JPH04207085A - Solar cell and its manufacture - Google Patents

Solar cell and its manufacture

Info

Publication number
JPH04207085A
JPH04207085A JP2340176A JP34017690A JPH04207085A JP H04207085 A JPH04207085 A JP H04207085A JP 2340176 A JP2340176 A JP 2340176A JP 34017690 A JP34017690 A JP 34017690A JP H04207085 A JPH04207085 A JP H04207085A
Authority
JP
Japan
Prior art keywords
point metal
solar cell
layer
metal film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2340176A
Other languages
Japanese (ja)
Other versions
JP2641800B2 (en
Inventor
Hitoshi Sannomiya
仁 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2340176A priority Critical patent/JP2641800B2/en
Publication of JPH04207085A publication Critical patent/JPH04207085A/en
Application granted granted Critical
Publication of JP2641800B2 publication Critical patent/JP2641800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To achieve a high efficiency without using a material wastefully and enable cost to be reduced by forming a second conductive type amorphous semiconductor layer on a first conductive type crystal semiconductor particle. CONSTITUTION:A low melt-point metal film 2 is formed on a substrate 1 and then one layer of P-type single crystal silicon particle 6 with an average diameter of 20-30mum is adhered on the low melt-point metal film 2 densely. Then, the low melt-point metal film 2 is fused and a single crystalline silicon particle 6 is fixed to a substrate 1 which becomes a reverse side electrode through the low melt-point metal film 2. Then, an insulation film 3 is formed. Then, a surface of the insulation film 3 is abraded and a surface of the single crystalline silicon particle 6 is exposed. Then, a surface is maintained to be at 200 deg.C and an n-type amorphous silicon layer 4 is formed on it, thus enabling a pn junction to be formed. Finally, a transparent conductive film 5 is formed on the amorphous silicon layer 4. A metal collector is formed on this properly, thus enabling a large-area solar cell to be completed. This solar cell allows a junction part to be formed on a light-receiving side, thus achieving an improved collection efficiency of carriers and a high conversion efficiency.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、結晶半導体粒子を用いた太陽電池に関し、高
効率で安価な太陽電池の製造を可能とするものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a solar cell using crystalline semiconductor particles, and makes it possible to manufacture a highly efficient and inexpensive solar cell.

〈従来の技術〉 太陽電池には、単結晶基板を用いたもの、多結晶基板を
用いたもの、アモルファスを用いたものの3種類があり
、これらには一長一短がある。すなわち、単結晶基板を
用いたものは、効率が最も高いが価格も高い。アモルフ
ァスを用いたものは、軽量で折り曲げることができ価格
も安いが、効率が低く信頼性の点でも問題がある。多結
晶基板を用いたものは効率、価格ともに上記のものの中
間に位置するが、それでも十分に低価格ではない。
<Prior Art> There are three types of solar cells: those using single crystal substrates, those using polycrystalline substrates, and those using amorphous, and these have advantages and disadvantages. That is, the one using a single crystal substrate has the highest efficiency but is also expensive. Those using amorphous are lightweight, bendable, and inexpensive, but they are low in efficiency and have problems in reliability. Those using polycrystalline substrates are intermediate in both efficiency and price, but are still not low enough.

これに対し、高効率で低価格の太陽電池を実現するため
に、単結晶半導体粒子を用いた太陽電池が考えられてい
る。これは裏面電極の形成された基板上に単結晶半導体
粒子を一部に並べ、この半導体粒子内の一部に不純物を
ドープしてpn接合を形成したものである(特開平2−
73671)。
In contrast, solar cells using single-crystal semiconductor particles are being considered in order to realize highly efficient and low-cost solar cells. In this method, single-crystal semiconductor particles are partially arranged on a substrate on which a back electrode is formed, and a p-n junction is formed by doping a portion of the semiconductor particles with an impurity (Japanese Patent Application Laid-Open No. 2003-11002-1).
73671).

