JPH04206147A - Protective container for sodium-sulfur battery - Google Patents

Protective container for sodium-sulfur battery

Info

Publication number
JPH04206147A
JPH04206147A JP2327084A JP32708490A JPH04206147A JP H04206147 A JPH04206147 A JP H04206147A JP 2327084 A JP2327084 A JP 2327084A JP 32708490 A JP32708490 A JP 32708490A JP H04206147 A JPH04206147 A JP H04206147A
Authority
JP
Japan
Prior art keywords
sodium
container
container body
sulfur
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2327084A
Other languages
Japanese (ja)
Inventor
Hiroki Bessho
裕樹 別所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2327084A priority Critical patent/JPH04206147A/en
Publication of JPH04206147A publication Critical patent/JPH04206147A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve corrosion resistance and volumetric efficiency by forming a container body in a cylindrical having a bottom of metal which has Fe as its main component and contains Ni and Cr. CONSTITUTION:A container body 2 for a sodium-sulfur battery 1, which uses sodium as negative electrode active material and uses sulfur as positive electrode active material, is constituted of a cylindrical shape having its bottom made of metal which has Fe as its main component and contains Ni and Cr. Ni improves corrosion resistance against sodium of the negative electrode active material, and Cr improves corrosion resistance against sulfur and sodium polysulfide of the positive electrode active material. The composition is desirable to contain Ni or 3weight% or more and Cr of 10weight% or more against Fe. Thereby, the corrosion resistance can be excellent, and short circuit troubles caused by leakage can be prevented, and the body 2 can be also thinned and downsized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ナトリウムや硫黄等の活物質漏洩から生ずる
短絡・地絡事故等を有効に防止することかできるナトリ
ウム−硫黄電池の保護容器に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a protective container for a sodium-sulfur battery that can effectively prevent short circuits, ground faults, etc. caused by leakage of active materials such as sodium and sulfur. It is something.

(従来の技術) 密閉型高温二次電池として負極活物質にナトリウム、正
極活物質に硫黄を用いたナトリウム−硫黄電池を収納ケ
ース内において複数個連結し、300〜350 ”Cの
高温て作動させるものか知られている。ところが、前記
活物質が何等かの原因によって漏洩した場合に単電池間
の導通による短絡事故や、単電池と収納ケースとの導通
による地絡事故等が発生して電池の運転能力を低下させ
るという問題かあった。
(Prior art) Multiple sodium-sulfur batteries using sodium as the negative electrode active material and sulfur as the positive electrode active material are connected in a storage case as sealed high-temperature secondary batteries, and are operated at a high temperature of 300 to 350"C. However, if the active material leaks for some reason, short circuits may occur due to electrical continuity between the cells, or ground faults may occur due to electrical continuity between the cells and the storage case, resulting in battery damage. There was a problem that the driving ability of the driver was reduced.

そこで出願人は、特開平2−94355号公報に見られ
るように収納ケースの内部に凹部を有する支持碍子を設
置し、該支持碍子の上部に電池の支持筒を立設して漏洩
した物質を収納ケースに滴下することて活物質漏洩によ
る事故を有効に防止するナトリウム−硫黄電池の支持筒
絶縁構造を先に提案したか、先願のものは支持筒に鉄や
アルミニウム金属を用いているのでナトリウムに対する
耐蝕性か十分てなく、支持筒に孔かおいて短絡・地絡事
故か発生する場合かあるという問題点かあり、また支持
碍子を設置する分たけ電池か大型化するとともに体積効
率か劣るという問題点かあった。
Therefore, the applicant installed a support insulator having a recessed part inside the storage case, as seen in Japanese Patent Application Laid-open No. 2-94355, and installed a battery support tube upright on top of the support insulator to prevent leaked substances. We have previously proposed an insulated support tube structure for sodium-sulfur batteries that effectively prevents accidents due to active material leakage by dripping into the storage case, but the earlier application uses iron or aluminum metal for the support tube. There is a problem that the corrosion resistance against sodium is not sufficient, and short circuits and ground faults may occur if holes are made in the support tube.Also, as the size of the divided battery with support insulators increases, the volumetric efficiency becomes less efficient. There was a problem that it was inferior.

