JPH04206917A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH04206917A
JPH04206917A JP2339336A JP33933690A JPH04206917A JP H04206917 A JPH04206917 A JP H04206917A JP 2339336 A JP2339336 A JP 2339336A JP 33933690 A JP33933690 A JP 33933690A JP H04206917 A JPH04206917 A JP H04206917A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
activated carbon
onium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2339336A
Other languages
Japanese (ja)
Inventor
Toru Yamanaka
徹 山中
Keiichi Yokoyama
恵一 横山
Masatake Murakami
正剛 村上
Masayuki Shimojo
下條 雅之
Masanori Shoji
昌紀 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP2339336A priority Critical patent/JPH04206917A/en
Publication of JPH04206917A publication Critical patent/JPH04206917A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To reduce an internal resistance, to contrive to make a capacity higher and to improve a withstand voltage by constituting an apparatus of polarizable electrodes using an activated carbon block formed by carbonization and activation of a resin foam and of an organic electrolytic solution coming in contact with the electrodes. CONSTITUTION:An activated carbon block is formed by carbonization and activation of a phenol formalin resin foam, substantially has an open-cell structure and has 0.1g/cm<3> or more bulk density and 500m<2>/g or more specific surface area. A pair of polarizable electrodes 1, 1 using the block and separator 3 arranged between are housed in a case 5 and impregnated with an organic electrolytic solution. A preferred organic electrolytic solution is formed by dissolution of a quaternary -onium salt represented by formula [I] in an organic solvent. In the formula, n is an integer of 1-3, A is nitrogen or phosphorus, R<1>, R<2>, R<3> and R<4> are any of hydrogen, carbon, alkyl group with carbon number of 1-18 and aryl group with carbon number of 6-18 and may be identical or different except that all of them are hydrogen atoms, and X<n-> is a negative ion having a valence number corresponding to n.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、炭素系電極を用いた電気二重層キャパシタに
関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to an electric double layer capacitor using carbon-based electrodes.

発明の技術的背景 近年、電子機器のバックアップ用電源として、長寿命で
高速充放電が可能な電気二重層キャパシタか用いられて
いる。電気二重層キャパシタは、分極性電極とこの分極
性電極に接触する電解液とからなり、これらの界面て正
・負の電極か対向して配列分布する電気二重層に電荷を
蓄積するコンデンサであり、電気二重層の容量は電極界
面の面積に応じて太き(なる。
Technical Background of the Invention In recent years, electric double layer capacitors, which have a long life and can be charged and discharged at high speed, have been used as backup power sources for electronic devices. An electric double layer capacitor is a capacitor that consists of a polarizable electrode and an electrolyte in contact with the polarizable electrode, and at the interface between these electrodes, positive and negative electrodes are arranged and distributed to accumulate charge in the electric double layer. , the capacitance of the electric double layer increases depending on the area of the electrode interface.

このような電気二重層キャパシタに用いられる分極性電
極としては、比表面積か大きくかつ導電性に優れた活性
炭か注目されてきている。
Activated carbon, which has a large specific surface area and excellent conductivity, is attracting attention as a polarizable electrode used in such electric double layer capacitors.

活性炭を用いた分極性電極としては、例えば、活性炭粉
末ペーストを導電性ゴム電極に圧着した電極、活性炭繊
維の束または炭素繊維からなる布の一面に溶射法により
金属製集電極を形成した電極、活性炭繊維と導電性腺体
とからなる織物からなる電極、繊維金属からなる基体に
熱融着性を有する粉末状フェノール樹脂を成形し、炭化
、賦活してなる電極などを上げることができる(特公昭
63−10574号公報、特開昭6]−110416号
公報、特公昭63−14492号公報、特公昭63−5
5205号公報、特開昭63−194319号公報参照
)。
Polarizable electrodes using activated carbon include, for example, electrodes in which activated carbon powder paste is pressed onto a conductive rubber electrode, electrodes in which a metal collecting electrode is formed on one side of a bundle of activated carbon fibers or a cloth made of carbon fibers by thermal spraying, Electrodes made of textiles made of activated carbon fibers and conductive glands, electrodes made by molding, carbonizing, and activating powdered phenolic resin with thermal fusibility on a base made of fiber metal, etc. can be made. Publication No. 63-10574, Japanese Patent Publication No. 110416, Japanese Patent Publication No. 63-14492, Japanese Patent Publication No. 63-14492, Japanese Patent Publication No. 63-5
5205, JP-A-63-194319).

ところが、活性炭粉末ペーストを導電性ゴム電極に圧着
した分極性電極では、前記ペーストか活性炭の粉末と適
当な結合剤とて調製されるため、分極性1極中の活性炭
含有量が少なくなり、導電性に優れかつ比表面積が大き
いという活性炭の利点を生かしきれず、得られた電気二
重層キャパシタの内部抵抗か大で容量か小さいという欠
点がある。
However, in polarizable electrodes in which activated carbon powder paste is pressed onto conductive rubber electrodes, since the paste or activated carbon powder is prepared with a suitable binder, the activated carbon content in the polarizable electrode is small and the conductivity is reduced. However, the advantages of activated carbon, such as excellent properties and large specific surface area, cannot be fully utilized, and the resulting electric double layer capacitor has the drawbacks of high internal resistance and low capacity.

活性炭繊維または活性炭繊維を用いた布に金属を溶射し
てなる分極性電極は、繊維同士の接触面が小さいので接
触抵抗が大きく、かつ製造工程中に加わる外部圧力によ
りこの接触面が変形するため、これを用いた電気二重層
キャパシタの内部抵抗が大きくかつ不安定になる欠点か
ある。
Polarizable electrodes made by thermally spraying metal onto activated carbon fibers or cloth using activated carbon fibers have a large contact resistance because the contact surface between the fibers is small, and this contact surface is deformed by external pressure applied during the manufacturing process. However, the disadvantage is that the internal resistance of the electric double layer capacitor using this is large and unstable.

また、活性炭繊維布を用いて大容量の分極性電極を製造
する場合は、布を積層しなければならず、このため、繊
維同士の接触抵抗に加えて、面接触した布同士で高抵抗
化を招くため、さらに電気抵抗が不安定になる。
In addition, when manufacturing large-capacity polarizable electrodes using activated carbon fiber cloth, the cloth must be laminated, which results in high resistance in addition to the contact resistance between the fibers and the high resistance between the cloths in surface contact. As a result, the electrical resistance becomes even more unstable.

