JPH04206524A - Semiconductor film forming device - Google Patents

Semiconductor film forming device

Info

Publication number
JPH04206524A
JPH04206524A JP32959290A JP32959290A JPH04206524A JP H04206524 A JPH04206524 A JP H04206524A JP 32959290 A JP32959290 A JP 32959290A JP 32959290 A JP32959290 A JP 32959290A JP H04206524 A JPH04206524 A JP H04206524A
Authority
JP
Japan
Prior art keywords
wall
film forming
reflectivity
reflectance
deposits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32959290A
Other languages
Japanese (ja)
Inventor
Yuichi Kono
祐一 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP32959290A priority Critical patent/JPH04206524A/en
Publication of JPH04206524A publication Critical patent/JPH04206524A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the adjustment of temperature, and to constantly maintain the speed of film formation by a method wherein the substance, having a reflectivity approximate to that of the deposit adhered to the inner surface of the title device while a film-forming operation is being conducted, and low reflectivity substrate having surface-roughness enhanced are used as the material for the inner wall. CONSTITUTION:The substance, having a reflectivity approximate to that of the deposition which adheres to the inner wall of a film-forming device, is used as the material of the inner wall, and also the substance, having enhanced surface roughness and a lowered reflectivity, is used as the material for inner wall. Even when a deposition is adhered to the inner wall, the infrared rays absorbed by the surface of a wafer 3 is maintained constant since the reflectivity has no change. The surface temperature of the wafer 3 does not change.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、半導体の成膜装置、特に反応炉内の構造に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a semiconductor film forming apparatus, particularly to a structure inside a reactor.

〈従来の技術〉 一般に装置内の輻射量を制御しようとする試みとしては
特開昭62−131523号公報に開示されζいるよう
に、ウェハ上方に熱反射板を置き赤外放射を平衡状態に
する方法や、特開昭61−139024号公報に開示さ
れているようにインナーヘルジャとアウクーヘルジャの
間に赤外線反射手段を設け、インナーヘルジャの温度を
保持する方法が知られている。
<Prior art> Generally, as an attempt to control the amount of radiation inside a device, as disclosed in Japanese Patent Application Laid-Open No. 131523/1980, a heat reflecting plate is placed above the wafer to balance the infrared radiation. There is also known a method of maintaining the temperature of the inner herja by providing an infrared reflecting means between the inner herja and the auxiliary herja, as disclosed in Japanese Patent Application Laid-Open No. 139024/1983.

また、成膜処理における堆積物の影響を低減するために
は、堆積物そのものの付着を防止する方法が行われてい
る。例えば特開昭59−[12613号、特開昭62−
158867号公報に開示されているように装置内壁に
沿ってキャリアガスや0□ガスを流す方法や、特開昭6
2−158877号公報に開示されているように装置内
壁を冷却する方法が知られている。
Furthermore, in order to reduce the influence of deposits on film formation, methods are being used to prevent the deposits themselves from adhering. For example, JP-A-59-[12613], JP-A-62-
There is a method of flowing carrier gas or 0□ gas along the inner wall of the device as disclosed in Japanese Patent Publication No. 158867, and
A method of cooling the inner wall of an apparatus is known as disclosed in Japanese Patent No. 2-158877.

〈発明が解決しようとする課題〉 しかしながら装置内に反射板を置く方法では、反射板あ
るいは内壁に堆積物が付着するので成膜処理中に反射率
が変化してしまい、それに伴って基板表面温度が変化し
、成膜レートが変動していくという問題があった。
<Problems to be Solved by the Invention> However, in the method of placing a reflector in the device, deposits adhere to the reflector or the inner wall, resulting in a change in reflectance during the film forming process, which causes the substrate surface temperature to change. There was a problem in that the film formation rate fluctuated as a result.

また、炉壁に沿ってキャリアガスやOzガスを流す方法
ではガスの流量制御に問題があった。
Furthermore, the method of flowing carrier gas or Oz gas along the furnace wall has a problem in controlling the gas flow rate.

また装置内壁を冷却する方法では堆積物の付着を完全に
防止できないという問題があった。
Furthermore, there is a problem in that the method of cooling the inner wall of the apparatus cannot completely prevent the deposition of deposits.