(発明か解決しようとする課題) 本発明は上記のような従来の問題点を解決して、活物質
のナトリウムや硫黄あるいはそれらの化合物等のいずれ
に対する耐蝕性にも優れており、万か一発生した単電池
の活物質漏洩に対しても他の単電池等に影響することな
く有効かつ確実に短絡事故等の発生を防止することがで
き、更には体積効率にも優れていて電池装置を小型化す
ることかできるナトリウム−硫黄電池の保護容器を提供
することを目的として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems and has excellent corrosion resistance against active materials such as sodium and sulfur or their compounds. It is possible to effectively and reliably prevent the occurrence of short-circuit accidents, etc., without affecting other cells, etc., even when active material leaks from a single cell. Furthermore, it has excellent volumetric efficiency and is suitable for battery equipment. It was completed with the aim of providing a protective container for sodium-sulfur batteries that can be made smaller.

(課題を解決するための手段) 上記の課題を解決するためになされた本発明は、単電池
を収納する容器本体を、Feを主成分とし少なくともN
i、 Crを含む金属からなる有底筒体としたことを特
徴とするナトリウム−硫黄電池の保護容器を第1の発明
とし、単電池を収納する容器本体を、Feを主成分とし
少なくともCrを含む金属からなる有底筒体としてその
少なくとも一表面をNiを主成分とする金属で覆ったこ
とを特徴とするナトリウム−硫黄電池の保護容器を第2
の発明とし、単電池を収納する容器本体を、Feを主成
分とし少なくともNiを含む金属からなる有底筒体とし
てその少なくとも一表面をCrを主成分とする金属で覆
ったことを特徴とするナトリウム−硫黄電池の保護容器
第3の発明とし、単電池を収納する容器本体を、Feを
主成分とし少なくともCrを含む金属からなる有底筒体
としてその内側にはシリカを含む無機材よりなる保護部
材を添装したことを特徴とするナトリウム−硫黄電池の
保護容器を第4の発明とし、単電池を収納する容器本体
を、Feを主成分とし少なくともCrを含む金属からな
る有底筒体としてその少なくとも一表面をNiを主成分
とする金属で覆うとともに内側にはシリカを含む無機材
よりなる保護部材を添装したことを特徴とするナトリウ
ム−硫黄電池の保護容器を第5の発明とし、単電池を収
納する容器本体を、Feを主成分とし少なくともNiを
含む金属からなる有底筒体としてその少な(とも−表面
をCrを主成分とする金属で覆うとともに内側にはシリ
カを含む無機材よりなる保護部材を添装したことを特徴
とするナトリウム−硫黄電池の保護容器を第6の発明と
するものである。
(Means for Solving the Problems) The present invention, which has been made to solve the above problems, has a container main body containing Fe as a main component and at least N.
i. A protective container for a sodium-sulfur battery is characterized in that it is a cylinder with a bottom made of a metal containing Cr, and the container body for storing a cell is made of Fe as a main component and contains at least Cr. A protective container for a sodium-sulfur battery is characterized in that it is a cylinder with a bottom made of metal, and at least one surface thereof is covered with a metal whose main component is Ni.
The invention is characterized in that the container body for storing the cell is a cylinder with a bottom made of a metal containing Fe as a main component and at least Ni, and at least one surface thereof is covered with a metal containing Cr as a main component. A third invention of a protective container for a sodium-sulfur battery, in which the container body for storing the cell is a bottomed cylindrical body made of a metal containing Fe as a main component and at least Cr, and the inside thereof is made of an inorganic material containing silica. A fourth invention provides a protective container for a sodium-sulfur battery, characterized in that it is equipped with a protective member, and the container body for accommodating a cell is a bottomed cylinder made of a metal containing Fe as a main component and at least Cr. A fifth invention provides a protective container for a sodium-sulfur battery, characterized in that at least one surface of the container is covered with a metal containing Ni as a main component, and the inside is equipped with a protective member made of an inorganic material containing silica. The main component of the container for storing the cell is a cylinder with a bottom made of a metal mainly composed of Fe and at least Ni. A sixth invention provides a protective container for a sodium-sulfur battery, characterized in that it is equipped with a protective member made of an inorganic material.