〈発明が解決しようとする課題〉 従来の単結晶基板または多結晶基板を用いた太陽電池で
は、光の吸収に必要となる以上の厚さの基板が用いられ
ており、これが不必要に価格を上げる原因となっていた
。これに対し、単結晶半導体粒子を用いた太閤電池では
、単結晶基板を用いたもののように無駄に材料を用いる
ことがなく低価格化が可能である。
<Problem to be solved by the invention> In conventional solar cells using single-crystalline or polycrystalline substrates, the thickness of the substrate is greater than that required for light absorption, which unnecessarily increases the price. This was the cause of the increase. On the other hand, Taiko batteries using single-crystal semiconductor particles do not waste materials unlike those using single-crystal substrates, and can be lower in price.

しかしながら、従来の単結晶半導体粒子を用いた太陽電
池は裏面側に形成された導電膜より単結晶半導体粒子内
に不純物をドープするために接合が裏面に近い側に形成
されやすく、光発生キャリアの収集効率が悪くなりやす
いという欠点がある。
However, in conventional solar cells using single crystal semiconductor particles, since impurities are doped into the single crystal semiconductor particles rather than the conductive film formed on the back side, junctions are more likely to be formed on the side closer to the back surface, and photogenerated carriers are The disadvantage is that collection efficiency tends to deteriorate.

そこで本発明は、高効率で低価格を実現できる結晶半導
体粒子を用いた太陽電池において、より高効率で低価格
化が可能な太陽電池の構造とその#遣方法を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a structure of a solar cell that can achieve higher efficiency and lower cost in a solar cell using crystalline semiconductor particles that can achieve higher efficiency and lower cost, and a method for using the same. .

〈課題を解決するだめの手段〉 上記目的を達成するために本発明は、第−導電形の結晶
半導体粒子上に第二導電形のアモルファス半導体層が形
成されていることを特徴とする太陽電池を提供する。
<Means for Solving the Problems> In order to achieve the above object, the present invention provides a solar cell characterized in that an amorphous semiconductor layer of a second conductivity type is formed on crystalline semiconductor particles of a first conductivity type. I will provide a.

また、基板上に低融点金属層を形成し、該低融点金属層
上に第−導電形の結晶半導体粒子を密に配置し、上記低
融点金属層を加熱して上記低融点金属層に上記結晶半導
体粒子を固定し、該結晶半導体粒子の固定された領域上
に絶縁層を形成し、該絶縁層を一部除去して上記結晶半
導体粒子を露出させ、該結晶半導体粒子の固定された領
域上に第二導電形のアモルファス半導体層を形成するこ
とを特徴とする上記本発明太陽電池の製造方法を提供す
る。
Further, a low melting point metal layer is formed on the substrate, crystalline semiconductor particles of the -th conductivity type are densely arranged on the low melting point metal layer, and the low melting point metal layer is heated to form the above described low melting point metal layer. fixing crystalline semiconductor particles; forming an insulating layer on the fixed region of the crystalline semiconductor particles; removing a portion of the insulating layer to expose the crystalline semiconductor particles; There is provided a method for manufacturing a solar cell according to the present invention, characterized in that an amorphous semiconductor layer of a second conductivity type is formed thereon.

〈作 用〉 本発明の太陽電池は、基本的には第−導電形の結晶半導
体粒子1個とこの上に形成された第二導電形のアモルフ
ァス半導体層とで1つの太陽電池として働き、キャリア
は積層方向に移動する。そして、これら基本素子が並列
または直列となるように電極により接続されて大面積の
太陽電池として用いられる。
<Function> The solar cell of the present invention basically functions as one solar cell with one crystalline semiconductor particle of the first conductivity type and an amorphous semiconductor layer of the second conductivity type formed thereon. moves in the stacking direction. Then, these basic elements are connected by electrodes in parallel or series to be used as a large-area solar cell.