本発明は、前記の諸問題を解決した堆積物の付着を許容
しつつ、装置内壁の反射をflJ?Iする技術を提f共
するためになされたものである。
The present invention solves the above-mentioned problems while allowing the deposition of deposits and reducing the reflection on the inner wall of the device. This was done in order to share the technology that can be used.

〈課題を解決するための手段〉 本発明は、■半導体の成膜装置において、成膜処理中に
装置内壁に付着する堆積物と反射率が近い物質を装置内
壁部材として用いることを特徴とする半導体の成膜装置
であり、また、■半導体の成膜装置において、表面粗度
を高め反射率を低くした物質を装置内壁部材として用い
ることを特徴とする半導体の成膜装置である。
<Means for Solving the Problems> The present invention is characterized in that: (1) In a semiconductor film forming apparatus, a substance having a reflectance close to that of deposits attached to the inner wall of the apparatus during the film forming process is used as the inner wall member of the apparatus. The present invention is a semiconductor film forming apparatus, and is characterized in that (1) a material with increased surface roughness and low reflectance is used as an inner wall member of the apparatus.

〈作 用〉 本発明によれば、装置内壁が堆積物と同程度の反射率な
ので、堆積物が付着した前後で装置内壁の反射の状況が
変化しないため、装置内温度の制御性が向上し、基板表
面温度は安定する。
<Function> According to the present invention, since the inner wall of the device has a reflectance comparable to that of the deposits, the reflection status of the inner wall of the device does not change before and after the deposits are attached, so that the controllability of the temperature inside the device is improved. , the substrate surface temperature becomes stable.

一方、堆積物が炉内壁部材より低い反射率をもつような
成膜装置においては、表面粗度(または表面あらさ)を
高め乱反射を増やし反射率を低くした物質を、炉内壁部
材として用いることによって堆積物が付着する前後での
反射率の変化を抑えることができる。
On the other hand, in film forming equipment where the deposits have a lower reflectance than the furnace inner wall material, it is possible to use a material with a higher surface roughness (or surface roughness), increase diffuse reflection, and lower the reflectance as the furnace inner wall material. Changes in reflectance before and after deposits are attached can be suppressed.

〈実施例〉 本発明の実施例を以下に説明する。<Example> Examples of the present invention will be described below.

第1図は本発明の一実施例を示すCVD装置の断面図で
ある。内壁に堆積物が付着しても反射率が変化しないた
め、ウヱハ表面で吸収される赤外線は一定に保たれる。
FIG. 1 is a sectional view of a CVD apparatus showing an embodiment of the present invention. Even if deposits adhere to the inner wall, the reflectance does not change, so the infrared rays absorbed by the wafer surface remain constant.

第2図は従来の装置の断面図である。堆積物が付着する
ことにより、内壁の反射率が変化し内壁から反射された
赤外線が6aから6bに変化し、ウェハ表面温度も変化
する。
FIG. 2 is a sectional view of a conventional device. Due to the deposition of deposits, the reflectance of the inner wall changes, the infrared rays reflected from the inner wall changes from 6a to 6b, and the wafer surface temperature also changes.

−第3図は、本発明の一実施例における基板表面温度と
成膜速度の推移を示したものである0本発明によると表
面温度が変化しないので安定した成膜速度が得られる。
- Figure 3 shows the change in substrate surface temperature and film formation rate in one embodiment of the present invention.According to the present invention, a stable film formation rate can be obtained because the surface temperature does not change.

第4図は、従来の装置における基板表面温度と成膜速度
の推移を示したものである。基板表面温度の変化が激し
いので成膜速度の変動が大きい。
FIG. 4 shows changes in substrate surface temperature and film formation rate in a conventional apparatus. Since the substrate surface temperature changes drastically, the film formation rate fluctuates greatly.