(実施例) 次に、本発明を図示の実施例について詳細に説明する。(Example) Next, the present invention will be explained in detail with reference to the illustrated embodiments.

図中(1)は負極活物質にナトリウム、正極活物質に硫
黄を用いたナトリウム−硫黄電池の単電池であって、該
単電池(1)は容器本体(2)の内部に収納されて保護
されており、この状態で複数本組み合わせて集合体とさ
れ図示しない収納ケースに納められて密閉型高温二次電
池として使用されるものであって、以上の構成は各発明
に共通するところである。
In the figure, (1) is a single cell of a sodium-sulfur battery using sodium as the negative electrode active material and sulfur as the positive electrode active material, and the single cell (1) is stored and protected inside the container body (2). In this state, a plurality of batteries are combined into an aggregate and housed in a storage case (not shown) to be used as a sealed high-temperature secondary battery, and the above configuration is common to each invention.

先ず、第1図は第1の発明の実施例を示すものて、容器
本体(2)はFeを主成分とし少なくともNi、Crを
含む金属からなる有底筒体で構成されており、その組成
はFeを主成分として、Niを3重量%以上、Crを1
0重量%以上含存させることか好ましい。その理由は、
Niは負極活物質であるナトリウムに対する耐蝕性を向
上させるためのもので、このNiが3重量%より少ない
場合は十分な耐蝕性か発揮できないからであり、また、
Crは正極活物質であるイ才つおよび多硫化ナトリウム
に対する耐蝕性を向上させるものであり、このCrが1
0重量%より少ない場合は十分な耐蝕性が発揮できない
からである。
First, FIG. 1 shows an embodiment of the first invention, in which the container body (2) is composed of a bottomed cylindrical body made of a metal mainly composed of Fe and containing at least Ni and Cr. The main component is Fe, 3% by weight or more of Ni, and 1% of Cr.
It is preferable to contain it in an amount of 0% by weight or more. The reason is,
Ni is used to improve corrosion resistance against sodium, which is a negative electrode active material, and if this Ni is less than 3% by weight, sufficient corrosion resistance cannot be exhibited.
Cr improves the corrosion resistance against sodium polysulfide, which is a positive electrode active material.
This is because if the content is less than 0% by weight, sufficient corrosion resistance cannot be exhibited.

次に、第2図は第2の発明の1実施例を示すもので、容
器本体(2)はFeを主成分とし少なくともCrを含む
金属からなる有底筒体で構成されるとともに、内外表面
にNiを主成分とする金属のメツキ層(4)が形成され
ている。このメツキ層(4)はナトリウムに対する優れ
た耐蝕性を発揮して容器本体(2)の腐蝕を防止するも
のであり、内外いずれかの表面のみにメツキ層を形成す
ることもできる。また、第3図は第2の発明の他の実施
例を示すもので、ここに図示されるように、容器本体(
2)はFeを主成分とし少なくともCrを含む金属から
なる有底筒体であるが、その内外のいずれかにNiを主
成分とする金属からなる有底の筒体(4a)を組合わせ
ることもてきる。更には単電池(1)を、Niを主成分
とする金属箔で覆ったうえて前記容器本体(2)内に収
納した構造とすることもてきる。
Next, FIG. 2 shows an embodiment of the second invention, in which the container body (2) is composed of a bottomed cylinder made of a metal containing Fe as a main component and at least Cr, and has inner and outer surfaces. A metal plating layer (4) containing Ni as a main component is formed on the surface. This plating layer (4) exhibits excellent corrosion resistance against sodium and prevents corrosion of the container body (2), and it is also possible to form the plating layer only on either the inner or outer surface. FIG. 3 shows another embodiment of the second invention, in which the container body (
2) is a bottomed cylindrical body made of a metal containing Fe as a main component and at least Cr, but a bottomed cylindrical body (4a) made of a metal mainly composed of Ni may be combined either inside or outside of the cylindrical body. I can bring it. Furthermore, the unit cell (1) may be covered with a metal foil containing Ni as a main component and then housed in the container body (2).