本発明の製造方法では、まず低融点金属層により結晶半
導体粒子が固定され、絶縁層によりアモルファス半導体
層が基板面と直接接続するのが防汐Sれる。基板面には
結晶半導体粒子に接続される裏面電極が形成されるか、
基板自体が裏面電極となっており、アモルファス半導体
層を形成した際に、結晶半導体粒子間のすき間によりこ
の裏面電極にアモルファス半導体層が短絡するのを防ぐ
ために絶縁層が設けられている。そして、本製造方法に
よれば、結晶半導体粒子からなる層とアモルファス半導
体層とがこの順で基板上に形成された大面積の太陽電池
が形成される。
In the manufacturing method of the present invention, crystalline semiconductor particles are first fixed by a low melting point metal layer, and an insulating layer prevents the amorphous semiconductor layer from directly connecting to the substrate surface. A back electrode connected to the crystalline semiconductor particles is formed on the substrate surface, or
The substrate itself serves as a back electrode, and an insulating layer is provided to prevent the amorphous semiconductor layer from shorting to the back electrode due to gaps between crystalline semiconductor particles when the amorphous semiconductor layer is formed. According to this manufacturing method, a large-area solar cell is formed in which a layer made of crystalline semiconductor particles and an amorphous semiconductor layer are formed on a substrate in this order.

く実施例〉 以下実施例によって本発明を具体的に説明する。Example EXAMPLES The present invention will be specifically explained below with reference to Examples.

5!i!施例1 第1図は本発明第1実施例の太閤電池の製造工程を説明
する図である。同図に基づいて以下説明する。
5! i! Example 1 FIG. 1 is a diagram illustrating the manufacturing process of a Taiko battery according to a first example of the present invention. This will be explained below based on the figure.

まず、基板1上に約20μ1m厚の低融点金属膜2を形
成する(同図(a) 、 (b) )。基板Iにはステ
ンレスを、低融点金属膜2にはSnを用いた。この場合
、基板1の材質として/d200℃程度の温度に耐える
ものであれば良く、裏面電極を兼ねさせるために導電性
または導電性の金属膜で表面が覆われたものとする。S
nは融点が232℃で4価の金属であり、後の溶融工程
において結晶シリコン粒子に導電形の変化等の影響を与
えることはない。他の低融点金属としては、InやZn
等の単体またはハンダ等の合金がある。尚、Znは融点
が420℃と高いが結晶シリコン粒子には拡散しにくい
。尚、Atけ融点660℃と非常に高く、結晶シリコン
粒子への拡散も起きるが、基板を選べば使用は可能であ
る。
First, a low melting point metal film 2 with a thickness of about 20 .mu.m is formed on a substrate 1 (FIGS. 3(a) and 3(b)). Stainless steel was used for the substrate I, and Sn was used for the low melting point metal film 2. In this case, the material of the substrate 1 may be any material that can withstand temperatures of about /d200° C., and the surface is covered with a conductive or conductive metal film to serve as a back electrode. S
n is a tetravalent metal with a melting point of 232° C., and does not affect the crystalline silicon particles by changing their conductivity type in the subsequent melting process. Other low melting point metals include In and Zn.
There are single substances such as or alloys such as solder. Although Zn has a high melting point of 420° C., it is difficult to diffuse into crystalline silicon particles. Note that the melting point of At is extremely high at 660° C., and diffusion into crystalline silicon particles also occurs, but it can be used if the substrate is selected.

次に、低融点金属膜2上に平均直径が30μmのP形の
単結晶シリコン粒子6を密に一層付着させる(同図(C
))。粒子の大きさは結晶のライフタイムと光の吸収係
数、利用波長等によって適宜決定し、単結晶シリコンを
用いる場合には20〜30μm径のものが良い。また、
効率は低下するが多結晶シリコンを用いることも可能で
、この場合にはさらに価格を下げることができる。尚、
粒径//′iある程度均一であることが好ましい。
Next, P-type single-crystal silicon particles 6 with an average diameter of 30 μm are deposited on the low-melting point metal film 2 (Fig.
)). The size of the particles is appropriately determined depending on the lifetime of the crystal, the absorption coefficient of light, the wavelength used, etc. When using single crystal silicon, particles with a diameter of 20 to 30 μm are preferable. Also,
It is also possible to use polycrystalline silicon, although the efficiency is lower, and in this case the price can be further reduced. still,
It is preferable that the particle size //'i is uniform to some extent.

次に、低融点金属膜2を溶融し、単結晶シリコン粒子6
を裏面電極となる基板1に低融点金属膜2を介して固定
する(同図(d))。
Next, the low melting point metal film 2 is melted, and the single crystal silicon particles 6 are melted.
is fixed to the substrate 1, which will become the back electrode, via a low melting point metal film 2 (FIG. 4(d)).