炉内壁を堆積物と異なる反射率を持った物質にすると、
第4図のように処理回数を重ねるにつれて基板表面温度
は変化する。しかし堆積物がある膜厚以上に付着すると
、熱輻射の反射率は一定となり表面温度は安定する(第
5図)。一方、本発明で述べたように堆積物と同程度の
反射率をもった炉内壁を使用すると、第6図に示すよう
に安定領域に至る処理回数が減少し、成膜装置のスルー
プットが向上する。
If the inner wall of the furnace is made of a material with a reflectance different from that of the deposits,
As shown in FIG. 4, the substrate surface temperature changes as the number of treatments increases. However, when the deposit reaches a certain thickness or more, the reflectance of thermal radiation becomes constant and the surface temperature becomes stable (Figure 5). On the other hand, as described in the present invention, if the furnace inner wall has a reflectance comparable to that of the deposit, the number of processing steps required to reach the stable region will be reduced, as shown in Figure 6, and the throughput of the film deposition system will be improved. do.

なお前記実施例では、CVDによるBPSGの成膜につ
いて説明したが、本発明はこれに限るものではなくスパ
ッターや蒸着による成膜方法でも良い。
In the above embodiments, BPSG film formation by CVD has been described, but the present invention is not limited to this, and a film formation method such as sputtering or vapor deposition may be used.

また、堆積物が炉内壁部材より低い反射率をもつような
成膜装置においては、金属内壁に炉内壁の粗度を高め乱
反射を増やし反射率を減少させるような加工を施すか、
施した物質を内壁部材として使用することによって同様
の効果が期待される。
In addition, in a film forming apparatus where the deposit has a lower reflectance than the furnace inner wall material, the metal inner wall may be processed to increase the roughness of the furnace inner wall, increase diffuse reflection, and reduce the reflectance.
A similar effect can be expected by using the applied material as an inner wall member.

〈発明の効果〉 本発明によると、成膜処理中の反射率、基板表面温度が
経時変化せず、ヒータから基板までの温度分布が変化し
ない、従ってヒータでの温度調節のみで基板表面温度の
制御が可能であり、成膜速度を一定に保つことができる
<Effects of the Invention> According to the present invention, the reflectance and substrate surface temperature during the film forming process do not change over time, and the temperature distribution from the heater to the substrate does not change. Control is possible, and the film formation rate can be kept constant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す断面図、第2図は、
従来の成膜装置を示す断面図で、(a)は堆積物が付着
する前、Φンは堆積物が付着した後の状態を示し、第3
図は、本発明の一実施例における基板表面温度と成膜速
度の推移を示すグラフ、第4図は、従来の装置における
基板表面温度と成膜速度の推移を示すグラフ、第5図は
、従来の装置における基板表面温度の推移を示すグラフ
、第6図は、本発明(請求項1)に係る装置における基
板表面温度の推移を示すグラフである。 1・・・堆積物とほぼ等しい反射率をもった物質を内壁
とした装置、 2・・・サセプター、 3・・・ウェハ、 4・・・内壁に入射する赤外線、 5・・・内壁に吸収された熱、 6・・・内壁から反射された赤外線、 7・・・金属製の内壁、 8・・・堆積物。 第1図 特許出願人   川崎製鉄株式会社 第2図 Ca> (b) 窮 3 図 第4図 処理回数
FIG. 1 is a sectional view showing one embodiment of the present invention, and FIG. 2 is a sectional view showing an embodiment of the present invention.
It is a cross-sectional view showing a conventional film forming apparatus, in which (a) shows the state before deposits are attached, Φn shows the state after the deposits have attached, and the third
The figure is a graph showing changes in substrate surface temperature and film formation rate in an embodiment of the present invention, FIG. 4 is a graph showing changes in substrate surface temperature and film formation rate in a conventional apparatus, and FIG. FIG. 6 is a graph showing the change in substrate surface temperature in the conventional apparatus. FIG. 6 is a graph showing the change in substrate surface temperature in the apparatus according to the present invention (claim 1). 1... Device whose inner wall is made of a material with almost the same reflectance as the deposit, 2... Susceptor, 3... Wafer, 4... Infrared rays incident on the inner wall, 5... Absorbed by the inner wall 6...Infrared rays reflected from the inner wall, 7...Metal inner wall, 8...Deposits. Figure 1 Patent Applicant Kawasaki Steel Corporation Figure 2 Ca > (b) 3 Figure 4 Number of Processing

Claims (1)