活性炭繊維と導電性腺体との織物からなる分極性電極、
金属繊維からなる基体に熱融着性を有する粉末状フェノ
ール樹脂を成形し、炭化、賦活した分極性電極は、内部
抵抗を下げる目的には効果があるものの、分極性電極中
の活性炭の有量か少ないために大容量化には適しておら
ず、また、導電性金属の繊維への加工がむずかしいとい
う問題も無視することはできない。
Polarizable electrode consisting of a fabric of activated carbon fibers and conductive glands,
Polarizable electrodes are made by molding, carbonizing, and activating powdered phenolic resin with heat-adhesive properties onto a base made of metal fibers. Although these electrodes are effective in lowering internal resistance, the amount of activated carbon in the polarizable electrodes is low. Because of the small amount of conductive metal, it is not suitable for increasing capacity, and the problem that it is difficult to process conductive metal into fibers cannot be ignored.

このように、従来の分極性電極は、各々に欠点をかかえ
ている。
As described above, each of the conventional polarizable electrodes has its own drawbacks.

一方、電気二重層ギャパシタの特性は電解液にも大きく
影響され、たとえば容量は、イオン濃度なと電解質その
ものの性質の他、溶質のイオン径と分極性電極の細孔径
との関係などにも左右される。したがって、電気二重層
キャパシタにあっては、分極性電極の特性に加え、分極
性電極と電解溶液との最適な材料の組み合わせか要請さ
れる。
On the other hand, the characteristics of an electric double layer capacitor are greatly influenced by the electrolyte; for example, the capacity is affected not only by the ion concentration and the properties of the electrolyte itself, but also by the relationship between the ion diameter of the solute and the pore diameter of the polarizable electrode. be done. Therefore, in an electric double layer capacitor, in addition to the characteristics of the polarizable electrode, an optimal material combination of the polarizable electrode and the electrolytic solution is required.

さらに、電気二重層キャパシタの耐電圧は、電解液の種
類によって太き(変化するため、高電圧の電気二重層キ
ャパシタをえるには電解液の種類選定か重要となる。
Furthermore, the withstand voltage of an electric double layer capacitor varies depending on the type of electrolyte, so selecting the type of electrolyte is important in order to obtain a high voltage electric double layer capacitor.

発明の目的 本発明は、このような従来技術に伴う課題を解決しよう
とするものであり、製造か容易で特性も良好な電気二重
層キャパシタを提供することを目的としている。
OBJECTS OF THE INVENTION The present invention aims to solve the problems associated with the prior art, and aims to provide an electric double layer capacitor that is easy to manufacture and has good characteristics.

発明の概要 本発明に係る電気二重層キャパシタは、樹脂発泡体が炭
化、賦活されてなる活性炭ブロックを用いた分極性電極
と、該分極性電極と接触する有機系電解液とを有するこ
とを特徴としている。
Summary of the Invention The electric double layer capacitor according to the present invention is characterized by having a polarizable electrode using an activated carbon block made by carbonizing and activating a resin foam, and an organic electrolyte in contact with the polarizable electrode. It is said that

本発明に係る電気二重層キャパシタによれば、分極性電
極を構成する上記活性炭ブロックは電気抵抗が小さく、
嵩密度および比表面積が大きいため、内部抵抗の低減お
よび大容量化を図れる他、有機系電解液を用いているた
め、耐電圧の高い電気二重層キャパシタを提供すること
かできる。
According to the electric double layer capacitor according to the present invention, the activated carbon block constituting the polarizable electrode has low electrical resistance;
Since the bulk density and specific surface area are large, internal resistance can be reduced and capacity can be increased, and since an organic electrolyte is used, an electric double layer capacitor with high withstand voltage can be provided.

発明の詳細な説明 以下、本発明に係る電気二重層キャパシタを具体的に説
明する。
DETAILED DESCRIPTION OF THE INVENTION The electric double layer capacitor according to the present invention will be specifically described below.

本発明に係る電気二重層キャパシタは、樹脂発泡体が炭
化、賦活されてなる活性炭ブロックを分極性電極として
用いている。本発明て用いられる樹脂発泡体は、樹脂の
プレポリマーに、発泡剤および硬化剤などを混合し、発
泡、硬化させて得た細胞構造を有する樹脂製多孔体であ
る。
The electric double layer capacitor according to the present invention uses an activated carbon block obtained by carbonizing and activating a resin foam as a polarizable electrode. The resin foam used in the present invention is a resin porous body having a cellular structure obtained by mixing a resin prepolymer with a foaming agent, a curing agent, etc., and foaming and curing the mixture.

このような樹脂としては、具体的には、ポリウレタン、
フェノール樹脂、フルフラール樹脂、エポキシ樹脂、フ
ラン樹脂、ポリイソシアヌレート樹脂、ポリイミド樹脂
、ユリア樹脂なとの主として熱硬化性樹脂が用いられる
Specifically, such resins include polyurethane,
Thermosetting resins such as phenol resin, furfural resin, epoxy resin, furan resin, polyisocyanurate resin, polyimide resin, and urea resin are mainly used.

これら樹脂の発泡体のうちでは、細胞の形状か均一、製
造か容易、かつ炭化、賦活した際の好収率か期待できる
点でフェノール樹脂、甲でもレゾールをプレポリマーと
して用いるレゾール型フェノール樹脂の発泡体か好まし
い。
Among these resin foams, phenolic resins are preferred because they have uniform cell shapes, are easy to manufacture, and can be expected to have good yields when carbonized and activated. Foam is preferred.

レゾールは公知の方法に従って、フェノール類とアルデ
ヒド類とをアルカリ触媒の存在下で反応させることによ
り得られる。
Resoles can be obtained by reacting phenols and aldehydes in the presence of an alkali catalyst according to known methods.

このようなフェノール類としては、具体的には、フェノ
ール、クレゾール、キシレノールおよびレゾルシンなど
が用いられ、特にフェノールが好ましい。
Specific examples of such phenols include phenol, cresol, xylenol, and resorcinol, with phenol being particularly preferred.

アルデヒド類としては、具体的には、ホルムアルデヒド
、トリオキサン、アセトアルデヒドおよびフルフラール
などが用いられ、特にホルムアルデヒドか好ましい。
Specific examples of the aldehydes include formaldehyde, trioxane, acetaldehyde, and furfural, with formaldehyde being particularly preferred.

また、アルカリ触媒としては、具体的には、L i O
HS KOH,Na OH,NH3、NH40H。
Further, as the alkali catalyst, specifically, L i O
HS KOH, NaOH, NH3, NH40H.

エタノールアミン、エチレンジアミン、トリエチルアミ
ンなどを挙げることかできる。
Mention may be made of ethanolamine, ethylenediamine, triethylamine and the like.

樹脂発泡体を得るための発泡剤としては、従来公知の分
解型、反応型および蒸発型の発泡剤か使用できるが、こ
のなかでは比較的低温での蒸発型発泡剤を用いることか
好ましい。具体的には、ブタン、ペンタン、ヘキサン、
ヘプタン等のパラフィン系炭化水素類、メタノール、エ
タノール、ブタノール等のアルコール類、ジクロロトリ
フルオロエタン(フロン123)等のハロゲン化炭化水
素、エーテルおよびこれらの混合物をあげることかでき
る。
As the blowing agent for obtaining the resin foam, conventionally known decomposition-type, reaction-type and evaporation-type blowing agents can be used, but among these, it is preferable to use an evaporation-type blowing agent that operates at relatively low temperatures. Specifically, butane, pentane, hexane,
Examples include paraffinic hydrocarbons such as heptane, alcohols such as methanol, ethanol and butanol, halogenated hydrocarbons such as dichlorotrifluoroethane (Freon 123), ethers and mixtures thereof.

発泡硬化させるためには、発泡剤とともに硬化剤が用い
られる。この硬化剤としては、従来より公知の硬化剤が
プレポリマーの種類に応じて選択され使用される。プレ
ポリマーがレゾール型フェノールホルマリン樹脂の場合
には、具体的には、硫酸、燐酸、塩酸などの無機酸、パ
ラトルエンスルホン酸、クレゾールスルホン酸等の有機
酸が使用される。
For foaming and curing, a curing agent is used together with a foaming agent. As this curing agent, a conventionally known curing agent is selected and used depending on the type of prepolymer. When the prepolymer is a resol-type phenol-formalin resin, specifically, inorganic acids such as sulfuric acid, phosphoric acid, and hydrochloric acid, and organic acids such as para-toluenesulfonic acid and cresolsulfonic acid are used.

樹脂発泡体は、例えば上記したレゾール型フェノール樹
脂プレポリマーに、発泡剤、硬化剤そして必要に応じて
さらに整泡剤、充填剤、安定剤等の添加剤を一挙にもし
くは逐次に混合し、得られたクリーム状物をたとえば加
熱、保温された金型、木型もしくはダンボール内、ある
いは二重帯状コンベアー間に供給し、発泡、硬化させ、
必要に応じてトリミングすることによって得ることがで
きる。これらのうちでは金型内にクリーム状物を供給し
、ゆっくりとした速度で徐々に発泡させる方法か均一発
泡体を得る上で好ましい。これとは反対に、急速に発泡
、硬化させた発泡体の細胞構造は、不均一でかつ発泡方
向も場所も一様でない傾向がみられるため、内部抵抗値
がばらつくという問題かあることから、できるだけ均一
発泡体とすることが望ましい。さらに気泡は、電解液と
の接触およびイオンの移動性を考慮すると連続気泡を多
く有することが望ましい。
Resin foams can be obtained by mixing, for example, the above-mentioned resol-type phenolic resin prepolymer with a blowing agent, a curing agent, and if necessary, additives such as a foam stabilizer, filler, and stabilizer, either all at once or sequentially. The creamy material is heated and supplied into a heated mold, wooden mold, or cardboard, or between a double belt conveyor, and foamed and hardened.
It can be obtained by trimming if necessary. Among these methods, the method of supplying a creamy material into a mold and gradually foaming it at a slow speed is preferred in order to obtain a uniform foamed product. On the contrary, the cellular structure of rapidly foamed and hardened foam tends to be non-uniform and the direction and location of the foaming is not uniform, so there is a problem that the internal resistance value varies. It is desirable to make the foam as uniform as possible. Further, it is desirable that the bubbles have a large number of open cells in consideration of contact with the electrolytic solution and ion mobility.

本発明で用いられる活性炭ブロックは、このような樹脂
発泡体の成形体をそのまま、もしくは切削、切断して板
状体などの所望の形状とした後、炭化、賦活処理して製
造される。
The activated carbon block used in the present invention is produced by processing such a molded resin foam as it is, or by cutting or cutting it into a desired shape such as a plate, followed by carbonization and activation treatment.

炭化処理は、樹脂発泡体を非酸化性雰囲気下で焼成して
行われる。すなわち、樹脂発泡体は、減圧下またはAr
ガス、Heガス、N2ガス、CO2ガス、ハロゲンガス
、アンモニアガス、N2ガスおよびこれらの混合ガス等
の中で、好ましくは500〜1200°C1特に600
〜900°Cの温度で焼成される。このようにして発泡
体は炭素化され、炭素多孔体が得られる。焼成時の昇温
速度には特に制限はないものの、一般に樹脂の分解か開
始される200〜600°C付近にかけては徐々に行う
ことが好ましい。
The carbonization treatment is performed by firing the resin foam in a non-oxidizing atmosphere. That is, the resin foam is prepared under reduced pressure or in Ar.
Among gases, He gas, N2 gas, CO2 gas, halogen gas, ammonia gas, N2 gas, mixed gases thereof, etc., preferably 500 to 1200 °C1, especially 600 °C
It is fired at a temperature of ~900°C. In this way, the foam is carbonized and a porous carbon body is obtained. Although there is no particular restriction on the rate of temperature increase during firing, it is preferable to increase the temperature gradually around 200 to 600°C, where decomposition of the resin generally begins.

賦活処理は、得られた炭素多孔体を酸化性ガスの存在下
で加熱して行う。処理温度は通常800〜1200’C
て行う。処理温度が低すぎると賦活が充分に進行せず、
比表面積の小さなものしか得られない。一方、処理温度
が高すぎると、発泡体炭化物に亀裂か入りやすくなる。
The activation treatment is performed by heating the obtained porous carbon material in the presence of an oxidizing gas. Processing temperature is usually 800-1200'C
I will do it. If the treatment temperature is too low, activation will not proceed sufficiently,
Only small specific surface areas can be obtained. On the other hand, if the treatment temperature is too high, cracks will easily form in the carbide foam.

本発明でいう酸化性ガスとは、酸素含有気体、たとえば
、水蒸気、二酸化炭素、空気、酸素等をいうが、これら
は通常操作しやすいように、不活性ガス、たとえば燃焼
ガス、N2ガス等との混合気体として用いる。酸化性ガ
スへの暴露時間は酸化性ガスの濃度、処理温度によって
左右されるが、目安としては、発泡体炭化物の形状か損
なわれない範囲とすることが必要である。
The oxidizing gas in the present invention refers to an oxygen-containing gas such as water vapor, carbon dioxide, air, oxygen, etc., but it is usually replaced with an inert gas such as combustion gas, N2 gas, etc. for ease of operation. Used as a mixed gas. The exposure time to the oxidizing gas depends on the concentration of the oxidizing gas and the treatment temperature, but as a guide, it should be within a range that does not damage the shape of the carbide foam.

また、賦活処理は上記のガス賦活性以外の薬品賦活法で
あっても、また両者を併用する方法であってもよい。薬
品賦活法とは、樹脂発泡体に塩化亜鉛、リン酸、硫化カ
リウム等の化学薬品を添加してから、不活性ガス雰囲気
で加熱して炭化と賦活を同時に行う方法である。
Further, the activation treatment may be a chemical activation method other than the above-mentioned gas activation, or a method using both of them in combination. The chemical activation method is a method in which chemicals such as zinc chloride, phosphoric acid, potassium sulfide, etc. are added to the resin foam and then heated in an inert gas atmosphere to simultaneously carbonize and activate the foam.

本発明で用いることのできる活性炭ブロックは、全体が
実質的に連続気泡構造を有し、嵩密度か0.1g/Cm
3以上、好ましくは0.15 g/cm3ないし0.7
0 g/cm″、比表面積か500nず/g以」二、好
ましくは700d/g以上、さらに好ましくは700な
いし2000d/gのものであることか電解液との接触
性を高め、容量の大きいキャパシタとする」二で望まし
い。
The activated carbon block that can be used in the present invention has a substantially open cell structure as a whole, and has a bulk density of 0.1 g/Cm.
3 or more, preferably 0.15 g/cm3 to 0.7
0 g/cm'', specific surface area of 500 nz/g or more, preferably 700 d/g or more, more preferably 700 to 2000 d/g, which increases contact with the electrolyte and has a large capacity. It is preferable to use a capacitor.

なお本発明において、実質的に連続気泡構造とは、真空
下(l O−’ torr以下)で活性炭ブロックに含
浸された電解液の容積が、理論的に求められる活性炭ブ
ロックの空間容積に対し、容積比率で60%以上、好ま
しくは80%以上、さらに好ましくは90%以」二の場
合をいう。
In the present invention, a substantially open cell structure means that the volume of the electrolyte impregnated into the activated carbon block under vacuum (less than 1 O-' torr) is smaller than the theoretically calculated spatial volume of the activated carbon block. This refers to a case where the volume ratio is 60% or more, preferably 80% or more, and more preferably 90% or more.

本発明において、連続気泡率は以下のようにして求めた
In the present invention, the open cell ratio was determined as follows.

測定の際に用いられる電解液の種類としては、例えば3
0重量%硫酸(密度1.215g/cc(25°C))
、あるいはプロピレンカーボネートにテトラエチルアン
モニウムの四弗化ホウ酸塩10重量%を含有した電解液
(密度1.088g/cc(25°C))を使用する。
Examples of the types of electrolytes used during measurement include 3
0% by weight sulfuric acid (density 1.215g/cc (25°C))
Alternatively, an electrolytic solution (density 1.088 g/cc (25°C)) containing 10% by weight of tetraethylammonium tetrafluoroborate in propylene carbonate is used.

理論空間容積(V、)は、活性炭ブロックの体VT =
 (1−AD/Do)xV ここで、活性炭の1永度の測定は、試料を乳鉢で粉砕し
乾燥した後、トルエンを浸漬液として、ゲールサック温
度計付比重瓶を使用して測定した。
The theoretical space volume (V,) is the body of activated carbon block VT =
(1-AD/Do)xV Here, the 1-eight measurement of activated carbon was carried out by crushing the sample in a mortar and drying it, and then using toluene as the immersion liquid and using a pycnometer with a Gehrsack thermometer.

活性炭ブロックに含浸された電解液の容積(VL)は、
活性炭ブロックの含浸前重量(W、)と、含浸後型ff
i (W2)および電解液の密度(D、)より算出され
る。
The volume (VL) of the electrolyte impregnated into the activated carbon block is
Weight of activated carbon block before impregnation (W, ) and shape after impregnation ff
i (W2) and the density of the electrolytic solution (D, ).

VL−(W2−W、’)/DL したかって、連続気泡率は、 VL/VTX100    [%) て算出される。VL-(W2-W,')/DL Therefore, the open cell ratio is VL/VTX100 [%] Calculated by

このような活性炭ブロックは、実質的に連続気泡構造を
有しているため、比表面積が大きく、かつ電解液を浸潤
し易い。またこの活性炭ブロックは、骨格が連続してい
るので高強度を示し、比表面積か大きく破損し難い自立
性分極性電極を製造できる他、活性炭繊維を用いた電極
と比較して、電気抵抗か小さくかつ安定している。さら
に、活性炭ブロックは、所望の厚さ、形状にトリミンク
することにより任意の形状の分極性電極とすることがで
き、平面サイズか大きく、厚く、高容量の電気二重層キ
ャパシタを容易に製造することかできる他、分極性電極
の体積を小さくしてキャパシタ全体のサイズの小型化を
図ることもてきる。
Since such an activated carbon block has a substantially open cell structure, it has a large specific surface area and is easily infiltrated with an electrolyte. In addition, this activated carbon block has a continuous skeleton, so it exhibits high strength, has a large specific surface area, and can be used to manufacture self-supporting polarizable electrodes that are difficult to break. It also has low electrical resistance compared to electrodes using activated carbon fibers. and stable. Furthermore, the activated carbon block can be trimmed to a desired thickness and shape to form polarizable electrodes of any shape, making it easy to manufacture large, thick, and high-capacity electric double layer capacitors from a planar size. In addition to this, it is also possible to reduce the volume of the polarizable electrode, thereby reducing the overall size of the capacitor.

本発明に用いられる活性炭ブロックは、適度な平均細孔
径を有していることから、有機系電解液中のイオンの出
入りが自由で、実質的に表面積か大の分極性電極を得る
ことができる。
Since the activated carbon block used in the present invention has a suitable average pore diameter, ions can freely move in and out of the organic electrolyte, making it possible to obtain a polarizable electrode with a substantially large surface area. .

このような活性炭ブロックからなる分極性電極の一方の
面には、導電性材料からなる集電体が形成される。この
集電体は、活性炭ブロックに金属を直接プラズマ溶射し
て形成したり、金属板、黒鉛板、導電性樹脂板等の導電
性を有する板を面接触または、接着複合化することによ
り極めて容易に設置できる。
A current collector made of a conductive material is formed on one surface of the polarizable electrode made of such an activated carbon block. This current collector can be formed extremely easily by directly plasma spraying metal onto an activated carbon block, or by surface-contacting or bonding a conductive plate such as a metal plate, graphite plate, or conductive resin plate. It can be installed in

本発明に係る電気二重層キャパシタは、このような活性
炭ブロックを用いた分極性電極とともに、有機系電解液
を用いている。
The electric double layer capacitor according to the present invention uses an organic electrolyte solution together with a polarizable electrode using such an activated carbon block.

このような有機系電解液の電解質としては、オニウム塩
、特に下記一般式[I]で示される第4級オニウム塩が
好ましい。
As the electrolyte for such an organic electrolyte solution, an onium salt, particularly a quaternary onium salt represented by the following general formula [I] is preferable.

ただし、上記式[I]中、nは1〜3の整数てあり、A
はチッ素またはリンである。
However, in the above formula [I], n is an integer of 1 to 3, and A
is nitrogen or phosphorus.

R1、R2、R3およびR4は、水素、炭素数1〜18
のアルキル基、炭素数6〜18のアリール基のいずれか
であって、全てか水素である以外は各々同一であっても
異なっていてもよい。
R1, R2, R3 and R4 are hydrogen, carbon number 1-18
an alkyl group or an aryl group having 6 to 18 carbon atoms, which may be the same or different except that all of them are hydrogen.

この内、R1、R2、R3およびR4の少なくとも1つ
か炭素数1〜4の低級アルキル基である第4級オニウム
塩およびR1、R2、R3およびR4の少なくとも1つ
が、炭素数6〜18で1個または2個のベンゼン核を有
するアリール基である第4級オニウム塩か好ましい。
Among these, at least one of R1, R2, R3 and R4 is a quaternary onium salt which is a lower alkyl group having 1 to 4 carbon atoms, and at least one of R1, R2, R3 and R4 is a lower alkyl group having 6 to 18 carbon atoms. A quaternary onium salt which is an aryl group having one or two benzene nuclei is preferred.

上記炭素数1〜4の低級アルキル基は、直鎖状であって
も分岐していてもよい。
The lower alkyl group having 1 to 4 carbon atoms may be linear or branched.

また、X゛−は上記nに相当する価数を有する陰イオン
であり、具体的には、BF4−1PFe−、ClO4−
1ASFs−1SbF6−1AβCn 4−1Rf S
O3−(Rfは炭素数1〜8のフルオロアルキル基であ
る)、F−1CZ−、Br−、NO3−1HCO3−1
H3○4−などの−価の陰イオン、so4”−などの二
価の陰イオンおよびPO43−などの三価の陰イオンの
何れであってもよい。
In addition, X゛- is an anion having a valence corresponding to the above n, and specifically,
1ASFs-1SbF6-1AβCn 4-1Rf S
O3- (Rf is a fluoroalkyl group having 1 to 8 carbon atoms), F-1CZ-, Br-, NO3-1HCO3-1
It may be any of -valent anions such as H3○4-, divalent anions such as so4''-, and trivalent anions such as PO43-.

この内特に、Xn−が、BF4−1P F 6−、Cl
O4−およびRfSO,−のいずれかである第4級オニ
ウム塩が好ましい。電解質は、単独で用いても、二種以
上を組み合わせて用いてもよい。
In particular, Xn- is BF4-1P F 6-, Cl
Quaternary onium salts that are either O4- and RfSO,- are preferred. The electrolyte may be used alone or in combination of two or more types.

このようなオニウム塩としては、具体的には、4フッ化
ホウ酸テトラエチルアンモニウム(Et4N” BF4
−) 、4フツ化ホウ酸テトラブチルアンモニウム(B
IJ4N” BF4−) 、4フツ化ホウ酸テトラメチ
ルアンモニウム(M84N” BF4−) 、4フツ化
ホウ酸リチウム(Ll” BF4−) 、4フツ化ホウ
酸アンモニウム、4フツ化ホウ酸ベンジルトリメチルア
ンモニウムなとの4フツ化ホウ酸塩、6フツ化リン酸テ
トラエチルアンモニウム(Et4N” PF、−)、6
フツ化リン酸テトラブチルアンモニウム(BLI4N”
 PF6−) 、6フツ化リン酸テトラメチルアンモニ
ウム(M84N+pps−)、6フツ化リン酸リチウム
(L+” PF6−) 、6フツ化リン酸アンモニウム
(NH4”、 PF6−) 、6フツ化リン酸ベンジル
トリメチルアンモニウムなとの67フ化リン酸塩などを
挙げることができる。
Specifically, such onium salts include tetraethylammonium tetrafluoroborate (Et4N"BF4
-), tetrabutylammonium tetrafluoroborate (B
IJ4N"BF4-), tetramethylammonium tetrafluoroborate (M84N"BF4-), lithium tetrafluoroborate (Ll"BF4-), ammonium tetrafluoroborate, benzyltrimethylammonium tetrafluoroborate, etc. tetrafluoroborate, tetraethylammonium hexafluorophosphate (Et4N” PF, -), 6
Tetrabutylammonium fluoride phosphate (BLI4N”
PF6-), tetramethylammonium hexafluoride phosphate (M84N+pps-), lithium hexafluoride phosphate (L+" PF6-), ammonium hexafluoride phosphate (NH4", PF6-), benzyl hexafluoride phosphate Examples include trimethylammonium and 67-fluorophosphate.

本発明で用いられる電解液ては、電解質は、電解溶液中
、0.1〜3当量、特に0.5〜2当量となる量で用い
られることか好ましい。
In the electrolytic solution used in the present invention, the electrolyte is preferably used in an amount of 0.1 to 3 equivalents, particularly 0.5 to 2 equivalents.

本発明では、このような電解質の溶媒として有機溶媒を
用いている。有機溶媒は、熱および電気的に安定で、上
記電解質を溶解しうる有機物のいずれを用いてもよい。
In the present invention, an organic solvent is used as a solvent for such an electrolyte. The organic solvent may be any organic substance that is thermally and electrically stable and capable of dissolving the electrolyte.

このような有機溶媒としては、具体的には、プロピレン
カーボネート、エチレンカーボネート、γ−ブチロラク
トン、ジメトキシエタン、アセトニトリル ヒドロフラン、ジメチルホルムアミド、ジメチルスルフ
オキシド、メチルフォルメート、2, 2. 4− 1
−ウメチル−1.3ージオキソラン、ニトロメタンなど
を挙げることができる。
Specific examples of such organic solvents include propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, acetonitrile hydrofuran, dimethylformamide, dimethylsulfoxide, methylformate, 2. 4-1
-Umethyl-1,3-dioxolane, nitromethane, etc. can be mentioned.

このような有機溶媒を用いることにより、高い電圧が加
わっても、溶媒が電気分解することかないため、高電圧
の電気二重層キャパシタを得ることができる。
By using such an organic solvent, even if a high voltage is applied, the solvent does not undergo electrolysis, so a high voltage electric double layer capacitor can be obtained.

また、本発明では、電解溶液は電解質の分解抑制剤、溶
媒の粘度低下剤、界面活性剤、安定剤などの添加剤を含
んでいてもよい。
Further, in the present invention, the electrolytic solution may contain additives such as an electrolyte decomposition inhibitor, a solvent viscosity reducing agent, a surfactant, and a stabilizer.

このような分解抑制剤としては、具体的には、トリエチ
ルホスフィン、l−リブチルホスフィン、トリフェニル
ホスフィンを挙げることができる。
Specific examples of such decomposition inhibitors include triethylphosphine, l-butylphosphine, and triphenylphosphine.

粘度低下剤としては、具体的には、ジメチルエーテル、
ジエチルエーテル、テトラヒドロフラン、2−メチルテ
トラヒドロフラン、アセトン、1,3−ジオキソランを
挙げることができる。
Specifically, the viscosity reducing agent includes dimethyl ether,
Mention may be made of diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, acetone, and 1,3-dioxolane.

ここで、上記したような分極性電極および有機系電解液
を用いた電気二重層キャパシタの具体的構造を添付図面
を参照して説明する。
Here, a specific structure of an electric double layer capacitor using polarizable electrodes and an organic electrolyte as described above will be explained with reference to the accompanying drawings.

添付第1図は、本発明に係る電気二重層キャパシタの一
例を示すものであり、図示されるように、この電気二重
層キャパシタは、1対の分極性電極1、1と、これらの
間に配設されるセパレータ3とを、ケース5に収容して
いる。なお図中、6はリード線である。
Attached FIG. 1 shows an example of an electric double layer capacitor according to the present invention, and as shown in the figure, this electric double layer capacitor includes a pair of polarizable electrodes 1, 1, and a structure between them. The disposed separator 3 is housed in a case 5. In addition, in the figure, 6 is a lead wire.

またケース5は、プラスチック製のケース半体5a、5
))およびこの間に介在する絶縁性パツキン4とからな
る。
The case 5 is made of plastic case halves 5a, 5.
)) and an insulating packing 4 interposed therebetween.

このような部材を備えた電気二重層キャパシタの絹み立
ては、まず、分極性電極l、1およびセパレータ3を脱
気してからこれらに電解液を含浸させ、次いてセパレー
ター3を間にして黒鉛板などの集電体2を外側にして分
極性電極間±1、■を対向させて配置し、さらにこれを
ケース半体5a.5bに収容し、両半体5a,5b同士
をパツキン4を介してネジ7で締め付けることによって
行われる。
To make an electric double layer capacitor equipped with such a member, first, the polarizable electrodes 1 and 1 and the separator 3 are degassed, and then they are impregnated with an electrolytic solution, and then the separator 3 is placed in between. With the current collector 2 such as a graphite plate on the outside, the polarizable electrodes are arranged so that ±1 and ■ are facing each other, and this is then attached to the case half 5a. 5b, and tightening the two halves 5a and 5b together with screws 7 through gaskets 4.

なお本発明に係る電気二重層キャパシタは、上記分極性
電極および有機系電解質を用いる以外は、特に構造上の
限定はなく、たとえば、分極性電極に集電体を設けず、
金属ケースを集電体と兼ねる構造を採用することも可能
である。
Note that the electric double layer capacitor according to the present invention has no particular structural limitations other than using the polarizable electrode and organic electrolyte, for example, without providing a current collector on the polarizable electrode,
It is also possible to adopt a structure in which the metal case also serves as a current collector.

発明の効果 本発明に係る電気二重層キャパシタによれば、分極性電
極を構成する前記活性炭ブロックは電気抵抗が小さく、
かつ嵩密度および比表面積が大きいため、内部抵抗の低
減および大容量化を図れる他、有機系電解液を用いてい
るため、耐電圧の高い電気二重層キャパシタを提供する
ことかできる。
Effects of the Invention According to the electric double layer capacitor according to the present invention, the activated carbon block constituting the polarizable electrode has low electrical resistance;
Moreover, since the bulk density and specific surface area are large, it is possible to reduce internal resistance and increase capacity, and since an organic electrolyte is used, it is possible to provide an electric double layer capacitor with high withstand voltage.

〔実施例〕〔Example〕

以下、実施例によって本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 まず、レゾール(フェノールホルマリン樹脂プレポリマ
ー)100重量部、硬化剤としてのパラトルエンスルホ
ン酸10重量部、発泡剤としてのジクロロトリフロロエ
タン1.5重量部を高速ミキサーで充分に攪拌した後、
この混合物を金型内に流し込み、蓋をし、80°Cのエ
アーオーブン内に30分間放置することにより、縦30
cm、横30cm、厚さ3cm、嵩密度0.3g/cイ
の板状フェノール樹脂発泡体を得た。
Example 1 First, 100 parts by weight of resol (phenol-formalin resin prepolymer), 10 parts by weight of para-toluenesulfonic acid as a hardening agent, and 1.5 parts by weight of dichlorotrifluoroethane as a blowing agent were sufficiently stirred with a high-speed mixer. rear,
Pour this mixture into a mold, cover it, and leave it in an air oven at 80°C for 30 minutes.
A plate-shaped phenolic resin foam having a width of 30 cm, a thickness of 3 cm, and a bulk density of 0.3 g/c was obtained.

この成形板を縦20cm、横10cm、厚さ1.0cm
に切断してからマツフル炉に入れ、窒素雰囲気下て昇温
速度60°C/時間て温度600°Cまて昇温して加熱
し、この温度で1時間保持した後冷却して、縦16cm
、横8cm、厚さ0.8cm、嵩密度が0.29g/c
nrの板状炭素多孔体を得た。
This molded plate is 20cm long, 10cm wide, and 1.0cm thick.
After cutting into pieces, they were placed in a Matsufuru furnace and heated under a nitrogen atmosphere at a heating rate of 60°C/hour to a temperature of 600°C, held at this temperature for 1 hour, and then cooled to a length of 16 cm.
, width 8cm, thickness 0.8cm, bulk density 0.29g/c
A plate-like porous carbon material of nr was obtained.

さらにこの板状炭素多孔体を950°Cまて胃温してか
ら燃焼ガス中に水蒸気を投入し、16時間保持した後冷
却した。
Further, this plate-shaped porous carbon material was heated to 950° C., steam was introduced into the combustion gas, and the material was maintained for 16 hours and then cooled.

得られた活性炭ブロックの嵩密度、強度、比表面積を調
べた。また、このブロックの連続気泡率を前述した方法
で測定したところ99%であった。
The bulk density, strength, and specific surface area of the obtained activated carbon block were examined. Further, the open cell rate of this block was measured by the method described above and was found to be 99%.

結果を第1表に示す。The results are shown in Table 1.

第1表 上記活性炭ブロックを帯鋸て縦7.5cm、横2cm、
厚さ0 、5 cmに切断し、減圧下て脱気してからプ
ロピレンカーボネート90重量%、4フツ化ホウ酸テト
ラ工チルアンモニウム10重量%の電解液を含浸させ、
ポリプロピレン製不織布をセパレーターとして間にはさ
みこみ、更に両方の外側より厚さI mmの黒鉛板をあ
てがった一対の分極性電極を対向させて図1に示した構
造の電気二重層キャパシタを作成した。
Table 1 The above activated carbon block was band sawed to a length of 7.5 cm and a width of 2 cm.
It was cut to a thickness of 0.5 cm, degassed under reduced pressure, and then impregnated with an electrolytic solution containing 90% by weight of propylene carbonate and 10% by weight of tetrafunctional tylammonium tetrafluoroborate.
An electric double layer capacitor having the structure shown in FIG. 1 was prepared by sandwiching a polypropylene non-woven fabric as a separator and facing each other with a pair of polarizable electrodes each having a graphite plate with a thickness of 1 mm applied from the outside.

得られたキャパシタについて、50mAの一定電流で3
vまで充放電を行い容量を測定した。
For the obtained capacitor, at a constant current of 50 mA, 3
The battery was charged and discharged to v and the capacity was measured.

結果を第2表に示す。The results are shown in Table 2.

実施例2 実施例1において、発泡剤としてジクロロトリフロロエ
タンの添加量を増加させることにより嵩密度0.13g
/cm?の活性炭ブロックを得た。これを実施例1と全
く同じようにして電気二重層キャパシタを作成した。
Example 2 In Example 1, the bulk density was reduced to 0.13 g by increasing the amount of dichlorotrifluoroethane added as a blowing agent.
/cm? Activated carbon blocks were obtained. An electric double layer capacitor was produced in exactly the same manner as in Example 1.

得られた性能を第2表に合わせて示す。The obtained performance is also shown in Table 2.

実施例3 実施例1において、セパレーターヲ厚さ50μmの天然
セルロースに変え、実施例Iと同様の形状と電解液を用
いて電気二重層キャパシタを作成した。
Example 3 In Example 1, an electric double layer capacitor was produced using the same shape and electrolyte as in Example I except that the separator was replaced with natural cellulose having a thickness of 50 μm.

得られた結果を第2表に合わせて示す。The obtained results are also shown in Table 2.

第2表 実施例4 実施例1と同様の形状で、アセトニトリル90重量%、
4フツ化ホウ酸テトラ工チルアンモニウム10重量%の
電解液を含浸させ、充放電を2.7■までとした以外は
、実施例1と同様にして電気二重層キャパシタを作成し
た。
Table 2 Example 4 Same shape as Example 1, 90% by weight of acetonitrile,
An electric double layer capacitor was produced in the same manner as in Example 1, except that it was impregnated with an electrolytic solution containing 10% by weight of tetrafunctional tylammonium tetrafluoroborate and the charge/discharge rate was up to 2.7 µ.

得られた性能を第3表に示す。The obtained performance is shown in Table 3.

実施例5 実施例1と同様の形状で、プロピレンカーボネート45
重量%、ジメトキシエタン45重量%、4フツ化ホウ酸
テトラ工チルアンモニウムlO重量%の電解液を含浸さ
せ、充放電を2.4vまでとした以外は、実施例1と同
様にして電気二重層キャパシタを作成した。
Example 5 Same shape as Example 1, propylene carbonate 45
An electric double layer was prepared in the same manner as in Example 1, except that the electrolyte solution was impregnated with an electrolytic solution containing 45% by weight of dimethoxyethane and 10% by weight of tetrafluoroborate tetrafluoroborate, and the charging and discharging was limited to 2.4 V. Created a capacitor.

得られた性能を第3表に合わせて示す。The obtained performance is also shown in Table 3.

実施例6 実施例2と同様の嵩密度の活性炭ブロックを用いて、実
施例1と同様の形状で、プロピレンカーボネート43重
量%、γ−ブチロラクトン43重量%、1,3−ジオキ
ソラン4重量96.4フツ化ホウ酸テトラ工チルアンモ
ニウム10重量%の電解液を含浸させた以外は、実施例
1と同様の電気二重層キャパシタを作成した。
Example 6 Using an activated carbon block with the same bulk density as in Example 2, in the same shape as in Example 1, 43% by weight of propylene carbonate, 43% by weight of γ-butyrolactone, 4% by weight of 1,3-dioxolane, 96.4% by weight. An electric double layer capacitor similar to that of Example 1 was prepared except that it was impregnated with an electrolytic solution containing 10% by weight of tetratechylammonium fluoroborate.

得られた性能を第3表に合わせて示す。The obtained performance is also shown in Table 3.

第3表Table 3

【図面の簡単な説明】[Brief explanation of the drawing]

添付第1図は、本発明に係る電気二重層キャノクシタの
好ましい一態様を示す断面図である。 なお図中、1は分極性電極、2は集電体、3はセパレー
タ、4は絶縁性パツキン、5はケースである
FIG. 1 attached is a cross-sectional view showing a preferred embodiment of the electric double layer canister according to the present invention. In the figure, 1 is a polarizable electrode, 2 is a current collector, 3 is a separator, 4 is an insulating packing, and 5 is a case.

Claims (9)

【特許請求の範囲】[Claims] (1)樹脂発泡体が炭化、賦活されてなる活性炭ブロッ
クを用いた分極性電極と、該分極性電極に接触する有機
系電解液とを有することを特徴とする電気二重層キャパ
シタ。
(1) An electric double layer capacitor characterized by having a polarizable electrode using an activated carbon block obtained by carbonizing and activating a resin foam, and an organic electrolyte in contact with the polarizable electrode.
(2)前記活性炭ブロックが、0.1g/cm^3以上
の嵩密度及び500m^2/g以上の比表面積を有する
ことを特徴とする請求項第1項に記載の電気二重層キャ
パシタ。
(2) The electric double layer capacitor according to claim 1, wherein the activated carbon block has a bulk density of 0.1 g/cm^3 or more and a specific surface area of 500 m^2/g or more.
(3)前記活性炭ブロックが、フェノールホルマリン樹
脂発泡体を炭化・賦活されてなり、実質的に連続気泡構
造を有していることを特徴とする請求項第1項または第
2項に記載の電気二重層キャパシタ。
(3) The activated carbon block is made by carbonizing and activating a phenol-formalin resin foam and has a substantially open cell structure. double layer capacitor.
(4)前記有機系電解液が、下記一般式[I]でしめさ
れる第4級オニウム塩を有機溶媒に溶解してなることを
特徴とする請求項第1項〜第3項に記載の電気二重層キ
ャパシタ。 ▲数式、化学式、表等があります▼ 〔上記式[I]中、nは1〜3の整数であり、Aはチッ
素またはリンであり、R^1、R^2、R^3およびR
^4は、水素、炭素数1〜18のアルキル基、炭素数6
〜18のアリール基のいずれかであって、全てが水素で
ある以外は各々同一であっても異なっていてもよく、X
^n^−は上記nに相当する価数を有する陰イオンであ
る〕
(4) The organic electrolyte is formed by dissolving a quaternary onium salt represented by the following general formula [I] in an organic solvent. Electric double layer capacitor. ▲There are mathematical formulas, chemical formulas, tables, etc.▼ [In the above formula [I], n is an integer from 1 to 3, A is nitrogen or phosphorus, and R^1, R^2, R^3 and R
^4 is hydrogen, an alkyl group having 1 to 18 carbon atoms, and 6 carbon atoms.
~18 aryl groups, each of which may be the same or different except that all are hydrogen, and X
^n^- is an anion with a valence corresponding to n above]
(5)上記第4級オニウム塩は、上記式[I]中、R^
1、R^2、R^3およびR^4が、水素、炭素数1〜
4の低級アルキル基、炭素数6〜18のアリール基のい
ずれかであり、各々同一であっても異なっていてもよく
、さらに少なくとも一つが上記低級アルキル基であるこ
とを特徴とする請求項第4記載の電気二重層キャパシタ
(5) The above quaternary onium salt is represented by R^ in the above formula [I].
1, R^2, R^3 and R^4 are hydrogen, carbon number 1-
4 or an aryl group having 6 to 18 carbon atoms, each of which may be the same or different, and at least one is the lower alkyl group described above. 4. The electric double layer capacitor according to 4.
(6)上記第4級オニウム塩は、上記式[I]中、R^
1、R^2、R^3およびR^4が、水素、炭素数1〜
18の低級アルキル基、炭素数6〜18で1個または2
個のベンゼン核を有するアリール基のいずれかであり、
各々同一であっても異なっていてもよく、さらに少なく
とも一つが上記アリール基であることを特徴とする請求
項第4項に記載の電気二重層キャパシタ。
(6) The above quaternary onium salt is represented by R^ in the above formula [I].
1, R^2, R^3 and R^4 are hydrogen, carbon number 1-
18 lower alkyl groups, 1 or 2 with 6 to 18 carbon atoms
any aryl group having benzene nuclei,
5. The electric double layer capacitor according to claim 4, each of which may be the same or different, and at least one of which is the aryl group.
(7)上記第4級オニウム塩は、上記式[I]中、X^
n^−が、BF_4^−、PF_6^−、ClO_4^
−、AsF_6^−、SbF_6^−、AlCl_4^
−、RfSO_3^−(Rfは炭素数1〜8のフルオロ
アルキル基である)、F^−、Cl^−、Br^−、N
O_3^−、SO_4^2^−およびPO_4^3^−
のいずれかであることを特徴とする請求項第4項に記載
の電気二重層キャパシタ。
(7) The above quaternary onium salt is represented by X^ in the above formula [I].
n^- is BF_4^-, PF_6^-, ClO_4^
-, AsF_6^-, SbF_6^-, AlCl_4^
-, RfSO_3^- (Rf is a fluoroalkyl group having 1 to 8 carbon atoms), F^-, Cl^-, Br^-, N
O_3^-, SO_4^2^- and PO_4^3^-
The electric double layer capacitor according to claim 4, wherein the electric double layer capacitor is any one of the following.
(8)上記第4級オニウム塩は、上記式[I]中、X^
n^−が、BF_4^−、PF_6^−、ClO_4^
−およびRfSO_3^−のいずれかであることを特徴
とする請求項第7項に記載の電気二重層キャパシタ。
(8) The above quaternary onium salt is represented by X^ in the above formula [I].
n^- is BF_4^-, PF_6^-, ClO_4^
- and RfSO_3^-, the electric double layer capacitor according to claim 7.
(9)上記有機溶媒が、プロピレンカーボネート、エチ
レンカーボネート、γ−ブチロラクトン、ジメトキシエ
タン、アセトニトリル、スルホランから選択される少な
くとも一種からなることを特徴とする請求項第1項〜第
8項に記載の電気二重層キャパシタ。
(9) The organic solvent according to any one of claims 1 to 8, wherein the organic solvent comprises at least one selected from propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethoxyethane, acetonitrile, and sulfolane. double layer capacitor.
JP2339336A 1990-11-30 1990-11-30 Electric double layer capacitor Pending JPH04206917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2339336A JPH04206917A (en) 1990-11-30 1990-11-30 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2339336A JPH04206917A (en) 1990-11-30 1990-11-30 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH04206917A true JPH04206917A (en) 1992-07-28

Family

ID=18326489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2339336A Pending JPH04206917A (en) 1990-11-30 1990-11-30 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH04206917A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431952C (en) * 2006-01-26 2008-11-12 南京大学 Preparation method of high specific surface area active charcoal based on formaldehyde-phenol resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149115A (en) * 1984-01-13 1985-08-06 松下電器産業株式会社 Electric double layer capacitor
JPS62292612A (en) * 1986-06-09 1987-12-19 Sumitomo Metal Ind Ltd Production of plate-shaped activated carbon for electrical double layer capacitor
JPH01258410A (en) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd Energy storage device using non-aqueous electrolyte

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149115A (en) * 1984-01-13 1985-08-06 松下電器産業株式会社 Electric double layer capacitor
JPS62292612A (en) * 1986-06-09 1987-12-19 Sumitomo Metal Ind Ltd Production of plate-shaped activated carbon for electrical double layer capacitor
JPH01258410A (en) * 1988-04-08 1989-10-16 Asahi Glass Co Ltd Energy storage device using non-aqueous electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431952C (en) * 2006-01-26 2008-11-12 南京大学 Preparation method of high specific surface area active charcoal based on formaldehyde-phenol resin

Similar Documents

Publication Publication Date Title
Gao et al. Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries
CN108063217B (en) Potassium-based double-ion battery and preparation method thereof
KR102596721B1 (en) Flexible all-solid lithium ion secondary battery and method of manufacturing the same
JP6642941B2 (en) Anode for high energy batteries
KR102050837B1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising thereof
KR101965773B1 (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
US20180019072A1 (en) Electrochemical Method of Producing Graphene-Based Supercapacitor Electrode from Coke or Coal
KR20160078334A (en) Lithium-sulfur electric current producing cell
US10903466B2 (en) Alkali metal-selenium secondary battery containing a graphene-based separator layer
CN113555603B (en) Composite electrolyte layer, preparation method thereof and lithium ion battery
CN108630890A (en) A kind of multi-layer electrode structure and preparation method thereof for lithium-sulfur cell
EP0660345B1 (en) Process for forming a polarizable electrode for a double-layer capacitor
JPH046072B2 (en)
JP3023379B2 (en) Electric double layer capacitor and electrode
WO2019199774A1 (en) Alkali metal-selenium secondary battery containing a graphene foam-protected selenium cathode
WO2013061789A1 (en) Capacitor
JPH04206916A (en) Electric double layer capacitor
JPH04175277A (en) Carbon porous material, production thereof and electric double layer capacitor
JPH04206917A (en) Electric double layer capacitor
JPH04209713A (en) Production of active carbon, electrode and electrical double layer capacitor using the same electrode
JPH04206918A (en) Electric double layer capacitor
JP3097860B2 (en) Electric double layer capacitor
JPH04206919A (en) Electric double layer capacitor
US5838531A (en) Polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using polarizable electrode
JPH03141629A (en) Electric double-layer capacitor