次に絶縁M3を形成する(同図(e))。絶縁膜3は後
の工程のために200℃程度の温変に耐えるものであれ
ば良く、透明なものを用いる。ここでは、5i02を5
000λ形成した。
Next, the insulation M3 is formed (FIG. 3(e)). The insulating film 3 may be made of a transparent material as long as it can withstand temperature changes of about 200° C. for later steps. Here, 5i02 is 5
000λ was formed.

次に、絶縁膜3の表面を研磨し、単結晶シリコン粒子6
の表面を露出させる(同図(f))。研磨は化学的、機
械的のいずれでも良い。
Next, the surface of the insulating film 3 is polished, and the single crystal silicon particles 6 are polished.
(FIG. 6(f)). Polishing may be done chemically or mechanically.

次に、表面を200℃に保ちこの上Kn形のアモルファ
スシリコン層4を形成する(同図(g))。
Next, the surface is kept at 200° C. and a Kn-type amorphous silicon layer 4 is formed thereon (FIG. 4(g)).

これによりpn接合が形成される。最後に、アモルファ
スシリコン層4上に透明導電膜5を形成する(同図(h
))。この上に適宜金属の集電極を形成して大面積の太
陽電池が完成する。
This forms a pn junction. Finally, a transparent conductive film 5 is formed on the amorphous silicon layer 4 (see figure (h)
)). A metal collector electrode is appropriately formed on this to complete a large-area solar cell.

本太陽電池では、単結晶シリコン粒子6からなる層の横
方向のキャリアの移動が阻害されているが、この構造の
太陽電池ではキャリアの膜厚方向の移動が効率に大きな
影響を与えるために、この層を単一の単結晶シリコン層
で形成した場合とほとんど変わるところがない。また、
本実施例では全工程を通して基板が最高で230℃にま
でしか上昇しないために、不純物を高温で拡散して接合
を形成するのに比べて基板の材質に対する制限が緩和さ
れ、種々の基板を用いることができる。
In this solar cell, the movement of carriers in the lateral direction of the layer made of single-crystal silicon particles 6 is inhibited, but in a solar cell with this structure, movement of carriers in the film thickness direction has a large effect on efficiency. There is almost no difference from the case where this layer is formed from a single single crystal silicon layer. Also,
In this example, since the temperature of the substrate is only raised to a maximum of 230°C throughout the entire process, restrictions on the material of the substrate are relaxed compared to forming a bond by diffusing impurities at high temperature, and various substrates can be used. be able to.

実施例2 第2図は本発明第2実施例の太陽電池の製造工程を説明
する図である。本実施例は直列接続構造の太陽電池につ
いての例である。
Example 2 FIG. 2 is a diagram illustrating the manufacturing process of a solar cell according to a second example of the present invention. This example is an example of solar cells having a series connection structure.

まず、基板■としてはガラス、プラスチック等の絶縁性
ないし絶縁物で覆われたものを用いる(同図(a))。
First, as the substrate (2), one that is insulating or covered with an insulating material such as glass or plastic is used (FIG. 4(a)).

ここではガラスを用いた。この基板1上に低融点金属膜
2を短冊状に形成する(同図(b))。
Glass was used here. A low melting point metal film 2 is formed in the shape of a strip on this substrate 1 (FIG. 2(b)).

これは裏面電極となる。This becomes the back electrode.

次に、平均粒径50μmのn型の多結晶シリコン粒子7
を配置しく同図(C))、低融点金属膜2を溶融する(
同図(d))。
Next, n-type polycrystalline silicon particles 7 with an average particle size of 50 μm
(C)), and melt the low melting point metal film 2 ((C)).
Figure (d)).