【特許請求の範囲】 1、半導体の成膜装置において、成膜処理中に装置内壁
に付着する堆積物と反射率が近い物質を装置内壁部材と
して用いることを特徴とする半導体の成膜装置。 2、半導体の成膜装置において、表面粗度を高め反射率
を低くした物質を装置内壁部材として用いることを特徴
とする半導体の成膜装置。
[Scope of Claims] 1. A semiconductor film forming apparatus, characterized in that a material having a reflectance close to that of deposits attached to the inner wall of the apparatus during the film forming process is used as an inner wall member of the apparatus. 2. A semiconductor film forming apparatus characterized in that a material with increased surface roughness and low reflectance is used as an inner wall member of the apparatus.
JP32959290A 1990-11-30 1990-11-30 Semiconductor film forming device Pending JPH04206524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32959290A JPH04206524A (en) 1990-11-30 1990-11-30 Semiconductor film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32959290A JPH04206524A (en) 1990-11-30 1990-11-30 Semiconductor film forming device

Publications (1)

Publication Number Publication Date
JPH04206524A true JPH04206524A (en) 1992-07-28

Family

ID=18223074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32959290A Pending JPH04206524A (en) 1990-11-30 1990-11-30 Semiconductor film forming device

Country Status (1)

Country Link
JP (1) JPH04206524A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299328A (en) * 2001-03-30 2002-10-11 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method
CN102803581A (en) * 2009-06-15 2012-11-28 艾克斯特朗欧洲公司 Method for equipping an epitaxy reactor
JP2015216164A (en) * 2014-05-08 2015-12-03 豊田合成株式会社 Method for manufacturing group iii nitride semiconductor, and method for manufacturing light-emitting element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299328A (en) * 2001-03-30 2002-10-11 Tokyo Electron Ltd Heat treatment apparatus and heat treatment method
WO2002082522A1 (en) * 2001-03-30 2002-10-17 Tokyo Electron Limited Single wafer processing method and system for processing semiconductor
US6924231B2 (en) 2001-03-30 2005-08-02 Tokyo Electron Limited Single wafer processing method and system for processing semiconductor
CN102803581A (en) * 2009-06-15 2012-11-28 艾克斯特朗欧洲公司 Method for equipping an epitaxy reactor
JP2012530368A (en) * 2009-06-15 2012-11-29 アイクストロン、エスイー Method for configuring an epitaxy reactor
JP2015216164A (en) * 2014-05-08 2015-12-03 豊田合成株式会社 Method for manufacturing group iii nitride semiconductor, and method for manufacturing light-emitting element

Similar Documents

Publication Publication Date Title
US3641974A (en) Apparatus for forming films
JP4427254B2 (en) Method for depositing a dielectric coating
US5119761A (en) Substrate heating apparatus for forming thin films on substrate surface
US6340499B1 (en) Method to increase gas residence time in a reactor
US4810342A (en) Method for controlling substrate temperature in a high temperature sputtering process
US6537677B1 (en) Process for fabricating films of uniform properties on semiconductor devices
JPH06163518A (en) Filming system
JPH04206524A (en) Semiconductor film forming device
JPH03183778A (en) Method and device for forming deposited film
JPH11150073A (en) Thin-film forming equipment
US5439850A (en) Method for forming a layer of uniform thickness on a semiconductor wafer during rapid thermal processing
JP3215131B2 (en) Semiconductor device manufacturing equipment
JPH05320891A (en) Sputtering device
JP3111211B2 (en) Thin film manufacturing apparatus and manufacturing method
JPH06177048A (en) Manufacture of semiconductor element
JP2535552B2 (en) In-line type continuous atmospheric pressure CVD system susceptor
JPH06295871A (en) Chemical vapor deposition system
JPH0336272A (en) Photo-cvd device
Sanganeria et al. Application of Constant Absorptivity Ring (Car) to Improve Polysilicon Thickness Uniformity In A Rapid Thermal Chemical Vapor Deposition Reactor
JPH0355839A (en) Thin film forming method and photoreaction equipment
JPH03253572A (en) Heater in vacuum vessel
JPH05239636A (en) Sputtering device
JPH07130643A (en) Equipment and method for forming thin film
JPS59100536A (en) Microwave processor
JPS58175834A (en) Manufacture of semiconductor device