次に、第4図は第3の発明の実施例を示すものて、容器
本体(2)はFeを主成分とし少なくともNiを含む金
属からなる有底筒体て構成されるとともに、内外表面に
Crを主成分とする金属のメツキ層(4)か形成されて
いる。このメツキ層(4)はイオウおよび多硫化ナトリ
ウムに対する優れた耐蝕性を発揮して容器本体(2)の
腐蝕を防止するものてあり、内外いずれかの表面のみに
メツキ層を形成することも、また、内外のいずれかに有
底筒体として組合わせることも、更には単電池(1)を
、Crを主成分とする金属箔で覆ったうえて前記容器本
体(2)内に収納した構造とすることもてきる。
Next, FIG. 4 shows an embodiment of the third invention, in which the container body (2) is composed of a bottomed cylindrical body made of metal containing Fe as a main component and at least Ni. A metal plating layer (4) whose main component is Cr is formed. This plating layer (4) exhibits excellent corrosion resistance against sulfur and sodium polysulfide and prevents corrosion of the container body (2). It is also possible to form the plating layer only on either the inside or outside surface. It is also possible to combine the inner and outer parts as a cylinder with a bottom, or furthermore, a structure in which the cell (1) is covered with a metal foil mainly composed of Cr and then housed in the container body (2). It is also possible to do this.

次に、第5図は第4の発明の実施例を示すもので、容器
本体(2)はFeを主成分とし少な(ともCrを含む金
属からなる有底筒体で構成されるとともに、その内面に
例えば厚みか1〜10mmのシリカを含む無機材よりな
る保護部材(5)を添装したもので、該保護部材(5)
は電池の負極活物質であるナトリウムあるいはナトリウ
ム化合物を吸収して活性の低いNaSiOxとする働き
をするとともに、容器本体(2)は正極活物質である硫
黄あるいは硫黄化合物に対して優れた耐蝕性を発揮する
ものであり、これによって容器本体(2)の活物質に対
する腐蝕性を著しく向上させるという作用効果を発揮す
るものである。なお、前記保護部材(5)は表面積が大
きく軽量でかつクラックか発生しない繊維状あるいは硫
黄等の透過を防止する緻密質状等のいずれの構造として
もよい。
Next, FIG. 5 shows an embodiment of the fourth invention, in which the container body (2) is composed of a bottomed cylindrical body made of a metal mainly composed of Fe and containing a small amount of Cr. The inner surface is equipped with a protective member (5) made of an inorganic material containing silica and having a thickness of 1 to 10 mm, for example.
The container body (2) has the function of absorbing sodium or sodium compounds, which are the negative electrode active material of the battery, and converting them into low-activity NaSiOx, and the container body (2) has excellent corrosion resistance against sulfur or sulfur compounds, which are the positive electrode active material. This exhibits the effect of significantly improving the corrosivity of the active material of the container body (2). The protective member (5) may have any structure, such as a fibrous structure that has a large surface area, is lightweight, and does not generate cracks, or a dense structure that prevents the permeation of sulfur and the like.

次に、第6図は第5の発明の実施例を示すもので、容器
本体(2)は第2の発明と同様のものであるが、その内
面にシリカを含む無機材よりなる保護部材(5)を添装
したものであり、活物質に対する腐蝕性を更に向上させ
ることかできる。
Next, FIG. 6 shows an embodiment of the fifth invention, in which the container main body (2) is similar to the second invention, but the inner surface has a protective member made of an inorganic material containing silica. 5), which can further improve the corrosion resistance to the active material.

また、第7図は第6の発明の実施例を示すもので、容器
本体(2)は第3の発明と同様のものであるか、その内
面にシリカを含む無機材よりなる保護部材(5)を添装
したものであり、活物質に対する腐蝕性を更に向上させ
ることかてきる。
Moreover, FIG. 7 shows an embodiment of the sixth invention, in which the container body (2) is the same as the third invention, or the inner surface of the container body (2) is made of an inorganic material containing silica. ), which can further improve the corrosion resistance to the active material.

なお、第8図〜第11図に示されるように前記容器本体
(2)の外表面にさらにマイカ層(6)を被覆しておけ
ば、マイカによる電気絶縁性によって特別なアスベスト
やセラミックスのような絶縁性底板を用いることなく有
効な電気的絶縁を図ることも可能となる。
In addition, if the outer surface of the container body (2) is further coated with a mica layer (6) as shown in FIGS. It is also possible to achieve effective electrical insulation without using an insulating bottom plate.

実験例1 外径60B、高さ100−1厚さ0.2mmの有底の各
種金属容器にナトリウム5gを充填し、空気中で350
°C51000時間保持し、室温まで冷却後、容器内容
物を除去し、容器の腐蝕面を観察した結果を表1に示し
た。腐蝕面(内側)から他の面(外側)に貫通する腐蝕
孔の認められるものをX印で、貫通孔の認められなかっ
たものを○印で、貫通孔か認められなく腐蝕厚みか01
nIn以下の良好な表面状態のものを◎印で示した。ま
た、ナトリウムの代わりに多硫化ナトリウム(Na2S
3)を使用した以外は全て同一条件、同一評価方法で実
施した結果も表1に示した。
Experimental Example 1 5g of sodium was filled in various bottomed metal containers with an outer diameter of 60B, a height of 100-1, and a thickness of 0.2mm.
The container was held at 51,000 degrees Celsius for 51,000 hours, and after cooling to room temperature, the contents of the container were removed and the corroded surface of the container was observed. Table 1 shows the results. Those with corrosion holes penetrating from the corroded surface (inside) to other surfaces (outside) are marked with an X, those with no through holes are marked with an ○, and whether there are any through holes or the corrosion thickness is 01.
Those with good surface conditions of nIn or less are marked with ◎. Also, instead of sodium, sodium polysulfide (Na2S
Table 1 also shows the results obtained under the same conditions and with the same evaluation method except that 3) was used.

表1 実験例2 外径60化、高さ100廐、厚さ02醒の各種金属容器
の内面に無機質繊維フェルトを内張すするかまたはセラ
ミックスをコーティングした後、二の容器内にナトリウ
ム5gを充填し、空気中て350°C1500時間、1
000時間、2000時間の各時間保持し、冷却後、容
器内容物を除去し、容器の腐蝕面を観察した結果を表2
に示した。なお、表中×、○、◎の評価は第1表と同様
の基準とした。
Table 1 Experimental Example 2 After lining the inner surface of various metal containers with an outer diameter of 60 mm, a height of 100 mm, and a thickness of 0.2 mm with inorganic fiber felt or coating with ceramics, 5 g of sodium was placed in the second container. Fill and store in air at 350°C for 1500 hours.
Table 2 shows the results of holding the container for 000 hours and 2000 hours, removing the container contents after cooling, and observing the corroded surface of the container.
It was shown to. Note that the evaluations of ×, ○, and ◎ in the table were based on the same criteria as in Table 1.

表2 鳴愼■)内敢省謂I% (作用) 以上のように構成されたものは、第1の発明では単電池
(1)の負極活物質であるナトリウム、正極活物質であ
る硫黄あるいはそれらの化合物のいずれが漏洩した場合
でも、金属中のNiかナトリウムに対して優れた耐蝕性
を発揮し、また、Crか硫黄に対して優れた耐蝕性を発
揮することとなり容器本体(2)か腐蝕されて孔かあく
ことかなく、外部へ活物質か洩れることを確実に防止で
きることとなる。また、第2の発明では容器本体(2)
の−表面に覆われたNiを主成分とする金属かナトリウ
ムに対する耐蝕性を発揮し、また、Crを含む金属から
なる有底筒体が硫黄に対する耐蝕性を発揮することとな
る。第3の発明では容器本体(2)の−表面に覆われた
Crを主成分とする金属か硫黄に対する耐蝕性を発揮し
、また、Niを含む金属からなる有底筒体がナトリウム
に対する耐蝕性を発揮することとなる。また、第4、第
5および第6の発明では単電池(1)から洩れた負極活
物質であるナトリウムあるいはナトリウム化合物がシリ
カを含む保護部材(5)に吸収され、そこてシリカと反
応して活性の低いNaSiOxとされるとともに前記保
護部材(5)が正極活物質である硫黄あるいは硫黄化合
物に対しても優れた耐蝕性を発揮することとなり、いず
れの活物質に対する耐蝕性も更に向上することとなる。
Table 2 明愼■) Inner wisdom so-called I% (Function) In the first invention, in the first invention, sodium is the negative electrode active material of the unit cell (1), sulfur is the positive electrode active material, or Even if any of these compounds leaks, it will exhibit excellent corrosion resistance against Ni or sodium in the metal, as well as against Cr or sulfur, resulting in the container body (2) This means that leakage of the active material to the outside can be reliably prevented without forming holes due to corrosion. Moreover, in the second invention, the container body (2)
The Ni-based metal covered on the surface exhibits corrosion resistance against sodium, and the bottomed cylinder made of a metal containing Cr exhibits corrosion resistance against sulfur. In the third invention, the metal mainly composed of Cr covered on the surface of the container body (2) exhibits corrosion resistance against sulfur, and the bottomed cylinder made of a metal containing Ni exhibits corrosion resistance against sodium. This will demonstrate the following. Further, in the fourth, fifth, and sixth inventions, sodium or a sodium compound that is a negative electrode active material leaked from the unit cell (1) is absorbed into the protective member (5) containing silica, and reacts with the silica there. In addition to being NaSiOx with low activity, the protective member (5) also exhibits excellent corrosion resistance against sulfur or sulfur compounds that are positive electrode active materials, and the corrosion resistance against any of the active materials is further improved. becomes.

なお、前記保護部材(5)はシリカ含有量が80重量%
以下であって不純物としてCaO、MgO、K2O、N
a2O等のアルカリおよびアルカリ土類金属酸化物の合
計量を15重量%以上含むシリカ含有無機繊維とした場
合はナトリウムと反応しゃすくなり活性の低いナトリウ
ム化合物を生成するため好ましく、また前記シリカ含有
無機繊維はフェルト状、ペーパ状、バルク状、ブロック
状等のいずれにも形成することができる。また、以上の
第1〜第6の発明に係る保護容器において、容器本体(
2)の外表面にマイカ層(6)か被覆形成されている場
合には、マイカ層(6)によって各保護容器間および保
護容器と収納ケース間の電気的に絶縁が確実に保証され
ることとなる。
Note that the protective member (5) has a silica content of 80% by weight.
The following impurities include CaO, MgO, K2O, N
It is preferable to use silica-containing inorganic fibers containing 15% by weight or more of alkali and alkaline earth metal oxides in total, such as a2O, because they tend to react with sodium and produce sodium compounds with low activity. The fibers can be formed into felt, paper, bulk, block, etc. shapes. Further, in the protective containers according to the first to sixth inventions described above, the container body (
If the outer surface of 2) is coated with a mica layer (6), the mica layer (6) ensures electrical insulation between each protective container and between the protective container and the storage case. becomes.

なお、このように構成された保護容器内にナトリウム−
硫黄電池の単電池を収納して350″Cて1000時間
運転した結果、活物質洩れによる短絡・地絡故障の発生
はなく本発明の優れた効果が確認てきた。
It should be noted that sodium-
As a result of storing a sulfur battery cell and operating it at 350''C for 1000 hours, there were no short circuits or ground faults due to active material leakage, confirming the excellent effects of the present invention.

(発明の効果) 以上の説明からも明らかなように、本発明においては、
ナトリウム−硫黄電池の活物質であるナトリウム、硫黄
あるいはそれらの化合物のいずれに対しても優れた耐蝕
性を発揮して漏洩による短絡事故等を確実に防止するこ
とができるものであり、また、容器本体を薄肉化しても
十分な機械的強度を維持できてコストの低廉化および電
池の小型化を図ることができるものである。
(Effect of the invention) As is clear from the above explanation, in the present invention,
It exhibits excellent corrosion resistance against sodium, sulfur, or their compounds, which are the active materials of sodium-sulfur batteries, and can reliably prevent short circuit accidents caused by leakage. Even if the main body is made thinner, sufficient mechanical strength can be maintained, and the cost can be reduced and the battery can be made smaller.

よって、本発明は従来の問題点を一掃したナトリウム−
硫黄電池の保護容器として、産業の発展に寄与するとこ
ろは極めて大である。
Therefore, the present invention has solved the problems of the conventional sodium-
As a protective container for sulfur batteries, it can greatly contribute to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の発明の実施例を示す断面図、第2図は第
2の発明の1実施例を示す断面図、第3図は第2の発明
の他の実施例を示す断面図、第4図は第3の発明の実施
例を示す断面図、第5図は第4の発明の実施例を示す断
面図、第6図は第5の発明の実施例を示す断面図、第7
図は第6の発明の実施例を示す断面図、第8図、第9図
、第1O図、第11図はいずれも外表面にマイカ層を被
覆した別の実施例を示す要部の拡大断面図である(1)
:単電池、(2):容器本体、(4):メッキ層、(4
a) :筒体、(5)・保護部材、(6)・マイカ層。 特許出願人  日本碍子株式会社 代  理  人   名  嶋  明  部間    
      綿  貫  達  難問        
  山  本  文  夫第1図 第2図 第3図 第4図 第5図 第6図 第7図 第8図
FIG. 1 is a sectional view showing an embodiment of the first invention, FIG. 2 is a sectional view showing one embodiment of the second invention, and FIG. 3 is a sectional view showing another embodiment of the second invention. , FIG. 4 is a sectional view showing an embodiment of the third invention, FIG. 5 is a sectional view showing an embodiment of the fourth invention, FIG. 6 is a sectional view showing an embodiment of the fifth invention, 7
The figure is a sectional view showing an embodiment of the sixth invention, and Figs. 8, 9, 1O, and 11 are enlarged views of main parts showing other embodiments in which the outer surface is coated with a mica layer. This is a cross-sectional view (1)
: Single battery, (2): Container body, (4): Plating layer, (4
a): Cylindrical body, (5)・protective member, (6)・mica layer. Patent applicant: Nippon Insulator Co., Ltd. Representative name: Akira Shima Buma
Watanuki Tatsu Difficult Questions
Fumi Yamamoto Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 1、単電池を収納する容器本体を、Feを主成分とし少
なくともNi、Crを含む金属からなる有底筒体とした
ことを特徴とするナトリウム−硫黄電池の保護容器。 2、単電池を収納する容器本体を、Feを主成分とし少
なくともCrを含む金属からなる有底筒体としてその少
なくとも一表面をNiを主成分とする金属で覆ったこと
を特徴とするナトリウム−硫黄電池の保護容器。 3、単電池を収納する容器本体を、Feを主成分とし少
なくともNiを含む金属からなる有底筒体としてその少
なくとも一表面をCrを主成分とする金属で覆ったこと
を特徴とするナトリウム−硫黄電池の保護容器。 4、単電池を収納する容器本体を、Feを主成分とし少
なくともCrを含む金属からなる有底筒体としてその内
側にはシリカを含む無機材よりなる保護部材を添装した
ことを特徴とするナトリウム−硫黄電池の保護容器。 5、単電池を収納する容器本体を、Feを主成分とし少
なくともCrを含む金属からなる有底筒体としてその少
なくとも一表面をNiを主成分とする金属で覆うととも
に内側にはシリカを含む無機材よりなる保護部材を添装
したことを特徴とするナトリウム−硫黄電池の保護容器
。 6、単電池を収納する容器本体を、Feを主成分とし少
なくともNiを含む金属からなる有底筒体としてその少
なくとも一表面をCrを主成分とする金属で覆うととも
に内側にはシリカを含む無機材よりなる保護部材を添装
したことを特徴とするナトリウム−硫黄電池の保護容器
。 7、容器本体の外表面にマイカ層を被覆した請求項1、
2、3、4、5または6に記載のナトリウム−硫黄電池
の保護容器。
[Scope of Claims] 1. A protective container for a sodium-sulfur battery, characterized in that the container body for accommodating a cell is a bottomed cylindrical body made of a metal containing Fe as a main component and at least Ni and Cr. 2. A sodium battery containing a container body in which a cell is housed is a cylinder with a bottom made of a metal containing Fe as a main component and at least Cr, and at least one surface thereof is covered with a metal containing Ni as a main component. Protective container for sulfur batteries. 3. A sodium battery containing a container body for storing a cell, which is a cylinder with a bottom made of a metal containing Fe as a main component and at least Ni, and at least one surface thereof is covered with a metal containing Cr as a main component. Protective container for sulfur batteries. 4. The container body for storing the cell is a cylinder with a bottom made of a metal containing Fe as a main component and at least Cr, and a protective member made of an inorganic material containing silica is attached inside the container body. Protective container for sodium-sulfur batteries. 5. The container body for storing the cell is a cylinder with a bottom made of a metal mainly composed of Fe and at least Cr, and at least one surface thereof is covered with a metal mainly composed of Ni, and the inside is made of a metal containing silica. A protective container for a sodium-sulfur battery, characterized in that it is equipped with a protective member made of equipment. 6. The container body for storing the cell is a cylinder with a bottom made of a metal mainly composed of Fe and at least Ni, and at least one surface thereof is covered with a metal mainly composed of Cr, and the inside is made of a metal containing silica. A protective container for a sodium-sulfur battery, characterized in that it is equipped with a protective member made of equipment. 7. Claim 1, wherein the outer surface of the container body is coated with a mica layer.
7. A protective container for a sodium-sulfur battery according to 2, 3, 4, 5 or 6.
JP2327084A 1990-11-28 1990-11-28 Protective container for sodium-sulfur battery Pending JPH04206147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2327084A JPH04206147A (en) 1990-11-28 1990-11-28 Protective container for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2327084A JPH04206147A (en) 1990-11-28 1990-11-28 Protective container for sodium-sulfur battery

Publications (1)

Publication Number Publication Date
JPH04206147A true JPH04206147A (en) 1992-07-28

Family

ID=18195111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2327084A Pending JPH04206147A (en) 1990-11-28 1990-11-28 Protective container for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH04206147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228034A (en) * 2010-04-16 2011-11-10 Japan Vilene Co Ltd Lithium ion secondary battery
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228034A (en) * 2010-04-16 2011-11-10 Japan Vilene Co Ltd Lithium ion secondary battery
KR20130098236A (en) * 2012-02-27 2013-09-04 에스케이이노베이션 주식회사 Na based secondary battery

Similar Documents

Publication Publication Date Title
RU2298264C2 (en) Bipolar electrochemical battery of stacked flat galvanic cells
US8691419B2 (en) Cylindrical secondary battery
CN108028419A (en) Longitudinal restraint for energy storage device
US5780180A (en) Sealed alkaline storage battery
BRPI0610356A2 (en) alkaline cell in tablet form
CA2038489A1 (en) Planar sodium-sulfur electrical storage cell
JP7144629B2 (en) Single cell case with thermal insulation layer
EP0561962A4 (en) Bipolar battery
WO2019107560A1 (en) Partition member and battery pack
JP2004214175A (en) Secondary battery and its manufacturing method
KR102137697B1 (en) Battery Cell Comprising Protection Circuit Module Assembly Having Lead Plate
EP0192370A2 (en) Sodium-sulphur storage battery
CN113540677A (en) Battery module
CA1170308A (en) Electrochemical cell having cylindrical electrode elements
JP2022537471A (en) Electrode assembly and battery
JPH04206147A (en) Protective container for sodium-sulfur battery
WO2018182228A1 (en) Pouch type secondary battery having structure for changing bidirectional cell into unidirectional cell
KR20200034221A (en) Secondary battery and secondary battery module containing the same
CN214477633U (en) Sealed heat management structure and lithium ion battery cell
EP3758133B1 (en) Pouch for secondary battery and pouch type secondary battery
KR100553741B1 (en) Battery case
Battles et al. Materials requirements for high performance secondary batteries
JP4877678B2 (en) Flat non-aqueous electrolyte secondary battery
US3082285A (en) Leak resistant dry cell
WO2023163183A1 (en) Power storage device and method for producing power storage device