次に絶縁膜3を形成しく同図(e))、その表面を研磨
する(同図(f))。この際、低融点金属膜2を一部露
出させるために、マスクを用いて絶縁膜3を蒸着等によ
り形成する。尚、本例では50μm径のシリコン粒子を
用いたが、研磨により、厚さ方向の径は最終的に30μ
m径度とした。
Next, an insulating film 3 is formed (FIG. 2(e)), and its surface is polished (FIG. 4(f)). At this time, in order to partially expose the low melting point metal film 2, an insulating film 3 is formed by vapor deposition or the like using a mask. Although silicon particles with a diameter of 50 μm were used in this example, the diameter in the thickness direction was ultimately reduced to 30 μm by polishing.
It was defined as m diameter.

次にp型のアモルファスシリコン層4をやけりマスクを
用いて形成する(同図(g))。これにより、低融点金
属膜2は一部露出したままとなる。
Next, a p-type amorphous silicon layer 4 is formed using a burn mask (FIG. 4(g)). As a result, a portion of the low melting point metal film 2 remains exposed.

最後に、透明電極5をマスクを用いて形成し、上記で形
成した低融点金属膜2の露出部で各短冊状に形成された
セルが直列に接続されるようにする(同図(h))。
Finally, a transparent electrode 5 is formed using a mask, so that the cells formed in each strip shape are connected in series at the exposed part of the low melting point metal film 2 formed above ((h) in the same figure). ).

以上のようにして隣り合った太陽電池セルが直列に接続
された太陽電池が形成される。
In this manner, a solar cell in which adjacent solar cells are connected in series is formed.

〈発明の効果〉 本発明の太陽電池は、接合部を受光面側に形成できるの
で、キャリアの集成効率が良く高変換効率となる。また
、結晶半導体粒子の表面にアモルファス半導体層により
接合を形成するので、低温で接合を形成することができ
、基板として可とう性基板を用いることも可能となる。
<Effects of the Invention> In the solar cell of the present invention, since the junction can be formed on the light-receiving surface side, carrier assembly efficiency is high and conversion efficiency is high. Furthermore, since the bond is formed on the surface of the crystalline semiconductor particle using the amorphous semiconductor layer, the bond can be formed at a low temperature, and it is also possible to use a flexible substrate as the substrate.

さらに、結晶半導体粒子を用い、アモルファス半導体層
も一種の形の形成で良いので低価格の太陽電池となる。
Furthermore, since crystalline semiconductor particles are used and the amorphous semiconductor layer can also be formed in a certain shape, a low-cost solar cell can be obtained.

一方、本発明の製造方法によれば、上記本発明の太陽電
池を大面積で製造することが出来る。
On the other hand, according to the manufacturing method of the present invention, the solar cell of the present invention can be manufactured in a large area.

尚、本発明は広く光電変換装置に応用でき、微細な光電
変換装置として使用することもできる。
Note that the present invention can be widely applied to photoelectric conversion devices, and can also be used as a minute photoelectric conversion device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明第1実施例の太陽電池の製造工程を説明
する図、第2図は本発明第2実施例の太陽電池の製造工
程を説明する図である。 I・・・基板    2・・・低融点金属膜3・・・絶
縁MiE    4・・・アモルファスシリコン層5 
・透明導電膜 6・・・単結晶シリコン粒子7・多結晶
シリコン粒子 代理人 弁理士 梅 1) 勝(他2名)! 第1図 (a)[メー1〜 ÷ <ct>m÷ ◆ げ、F憂りi5へ− 第2図
FIG. 1 is a diagram explaining the manufacturing process of a solar cell according to the first embodiment of the present invention, and FIG. 2 is a diagram explaining the manufacturing process of the solar cell according to the second embodiment of the present invention. I...Substrate 2...Low melting point metal film 3...Insulating MiE 4...Amorphous silicon layer 5
・Transparent conductive film 6...Single crystal silicon particles 7・Polycrystal silicon particles Agent Patent attorney Ume 1) Katsu (and 2 others)! Figure 1 (a) [Me 1 ~ ÷ <ct>m ÷ ◆ Go to F ri i5 - Figure 2

Claims (1)

【特許請求の範囲】 1、第一導電形の結晶半導体粒子上に第二導電形のアモ
ルファス半導体層が形成されていることを特徴とする太
陽電池。 2、基板上に低融点金属層を形成し、該低融点金属層上
に第一導電形の結晶半導体粒子を密に配置し、上記低融
点金属層を加熱して上記低融点金属層に上記結晶半導体
粒子を固定し、該結晶半導体粒子の固定された領域上に
絶縁層を形成し、該絶縁層を一部除去して上記結晶半導
体粒子を露出させ、該結晶半導体粒子の固定された領域
上に第二導電形のアモルファス半導体層を形成すること
を特徴とする請求項1記載の太陽電池の製造方法。
[Claims] 1. A solar cell characterized in that an amorphous semiconductor layer of a second conductivity type is formed on crystalline semiconductor particles of a first conductivity type. 2. A low melting point metal layer is formed on the substrate, crystalline semiconductor particles of the first conductivity type are densely arranged on the low melting point metal layer, and the low melting point metal layer is heated to cause the low melting point metal layer to have the fixing crystalline semiconductor particles; forming an insulating layer on the fixed region of the crystalline semiconductor particles; removing a portion of the insulating layer to expose the crystalline semiconductor particles; 2. The method of manufacturing a solar cell according to claim 1, further comprising forming an amorphous semiconductor layer of the second conductivity type thereon.
JP2340176A 1990-11-30 1990-11-30 Solar cell and method of manufacturing the same Expired - Fee Related JP2641800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2340176A JP2641800B2 (en) 1990-11-30 1990-11-30 Solar cell and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2340176A JP2641800B2 (en) 1990-11-30 1990-11-30 Solar cell and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04207085A true JPH04207085A (en) 1992-07-29
JP2641800B2 JP2641800B2 (en) 1997-08-20

Family

ID=18334455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2340176A Expired - Fee Related JP2641800B2 (en) 1990-11-30 1990-11-30 Solar cell and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2641800B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674325A (en) * 1995-06-07 1997-10-07 Photon Energy, Inc. Thin film photovoltaic device and process of manufacture
US5986206A (en) * 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
JP2001210843A (en) * 1999-11-17 2001-08-03 Fuji Mach Mfg Co Ltd Photovoltaic power generating panel and method of manufacturing it
JP2002076387A (en) * 2000-08-28 2002-03-15 Kyocera Corp Photoelectric conversion device
US6664567B2 (en) 2001-06-28 2003-12-16 Kyocera Corporation Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
US7402747B2 (en) 2003-02-18 2008-07-22 Kyocera Corporation Photoelectric conversion device and method of manufacturing the device
DE102008040147A1 (en) * 2008-07-03 2010-01-28 Crystalsol Og Process for producing a monocrystalline membrane for a solar cell and monocrystal membrane together with a solar cell
CN104103713A (en) * 2013-04-12 2014-10-15 国际商业机器公司 Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells
AT518892B1 (en) * 2017-02-07 2018-02-15 Joanneum Res Forschungsgmbh Method for producing a photovoltaic component and photovoltaic module
JP2019522382A (en) * 2016-07-12 2019-08-08 ダイナミック ソーラー システムズ アクツィエンゲゼルシャフトDynamic Solar Systems Ag Room temperature printing method for creating PV layer sequences and PV layer sequences obtained using this method
US11527669B2 (en) 2012-11-26 2022-12-13 International Business Machines Corporation Atomic layer deposition for photovoltaic devices

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049103B2 (en) 2006-01-18 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20170033951A (en) * 2015-09-17 2017-03-28 한국생산기술연구원 Sollar cell with nano particle thin film and manufacturing process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110776A (en) * 1987-10-23 1989-04-27 Mitsubishi Electric Corp Manufacture of semiconductor polycrystalline thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01110776A (en) * 1987-10-23 1989-04-27 Mitsubishi Electric Corp Manufacture of semiconductor polycrystalline thin film

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674325A (en) * 1995-06-07 1997-10-07 Photon Energy, Inc. Thin film photovoltaic device and process of manufacture
US5868869A (en) * 1995-06-07 1999-02-09 Photon Energy, Inc. Thin film photovoltaic device and process of manufacture
US5986206A (en) * 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
JP2001210843A (en) * 1999-11-17 2001-08-03 Fuji Mach Mfg Co Ltd Photovoltaic power generating panel and method of manufacturing it
JP2002076387A (en) * 2000-08-28 2002-03-15 Kyocera Corp Photoelectric conversion device
US6664567B2 (en) 2001-06-28 2003-12-16 Kyocera Corporation Photoelectric conversion device, glass composition for coating silicon, and insulating coating in contact with silicon
US7402747B2 (en) 2003-02-18 2008-07-22 Kyocera Corporation Photoelectric conversion device and method of manufacturing the device
CN102177592A (en) * 2008-07-03 2011-09-07 晶体太阳有限公司 Method for the production of a monograin membrane for a solar cell, monograin membrane, and solar cell
DE102008040147A1 (en) * 2008-07-03 2010-01-28 Crystalsol Og Process for producing a monocrystalline membrane for a solar cell and monocrystal membrane together with a solar cell
JP2011528491A (en) * 2008-07-03 2011-11-17 クリスタルソル ゲゼルシャフト ミット ベシュレンクター ハフトゥング Method for producing single particle film for solar cell, single particle film, and solar cell
US8802480B2 (en) 2008-07-03 2014-08-12 Crystalsol Gmbh Method for the prodcution of a monograin membrane for a solar cell, monograin membrane, and solar cell
US11527669B2 (en) 2012-11-26 2022-12-13 International Business Machines Corporation Atomic layer deposition for photovoltaic devices
CN104103713A (en) * 2013-04-12 2014-10-15 国际商业机器公司 Protective insulating layer and chemical mechanical polishing for polycrystalline thin film solar cells
JP2019522382A (en) * 2016-07-12 2019-08-08 ダイナミック ソーラー システムズ アクツィエンゲゼルシャフトDynamic Solar Systems Ag Room temperature printing method for creating PV layer sequences and PV layer sequences obtained using this method
JP2022163082A (en) * 2016-07-12 2022-10-25 ダイナミック ソーラー システムズ アクツィエンゲゼルシャフト Room temperature printing method for producing pv layer sequences and pv layer sequence obtained using this method
AT518892B1 (en) * 2017-02-07 2018-02-15 Joanneum Res Forschungsgmbh Method for producing a photovoltaic component and photovoltaic module
AT518892A4 (en) * 2017-02-07 2018-02-15 Joanneum Res Forschungsgmbh Method for producing a photovoltaic component and photovoltaic module
EP3358628A1 (en) * 2017-02-07 2018-08-08 Joanneum Research Forschungsgesellschaft mbH Photovoltaic component and method for producing a photovoltaic component

Also Published As

Publication number Publication date
JP2641800B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
JP3360919B2 (en) Method of manufacturing thin-film solar cell and thin-film solar cell
US8907206B2 (en) Multi-junction solar cell devices
US6548751B2 (en) Thin film flexible solar cell
JP3672436B2 (en) Method for manufacturing solar battery cell
JPH04207085A (en) Solar cell and its manufacture
CN112054068B (en) Silicon heterojunction solar cell and manufacturing method thereof
JPH09283781A (en) Photovoltaic device
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JPH0945946A (en) Solar cell and fabrication thereof
JPS5910593B2 (en) Method of manufacturing photovoltaic device
JP2012256686A (en) Solar cell and plate on which solar cell is mounted
JP4693505B2 (en) Photoelectric conversion device and photovoltaic device using the same
JPH06283734A (en) Polycrystalline silicon solar cell and its manufacture
US4101923A (en) Solar cells
JPH09148597A (en) Manufacture of solar cell
JP2004259835A (en) Photoelectric converter and its manufacturing method
JP2000332268A (en) Thin-film polycrystalline silicon, solar battery using the same, and manufacture of thin-film polycrystalline silicon
JP3484852B2 (en) Solar cell manufacturing method
JP4666734B2 (en) Photoelectric conversion device
JPH06283733A (en) Polycrystalline silicon solar cell and its manufacture
KR100446591B1 (en) Silicon thin layer for solar cell and manufacturing method thereof
JP2004296550A (en) Photovoltaic element and its fabricating process
JP2673021B2 (en) Solar cell
JP4540177B2 (en) Method for manufacturing photoelectric conversion device
JPH06283742A (en) Polycrystalline silicon solar cell and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees