to approximately atmospheric pressure. The pressure inside the refrigerator changes as shown in the line (2) in FIG. 3, and when the pressure inside the refrigerator reaches approximately atmospheric pressure, the exhaust valve 11 closes.

このようにして、貯蔵庫2内は最適ガスとなるようにガ
ス濃度割合が調整されるとともに圧力が略大気圧に調整
される。従って、庫内に貯蔵された青果物等は長期間保
存されても庫内の圧力によりいたんでしまうことが防止
され、貯蔵物の品質低下が防止される。
In this way, the gas concentration ratio in the storage chamber 2 is adjusted so that the gas is optimal, and the pressure is adjusted to approximately atmospheric pressure. Therefore, even if fruits and vegetables stored in the refrigerator are stored for a long period of time, they are prevented from spoiling due to the pressure inside the refrigerator, and deterioration in the quality of the stored products is prevented.

第4図に本発明の変形例を示す。第4図中、排出配管1
0には上、下流側の圧力差により自動的に開閉する圧力
調整手段としての圧力制御弁47が配設されている。こ
の圧力制御弁47は圧力検出部48かダイヤフラム49
により上流側のダイヤフラム室50と下流側のダイヤフ
ラム室51とに画成されている。ダイヤフラム49はバ
ネ52の押圧力により閉弁方向に附勢されている。
FIG. 4 shows a modification of the present invention. In Fig. 4, discharge pipe 1
0 is provided with a pressure control valve 47 as a pressure regulating means that automatically opens and closes depending on the pressure difference between the upper and downstream sides. This pressure control valve 47 is a pressure detection section 48 or a diaphragm 49.
It is defined into a diaphragm chamber 50 on the upstream side and a diaphragm chamber 51 on the downstream side. The diaphragm 49 is urged in the valve closing direction by the pressing force of the spring 52.

上流側のダイヤフラム室50には上流側の排出配管10
より分岐した分岐管53か接続され、下流側のダイヤフ
ラム室51には下流側の排出配管IOより分岐した分岐
管54か接続されている。
The upstream diaphragm chamber 50 has an upstream discharge pipe 10.
A branch pipe 53 branched further is connected to the diaphragm chamber 51 on the downstream side, and a branch pipe 54 branched from the discharge pipe IO on the downstream side is connected to the diaphragm chamber 51 on the downstream side.

尚、排出配管IOの先端は大気開放となっているので、
下流側のダイヤフラム室51は略大気圧となっている。
Furthermore, since the tip of the discharge pipe IO is open to the atmosphere,
The diaphragm chamber 51 on the downstream side is at approximately atmospheric pressure.

又、上流側のダイヤフラム室50には貯蔵庫2内の圧力
か導入されている。
Further, the pressure inside the storage 2 is introduced into the diaphragm chamber 50 on the upstream side.

ここで、前述したように庫内のCO□濃度か高くなり制
御回路7の制御動作によりガス供給弁8aが開弁され、
窒素タンク33内の加圧されたN2ガスが庫内に供給さ
れると、庫内の圧力か上昇する。従って、圧力制御弁4
7の圧力検出部48のダイヤフラム室50には庫内の高
圧ガスが導入される。そのため、ダイヤフラム49はダ
イヤフラム室50と51との差圧により上動し、圧力制
御弁47は開弁する。これにより、貯蔵庫2内のガスは
排出配管10を介して外部に排気される。
Here, as mentioned above, the CO□ concentration in the refrigerator becomes high and the gas supply valve 8a is opened by the control operation of the control circuit 7.
When the pressurized N2 gas in the nitrogen tank 33 is supplied into the refrigerator, the pressure inside the refrigerator increases. Therefore, the pressure control valve 4
High-pressure gas inside the refrigerator is introduced into the diaphragm chamber 50 of the pressure detection section 48 of No. 7. Therefore, the diaphragm 49 moves upward due to the pressure difference between the diaphragm chambers 50 and 51, and the pressure control valve 47 opens. Thereby, the gas in the storage 2 is exhausted to the outside via the exhaust pipe 10.

そして、庫内の雰囲気ガスが最適ガスに置換されると、
ガス供給弁8aは閉弁される。しかし、庫内は加圧状態
であるので、圧力制御弁47は開弁状態を保ち庫内をさ
らに減圧する。所定時間経過後貯蔵庫2か略大気圧に減
圧されると、圧力制御弁47は自動的に閉弁する。
Then, when the atmospheric gas inside the refrigerator is replaced with the optimal gas,
Gas supply valve 8a is closed. However, since the interior of the refrigerator is pressurized, the pressure control valve 47 remains open to further reduce the pressure inside the refrigerator. When the pressure in the storage chamber 2 is reduced to approximately atmospheric pressure after a predetermined period of time has elapsed, the pressure control valve 47 is automatically closed.

このように、圧力制御弁47の開閉弁動作により貯蔵庫
2は青果物等を長期間保存するのに適したガス濃度割合
、圧力に制御される。
In this manner, by the on-off valve operation of the pressure control valve 47, the storage 2 is controlled to have a gas concentration ratio and pressure suitable for storing fruits and vegetables for a long period of time.

発明の効果 上述の如く、本発明になる貯蔵装置は、貯蔵庫の圧力を
略大気圧となるように調整することかできるので、庫内
を例えば青果物等の貯蔵物を保存するのに適したガス濃
度割合に制御するとともに青果物がいたまない圧力に調
整することかできる。
Effects of the Invention As described above, the storage device according to the present invention can adjust the pressure in the storage to approximately atmospheric pressure, so the inside of the storage can be filled with gas suitable for storing stored items such as fruits and vegetables. It is possible to control the concentration ratio and adjust the pressure so that fruits and vegetables are not spoiled.

そのため、青果物等の品質劣化を防止することかでき、
貯蔵物を長期間安定的に保存することができる等の特長
を存する。
Therefore, it is possible to prevent quality deterioration of fruits and vegetables, etc.
It has the advantage of being able to store stored items stably for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる貯蔵装置の一実施例の構成図、第
2図は制御回路の回路図、第3図はガス供給弁、排気弁
の開閉及び庫内の圧力変化を示す図、第4図は本発明の
変形例の構成図である。 l・・・貯蔵装置、2・・・貯蔵庫、3・・・気体分離
ユニット、4・・・圧縮ユニット、5・・・02センサ
、6・・・C02センサ、7・・・制御回路、8・・・
N2配管、8a・・・ガス供給弁、lO・・・排出配管
、11・・・排気弁、21.22・・・吸着槽、33・
・・窒素タンク、45・・・遅延リレー、47・・・圧
力制御弁。 特許出願人 農林水産省野菜・茶業試験場長間    
 ト  キ  コ  株式会社、ζ)、
FIG. 1 is a configuration diagram of an embodiment of the storage device according to the present invention, FIG. 2 is a circuit diagram of a control circuit, and FIG. 3 is a diagram showing opening/closing of a gas supply valve and exhaust valve and pressure changes in the chamber. FIG. 4 is a configuration diagram of a modification of the present invention. l... Storage device, 2... Storage, 3... Gas separation unit, 4... Compression unit, 5... 02 sensor, 6... C02 sensor, 7... Control circuit, 8 ...
N2 pipe, 8a... Gas supply valve, lO... Discharge pipe, 11... Exhaust valve, 21.22... Adsorption tank, 33.
...Nitrogen tank, 45...Delay relay, 47...Pressure control valve. Patent applicant Director, Ministry of Agriculture, Forestry and Fisheries Vegetable and Tea Industry Experiment Station
Tokiko Co., Ltd., ζ),

Claims (1)

【特許請求の範囲】[Claims] 貯蔵物が貯蔵された貯蔵庫と、該貯蔵庫に所定濃度の気
体を供給する気体供給源と、該貯蔵庫と該気体供給源と
を連通する給気配管に設けられた気体供給弁と、該貯蔵
庫と外部とを連通する排出配管に設けられた排気弁とを
有し、該気体供給弁及び排気弁の開弁により貯蔵庫内の
気体を気体供給源からの気体に置換する貯蔵装置におい
て、前記貯蔵庫内の気体の置換が終了し、前記気体供給
弁を閉弁させるとき、前記排気弁の開弁を所定時間延長
し前記貯蔵庫内の圧力が略大気圧になったとき前記排気
弁を閉弁させる圧力調整手段を具備してなる貯蔵装置。
A storage in which stored items are stored, a gas supply source that supplies gas at a predetermined concentration to the storage, a gas supply valve provided in an air supply pipe that communicates the storage with the gas supply source, and the storage and an exhaust valve provided on a discharge pipe communicating with the outside, and in which gas in the storage is replaced with gas from a gas supply source by opening the gas supply valve and the exhaust valve, When the gas replacement is completed and the gas supply valve is closed, the opening of the exhaust valve is extended for a predetermined period of time, and when the pressure in the storage reaches approximately atmospheric pressure, the pressure that causes the exhaust valve to close. A storage device comprising adjustment means.
JP33894490A 1990-11-30 1990-11-30 Storage device Expired - Fee Related JPH07102035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33894490A JPH07102035B2 (en) 1990-11-30 1990-11-30 Storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33894490A JPH07102035B2 (en) 1990-11-30 1990-11-30 Storage device

Publications (2)

Publication Number Publication Date
JPH04207121A true JPH04207121A (en) 1992-07-29
JPH07102035B2 JPH07102035B2 (en) 1995-11-08

Family

ID=18322794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33894490A Expired - Fee Related JPH07102035B2 (en) 1990-11-30 1990-11-30 Storage device

Country Status (1)

Country Link
JP (1) JPH07102035B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174724A (en) * 2008-01-22 2009-08-06 Hitachi Appliances Inc Refrigerator
JP2015198639A (en) * 2014-03-31 2015-11-12 ダイキン工業株式会社 Mixed gas supply device and refrigeration device for container
US20160245555A1 (en) * 2013-10-03 2016-08-25 Daikin Industries, Ltd. Refrigeration unit for container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101506276B1 (en) * 2014-04-29 2015-03-27 경상대학교산학협력단 Processing apparatus for protecting oxidation and processing method using it

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447317A (en) * 1987-08-17 1989-02-21 Mitsubishi Kakoki Kk Ca storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447317A (en) * 1987-08-17 1989-02-21 Mitsubishi Kakoki Kk Ca storage device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174724A (en) * 2008-01-22 2009-08-06 Hitachi Appliances Inc Refrigerator
US20160245555A1 (en) * 2013-10-03 2016-08-25 Daikin Industries, Ltd. Refrigeration unit for container
US10345014B2 (en) * 2013-10-03 2019-07-09 Daikin Industries, Ltd. Refrigeration unit for container
JP2015198639A (en) * 2014-03-31 2015-11-12 ダイキン工業株式会社 Mixed gas supply device and refrigeration device for container

Also Published As

Publication number Publication date
JPH07102035B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
US6460352B1 (en) Atmosphere control for perishable produce
US5704964A (en) Pressure swing adsorption process
EP0750852B1 (en) Controlling atmospheres in containers
US7947318B2 (en) Flavor fresh
US6113671A (en) Controlling atmospheres in containers
JPH02242612A (en) Method and apparatus for storing produce
US5490871A (en) Gas separation
US6007603A (en) Controlling atmospheres in containers
US20170355518A1 (en) Carbon dioxide injection in a transport unit
EP0294036A2 (en) Conditioning of the atmosphere over perishable goods
JPH0342862B2 (en)
JPH012529A (en) How to transport perishable items
JPH04207121A (en) Storage device
EP0565291B1 (en) Controlling atmospheres in containers
EP3473956B1 (en) Refrigeration and freezing device
JPS62134028A (en) Atmosphere conditioning equipment for stocker
US20210212332A1 (en) Two selective modules for a controlled atmosphere container
JP2519833B2 (en) Storage device
JP2731418B2 (en) Storage device
KR102304172B1 (en) Multiple nitrogen concentration continuous supply unit and its control method
JPH04207119A (en) Storage device
JP2548774B2 (en) Deoxidizer and deodorizer for refrigerator
JPH0457780A (en) Container and transportation method using same
JPH0353872A (en) Cooling housing body capable of controlling air composition
JPH02200144A (en) Freshness-keeping and preservation apparatus for green vegetable

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081108

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091108

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees