JPH04205804A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH04205804A
JPH04205804A JP33395390A JP33395390A JPH04205804A JP H04205804 A JPH04205804 A JP H04205804A JP 33395390 A JP33395390 A JP 33395390A JP 33395390 A JP33395390 A JP 33395390A JP H04205804 A JPH04205804 A JP H04205804A
Authority
JP
Japan
Prior art keywords
magnetic
film
gap
flux density
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33395390A
Other languages
Japanese (ja)
Inventor
Akira Kimura
亮 木村
Akihiro Ashida
芦田 晶弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP33395390A priority Critical patent/JPH04205804A/en
Publication of JPH04205804A publication Critical patent/JPH04205804A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a reaction layer and an air bubble within a mold glass by welding one magnetic core half body where a gap member which is thicker than a gap member of the other magnetic core half body to the other magnetic core half body which has a gap member is provided on a magnetic gap formation surface, through the gap member. CONSTITUTION:A gap member consisting of SiO2 film 4 and a glass film for adhesion 5 exists at a boundary part between a soft magnetic film 1 of a high-saturation magnetic flux density and a mold glass 7 but the SiO2 film 4 not only has a function as a gap member but also prevents mutual diffusion between the mold glass 7 and a soft magnetic film 1 with a high-saturation magnetic flux density. Then, when the gap length becomes small, the SiO2 film 4 at a boundary part between the mold glass 7 and the soft magnetic film 1 with high-saturation magnetic flux density also becomes thin, thus enabling reaction to occur easily. Then, by forming the SiO2 film 4 at a side of a magnetic core half body where the soft magnetic film 1 with high-saturation magnetic flux is provided thickly, mutual diffusion of the soft magnetic film 1 with high saturation magnetic flux density and the mold glass 7 can be suppressed, thus eliminating a reaction layer and an air bubble which are generated within the mold glass 7.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビデオテープレコーダ(VTR)、ディジタル
オーディオチーブレコーダ(DAT)、またはフロッピ
ィディスクドライブ(FDD)等に用いられる高保磁力
の磁気記録媒体に高密度の情報を記録再生するのに適し
た磁気ヘッドに関すも 従来の技術 高密度磁気記録再生のためへ 磁気記録媒体はその保磁
力を大きくし また 磁気ヘッドの方はその飽和磁束密
度を高くすればよいことが一般的に知られていも 現在磁気ヘッド材料として主流になっているフェライト
材料は その飽和磁束密度が5000Gauss程度で
あり、 100000以上の高保磁力を示すメタルテー
プ等に使用すると飽和がおこり、記録が十分に行われな
(−そこでフェライト材料よりも飽和磁束密度の高いセ
ンダスト合金やCo系アモルファス膜等を用いた磁気ヘ
ッドが実用化されていも 従来の磁気ヘッドの摺動面構造として(主 第5図に示
すように磁気コア半体11、12が酸化物磁性材粁 例
えばMn−Znフェライトからなり、その磁気コア半体
11、12の磁気ギャップ(以下、単にギャップという
)近傍及びトラックの側面に軟磁性膜13が形成されて
いも フェライトからなる磁気コア半体11、12と軟
磁性膜13との境界面はギャップ面と平行となっており
、ギャップ部分及び軟磁性膜13とトラック幅規制溝1
4中に充填されたモールドガラス15との境界部分が非
磁性酸化物材粧 たとえば5ins層16および接着用
ガラス層17などで形成されていも この型のヘッドで
は 製造工程を簡略化するため圏 ギャップ形成とトラ
ック幅規制溝へのモールド工程を、巻線溝及びガラス設
置用溝(図中省略)から摺動面側にガラスを流すことに
よって同時に行う方法をとっていも 発明が解決しようとする課題 しかしながら上記の構成でζ友 軟磁性膜とモールドガ
ラスの境界部分に非常に薄い厚さの(光学的ギャップ長
の半分)Si02層及び接着用ガラス層しか形成できな
いためにモールドガラスと軟磁性膜との境界で反応が生
じるといった問題点かあっ九 また磁気ヘッドを製造する場合、ギャップ形成はガラス
融着という方法が一般的な手法であム この場合500
℃程度以上の熱処理が必要となム また工程を簡略にす
るために6表 ギャップ形成時に巻線溝からガラスを流
し込へ ギャップ形成とトラック幅規制溝のモールドを
同時に行う方法が最適であム このような製造方法によ
って磁気ヘッドを構成した場合、軟磁性膜とモールドガ
ラスの境界には非常に薄いSiO2層と接着ガラス層が
存在しているだけであム第1表にCoを主成分とする軟
磁性膜とギャップ部材として従来から用いられてきたS
iO2とガラスを用いて、磁気ヘッドを構成し ギャッ
プ長を変化させた時のモールドガラスの中に発生する反
応層及び気泡について観察した結果を示す。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to high-density magnetic recording media with high coercive force used in video tape recorders (VTRs), digital audio recorders (DATs), floppy disk drives (FDD), etc. Conventional technology regarding magnetic heads suitable for recording and reproducing information of Although it is generally known that the ferrite material is good, the saturation magnetic flux density of the ferrite material currently mainstream as a magnetic head material is about 5000 Gauss, and saturation occurs when used in metal tapes etc. that exhibit a high coercive force of 100000 Gauss or more. However, even though magnetic heads using materials such as Sendust alloy and Co-based amorphous films, which have a higher saturation magnetic flux density than ferrite materials, have been put into practical use, the sliding surface structure of conventional magnetic heads (mainly As shown in FIG. 5, the magnetic core halves 11 and 12 are made of an oxide magnetic material such as Mn-Zn ferrite, and the magnetic core halves 11 and 12 are made of a magnetic gap (hereinafter simply referred to as a gap) and the track. Even if the soft magnetic film 13 is formed on the side surface, the boundary surface between the magnetic core halves 11 and 12 made of ferrite and the soft magnetic film 13 is parallel to the gap surface, and the gap portion and the soft magnetic film 13 are connected to the track width. Regulation groove 1
Even if the boundary with the molded glass 15 filled in the head 4 is formed of a non-magnetic oxide material, such as a 5-ins layer 16 and an adhesive glass layer 17, this type of head is designed to simplify the manufacturing process. The problem that the invention attempts to solve even if a method is adopted in which the forming and molding processes for the track width regulating groove are performed simultaneously by flowing the glass from the winding groove and the glass installation groove (not shown in the figure) to the sliding surface side. However, with the above configuration, only a very thin Si02 layer (half the optical gap length) and an adhesive glass layer can be formed at the boundary between the soft magnetic film and the molded glass. In addition, when manufacturing magnetic heads, glass fusing is a common method for forming gaps.
Also, in order to simplify the process, it is best to pour the glass from the winding groove when forming the gap. When a magnetic head is constructed using this manufacturing method, only a very thin SiO2 layer and an adhesive glass layer are present at the boundary between the soft magnetic film and the molded glass. S, which has traditionally been used as a soft magnetic film and gap member,
The results of observing the reaction layer and bubbles generated in the molded glass when a magnetic head is constructed using iO2 and glass and the gap length is varied are shown.

第1表 注)表中のガラスはモールドガラスであも磁気ヘッドの
構造として沫 磁気コア半体lL12のギャップ形成面
に軟磁性膜13を設(す、その軟磁性膜13の上に5i
ns層工6、そのSiO2層16の上に厚さ150人の
接着用ガラス層17を設けた構成とした 表中の○はモールドガラス中に周囲のガラスとは異なっ
た層または金属が析出した層(以下、単に反応層という
)、または気泡がないことを示L ×は少なくともどち
らかの現象があることを示も 従来のCoを主成分とす
る軟磁性膜を用いた場合にC友  光学的に測定したギ
ャップ長が小さくなるにつれて、反応層または気泡の発
生が起こる確率が高くなも ガラスBのように適切なも
のを選択すればギャップ長が0.25μmのものまでは
反応及び気泡の発生を防ぐことは可能である力交 それ
以下のギャップ長となると反応層がモールドガラスと軟
磁性膜との境界部分に観察されも また気泡の発生も確
認される。またFeを主成分とする軟磁性膜とモールド
されたガラスとの反応層及び気泡について、Coを主成
分とする軟磁性膜と同じ条件で検討し九 ギャップ長が
0、30μm以下になると反応層及び気泡の発生がみら
れ ギャップ長が小さくなるにつれてその傾向は強くな
ム以上のように軟磁性膜とギャップ部材を両側の磁気コ
ア半体のギャップ面に均等に形成した磁気ヘッド構造で
は ギヤツブ瓜 モールドガラ人 軟磁性膜などの条件
を少し変化させるだけでモールドガラス中に反応層及び
気泡の発生を生じる問題点を抱えていも これらの反応
層が生じるとモールドガラス部分の偏摩耗がおこり電磁
変換特性に悪影響を及ぼすばかりでなく、磁気ヘッド強
度の低下をも引き起こ机 またモールドガラス中に気泡
が存在すると、磁気記録媒体の表面を傷つけたりする課
題を有してい九本発明は上記の課題を解決し モールド
ガラス中に反応層及び気泡のない磁気ヘッドの提供を目
的とすム 課題を解決するための手段 上記の目的を達成するために本発明の磁気ヘッド1よ 
磁気ギャップ形成面に高飽和磁束密度の軟磁性膜を設も
す、その軟磁性膜の上に対抗して突き合わせる他方の磁
気コア半体のギャップ部材より厚いギャップ部材を設け
た一方の磁気コア半体と、磁気ギャップ形成面にギャッ
プ部材を設けた他方の磁気コア半体とを前記ギャップ部
材を介して溶着した構成とす4 作用 上記構成による作用は次のようになも 高飽和磁束密度の軟磁性膜とモールドガラスとの境界部
分にl;LSiO*III!と接着用ガラス膜からなる
ギャップ部材が存在している力(特にS i Ot !
lIi表  ギャップ部材としての機能のほかにモール
ドガラスと高飽和磁束密度の軟磁性膜との相互拡散を防
止する役目も有していもギャップ長が小さくなると、当
然このモールドガラスと高飽和磁束密度の軟磁性膜との
境界部分の5ins膜も薄くなり、反応が起きやすくな
ム そこで5ide膜を高飽和磁束密度の軟磁性膜を設けた
磁気コア半体の側に厚く形成することによって、高飽和
磁束密度の軟磁性膜とモールドガラスの相互拡散をおさ
え モールドガラス中に発生する反応層及び気泡をなく
すことができも またギャップ部材を上記のような構成にすることで、モ
ールドガラスと高飽和磁束密度の軟磁性膜との反応を抑
えることができるので、ギャップ形成とトラック幅規制
溝へのガラスモールドを同時に行なえも 実施例 以下本発明の一実施例の磁気ヘッドについて図面を参照
しなから説明すも 実施例1 まず磁気ヘッドの構造に関しての実施例を示す。
Note in Table 1: Even though the glass in the table is molded glass, the structure of the magnetic head requires a soft magnetic film 13 on the gap forming surface of the magnetic core half lL12.
The ○ in the table indicates that a layer or metal different from the surrounding glass was deposited in the molded glass. (hereinafter simply referred to as the reaction layer), or bubbles. L × indicates the presence of at least one of the following phenomena. The smaller the gap length measured, the higher the probability that a reaction layer or bubbles will occur; It is possible to prevent the occurrence of force exchange.If the gap length is shorter than this, a reaction layer will be observed at the boundary between the mold glass and the soft magnetic film, and the generation of bubbles will also be observed. In addition, the reaction layer and bubbles between the Fe-based soft magnetic film and the molded glass were examined under the same conditions as the Co-based soft magnetic film. This tendency becomes stronger as the gap length becomes smaller.In a magnetic head structure in which the soft magnetic film and the gap member are evenly formed on the gap surfaces of the magnetic core halves on both sides, as described above, the gear tube. Mold glass person Although there is a problem that a reaction layer and bubbles are generated in the mold glass by just changing the conditions of the soft magnetic film etc., when these reaction layers are formed, uneven wear of the mold glass part occurs and electromagnetic conversion. This not only adversely affects the characteristics but also causes a decrease in the strength of the magnetic head.Furthermore, the presence of air bubbles in the molded glass has the problem of damaging the surface of the magnetic recording medium. In order to achieve the above object, a magnetic head 1 of the present invention is provided.
One magnetic core has a soft magnetic film with a high saturation magnetic flux density on its magnetic gap forming surface, and a gap member that is thicker than the gap member of the other magnetic core half that is opposed and abutted on the soft magnetic film. The half body and the other magnetic core half body having a gap member provided on the magnetic gap forming surface are welded together via the gap member 4. Effect The effect of the above structure is as follows: LSiO*III! at the boundary between the soft magnetic film and the molded glass. and the force of the gap member consisting of the adhesive glass film (especially S i Ot !
Table lIi In addition to its function as a gap member, it also has the role of preventing mutual diffusion between the molded glass and the soft magnetic film with high saturation magnetic flux density. However, as the gap length becomes smaller, it is natural that the molded glass and the soft magnetic film with high saturation magnetic flux density The 5ins film at the boundary with the soft magnetic film also becomes thinner, and reactions are more likely to occur. Therefore, by forming the 5ide film thickly on the side of the magnetic core half where the soft magnetic film with high saturation magnetic flux density is provided, it is possible to achieve high saturation. By suppressing the mutual diffusion of magnetic flux density between the soft magnetic film and the molded glass, it is possible to eliminate the reaction layer and bubbles generated in the molded glass.In addition, by configuring the gap member as described above, the high saturation magnetic flux between the molded glass and the molded glass can be suppressed. Since the reaction with the dense soft magnetic film can be suppressed, gap formation and glass molding into the track width regulating groove can be performed simultaneously. SUMO Example 1 First, an example regarding the structure of a magnetic head will be described.

第1図は本発明の磁気ヘッドの一実施例であも 第1図
(a)は本発明の磁気ヘッドの摺動面側からみた上面図
であa 本実施例では高飽和磁束密度の軟磁性膜1にC
oNbZ r (200人)とその窒化物CoNbZ 
rN (200人)とが交互に100層ずつ積層された
いわゆる超構造窒化合金膜を用いた 本実施例では磁気コア半体2.3は酸化物磁性材料例え
ばMn−Znフェライトからなり、一方の磁気コア半体
2のギャップ近傍及びトラックの側面に高飽和磁束密度
の軟磁性膜lが約4μm形成され その上に順に5iO
a膜4を1500人、接着用ガラス膜5が300人はど
形成されていも な耘 トラックの側面上ではこれらの
膜厚は約30%程度少なくなっているものと考えられも
 そして対向する他方の磁気コア半体3のギャップ近傍
及びトラックの側面にはSiO2膜4が200人はど形
成されていもトラック幅規制溝6にはモールドガラス7
が充填されて磁気ヘッドを構成していも 第1図(b)は本発明の磁気ヘッドの斜視図であも 本
実施例ではトラック幅規制溝6が摺動面側からバック面
側まで形成され この部分にζよ モールドガラス7が
充填されている。
Figure 1 shows an embodiment of the magnetic head of the present invention. Figure 1 (a) is a top view of the magnetic head of the present invention seen from the sliding surface side. C on magnetic film 1
oNbZ r (200 people) and its nitride CoNbZ
In this embodiment, a so-called superstructure nitride alloy film in which 100 layers of rN (200 layers) are alternately laminated is used, and the magnetic core halves 2.3 are made of an oxide magnetic material such as Mn-Zn ferrite; A soft magnetic film l with a high saturation magnetic flux density of about 4 μm is formed near the gap of the magnetic core half 2 and on the side of the track, and 5iO
Even if the a film 4 is formed by 1,500 people and the adhesive glass film 5 is formed by 300 people, the thickness of these films on the side of the truck is considered to be about 30% less. Although the SiO2 film 4 is formed near the gap between the magnetic core halves 3 and on the sides of the track, the molded glass 7 is not formed in the track width regulating groove 6.
Although FIG. 1(b) is a perspective view of the magnetic head of the present invention, the track width regulating groove 6 is formed from the sliding surface side to the back surface side. This part is filled with molded glass 7.

本実施例で(上 高飽和磁束密度の軟磁性膜1にCoN
bZ r  (200人)とその窒化物C。
In this example, (above) the soft magnetic film 1 with high saturation magnetic flux density is coated with CoN.
bZ r (200 people) and its nitride C.

NbZrN (200人)とが交互に100層ずつ積層
された いわゆる超構造窒化合金膜を用いた例を示した
力丈 本発明ではこの材料に限定されず、 500℃以
上の熱処理後も高飽和磁束密度(高Bs)で軟磁気特性
を示すものであれば 同様の効果が得られも このよう
な材料としては 平均組成が一般式TaMbNcで表さ
h  TMで表される材料とその窒化物(TMN)とが
積層された構造になっている(以下、TM/TMNと表
す)いわゆる超構造組成変調窒化合金膜が挙げられる。
The strength is shown as an example using a so-called superstructured nitride alloy film in which 100 layers of NbZrN (200 layers) are alternately laminated.The present invention is not limited to this material, and has high saturation magnetic flux even after heat treatment at 500°C or higher. A similar effect can be obtained if the material exhibits soft magnetic properties at high density (high Bs), but such materials include materials whose average composition is expressed by the general formula TaMbNc h TM and its nitride (TMN ) (hereinafter referred to as TM/TMN) is a so-called superstructural composition-modulated nitride alloy film.

ここで組成に関しては 所定の軟磁気特性、Bsを確保
するた&TにCoまたはFeを用t\ その量(一般式
のa)を原子比で、COの場合は80〜95%とり、F
eの場合は70〜95%とすLMはTにCoを用いた場
合にはZr、、Nb、 Ta、 Hf、 Ti、MOl
Wlの中の1種以上の元素とLTにFeを用いた場合に
はZr、  Nb、  Ta、  Hf、  Ti、 
 Mo、Cr、W、Mn、Re、Ruの中の1種以上の
元素から構成されるものとすLMの量(一般式のb)は
原子比で、TにCOを用いた場合には5〜20%とし 
TにFeを用いた場合には5〜30%とすも また窒素量(一般式のC)は1.5〜20%とすム 上記に示した元素の組合せで様々な膜を構成することが
できる力丈 そのなかでも特にC,oを主成分とする材
料でζ’c  CoNbZr/CoNbZrN5 Co
TaZr/CoTaZrN、CoNbZrTa/CoN
bZrTaN、Feを主成分とする材料で番よ FeN
b/FeNbN、FeZr/FeZrN、FeTi/F
eTiN、FeTi/FeTiN、FeNbZr/Fe
NbZrN、FeNbTa/FeNbTaN、FeZ 
rTa/F eZ rTaNが望ましl、%な耘 磁気
ヘッドの構造としては第1図に示したもの以外にも種々
あも その−例を第2図、第3図に示も 第2図の磁気ヘッドGEL  高飽和磁束密度の軟磁性
膜1が一方の磁気コア半体のギャップ近傍のみに形成さ
れ トラックの側面側には存在しない形となっており、
その他の構造は第1図の磁気ヘッドと同じであム また第3図の磁気ヘッドは トラック幅規制溝6がフロ
ントギャップ部分のみに形成されており、その部分には
モールドガラス7が充填されていも その他の構造は第
1図の磁気ヘッドと同じであム 第4図は本発明の磁気ヘッドのギャップ近傍の拡大図で
あり、高飽和磁束密度の軟磁性膜を設けない磁気コア半
体3のギャップ面の上には厚さ200人の5102膜4
を設(す、CoNbZr/CoNbZrNまたはFeN
bZr/FeNbZ rNの高飽和磁束密度の軟磁性膜
1を設た磁気コア半体2のギャップ面の上にSiO2膜
4を800人〜2300人の範囲で変化させて構成す&
SiO2膜4の上に(よ さらに厚さ300人の接着用
ガラス膜5を形成しなまたトラック幅規制溝6にはモー
ルドガラス7が充填されていも ここで高飽和磁束密度の軟磁性膜1の上に形成された5
ide膜の厚さを800人〜2300人まで変化させた
啄 モールドガラス7中に発生する反応層及び気泡の状
態を観察しへ その結果を第2表に示す。
Regarding the composition, Co or Fe is used for &T in order to ensure the prescribed soft magnetic properties and Bs.
In the case of e, it is 70 to 95% and LM is Zr, Nb, Ta, Hf, Ti, MOl when Co is used for T.
When one or more elements in Wl and Fe are used in LT, Zr, Nb, Ta, Hf, Ti,
The amount of LM (b in the general formula) is an atomic ratio, and when CO is used for T, it is composed of one or more elements among Mo, Cr, W, Mn, Re, and Ru. ~20%
When Fe is used as T, the amount of nitrogen (C in the general formula) is 1.5 to 20%.Various films can be constructed using the combinations of the elements shown above. Among them, materials whose main components are C and o are ζ'c CoNbZr/CoNbZrN5 Co
TaZr/CoTaZrN, CoNbZrTa/CoN
bZrTaN, a material whose main component is FeN
b/FeNbN, FeZr/FeZrN, FeTi/F
eTiN, FeTi/FeTiN, FeNbZr/Fe
NbZrN, FeNbTa/FeNbTaN, FeZ
rTa/FeZ rTaN is desirable.There are various magnetic head structures other than those shown in Fig. 1. Examples of these are shown in Fig. 2 and Fig. 3. Magnetic Head GEL A soft magnetic film 1 with a high saturation magnetic flux density is formed only near the gap between one half of the magnetic core, and is not present on the side surface of the track.
The other structure is the same as that of the magnetic head shown in Fig. 1. Also, the magnetic head shown in Fig. 3 has a track width regulating groove 6 formed only in the front gap part, and that part is filled with molded glass 7. The other structure is the same as that of the magnetic head shown in Fig. 1. Fig. 4 is an enlarged view of the vicinity of the gap of the magnetic head of the present invention, showing the magnetic core half 3 without a soft magnetic film with high saturation magnetic flux density. 5102 film 4 with a thickness of 200 on the gap surface of
CoNbZr/CoNbZrN or FeN
A SiO2 film 4 is formed on the gap surface of a magnetic core half 2 provided with a bZr/FeNbZrN soft magnetic film 1 having a high saturation magnetic flux density, varying in the range of 800 to 2300.
Even if the bonding glass film 5 with a thickness of 300 mm is formed on the SiO2 film 4, and the track width regulating groove 6 is filled with mold glass 7, the soft magnetic film 1 with a high saturation magnetic flux density 5 formed on top of
The thickness of the IDE film was varied from 800 to 2,300.The conditions of the reaction layer and bubbles generated in the mold glass 7 were observed.The results are shown in Table 2.

第2表 注)表中のガラスはモールドガラスであム同表より高飽
和磁束密度の軟磁性膜1にC。
Table 2 Note: The glass in the table is molded glass. From the same table, C is applied to the soft magnetic film 1 with a high saturation magnetic flux density.

NbZ r/CoNbZ rNを用いた場A  S 1
OR膜の厚さが200oÅ以上になると検討に用いた4
種類のモールドガラスのすべてにおいて、モールドガラ
ス中に反応層及び気泡の発生は観察されなかっな また モールドガラスBのような適切なガラスを選べば
S i O2膜を1000人としてL反応層及び気泡は
観察されな(−シたがってこのときの両側コア半体のギ
ャップ部材の全体の膜厚は1500人となり、光学的な
ギャップ長が0.15μmのものを得ることができ九次
に高飽和磁束密度の軟磁性膜lにFeNbZr/FeN
bZrNを用いて同様な検討をしたとこへ 8102膜
の厚み力t  2000Å以上となると4種類のモール
ドガラスのすべてにおいて反応層及び気泡の発生は観察
されなかった 上記のCOを主成分とした高飽和磁束密
度の軟磁性膜の場合と同機 モールドガラスBのような
適切なものを選べ(isiO*膜の厚みを1200人程
度8することができ、光学的なギャップ長が0.17μ
mのものを得ることができた 以上のように高飽和磁束密度の軟磁性膜を設けた一方の
磁気コア半体のギャップ面に形成する5iO=膜と接着
用ガラスからなるギャップ部材の厚み力丈 対向して突
き合わされる他方の磁気コア半体のギャップ面に形成さ
れたSiO2膜からなるギャップ部材の厚みより大きく
なるように構成することによって、モールドガラス中に
反応層及び気泡のない磁気ヘッドが得られた 発明の効果 本発明による磁気ヘッドによれζヱ 次の効果が得られ
も (1)モールドガラス中に反応層及び気泡がないた数 
偏摩耗がなく、チップ強度が高く、磁気記録媒体の表面
を傷っけたりしない優れた効果かえられも (2)従来より高飽和磁束密度の磁気ヘッドが得られ 
VTR1DAT、FDD用磁気ヘッドとして高保磁力の
テープに使用できも(3)0.20μm以下の狭ギャッ
プ長の磁気ヘッドの実現が可能となり、また量産性に優
れ 工程が非常に簡単な磁気ヘッドを得ることができも
Field A S 1 using NbZ r/CoNbZ rN
4 used in the study when the thickness of the OR film is 200 Å or more.
In all types of molded glass, no reaction layer or bubbles were observed in the molded glass.Also, if a suitable glass such as mold glass B is selected, the L reaction layer and bubbles will be reduced even if the SiO2 film is 1000. (-Therefore, the total film thickness of the gap member of both core halves at this time is 1500 mm, and an optical gap length of 0.15 μm can be obtained, and a ninth-order high saturation magnetic flux can be obtained.) FeNbZr/FeN on the dense soft magnetic film l
When a similar study was conducted using bZrN, no reaction layer or bubbles were observed in all four types of molded glass when the thickness of the 8102 film was 2000 Å or more. Select an appropriate material such as molded glass B, which has the same magnetic flux density as a soft magnetic film (the thickness of the isiO* film can be reduced to about 1200, and the optical gap length is 0.17μ).
5iO formed on the gap surface of one half of the magnetic core provided with a soft magnetic film with a high saturation magnetic flux density = thickness force of the gap member consisting of the film and adhesive glass By configuring the length to be larger than the thickness of the gap member made of SiO2 film formed on the gap surface of the other magnetic core half that faces and butts together, the magnetic head is free of reaction layers and bubbles in the molded glass. The magnetic head according to the present invention has the following effects: (1) No reaction layer and no bubbles in the molded glass.
Excellent effects such as no uneven wear, high chip strength, and no damage to the surface of the magnetic recording medium (2) A magnetic head with a higher saturation magnetic flux density than before can be obtained.
VTR1DAT can be used as a magnetic head for FDD with high coercive force tape (3) It is possible to realize a magnetic head with a narrow gap length of 0.20 μm or less, and it is also possible to obtain a magnetic head that is excellent in mass production and has a very simple process. Even if you can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の磁気ヘッドの一実施例をヘッド
摺動面からみた上面図 第1図(b)は本発明の磁気ヘ
ッドの一実施例の斜視医第2図および第3図はそれぞれ
本発明の他の実施例の磁気ヘッドの斜視医 第4図は本
発明の磁気ヘッドの一実施例のギャップ近傍の拡大医第
5図は従来の磁気ヘッドをヘッド摺動面から見た上面図
であム ト・・高飽和磁束密度の軟磁性膜 2、3・・・磁気コ
ア半弧 4・・・SiO2膜(ギャップ部材)、 5・
・・接着用ガラス膜(ギャップ部材)。 代理人の氏名 弁理士 小鍜治 明 ほか2名l −本
書と零〇A紘宋15贋の軟iiそ1R黄z、 s −a
lk気フ7手体 4−  !;rat 瞠 【(#フデ*Tt)第2図
FIG. 1(a) is a top view of an embodiment of the magnetic head of the present invention viewed from the head sliding surface. FIG. 1(b) is a perspective view of an embodiment of the magnetic head of the present invention. 4 shows an enlarged view of the vicinity of the gap of one embodiment of the magnetic head of the present invention. FIG. 5 shows a conventional magnetic head seen from the head sliding surface. The top view shows: Soft magnetic film with high saturation magnetic flux density 2, 3... Magnetic core half-arc 4... SiO2 film (gap member), 5.
・Glass membrane for adhesion (gap member). Name of agent: Patent attorney Akira Okaji and 2 others l - This book and Zero A Kosong 15 Fake Soft II So1 R Huang Z, s - a
lkkifu 7 hands 4-! ;rat 瞠 [(#Fude*Tt)Figure 2

Claims (1)

【特許請求の範囲】 (1)磁気ギャップ形成面に高飽和磁束密度の軟磁性膜
を設置け、その軟磁性膜の上に対向して突き合わせる他
方の磁気コア半体のギャップ部材より厚いギャップ部材
を設けた一方の磁気コア半体と、磁気ギャップ形成面に
ギャップ部材を設けた他方の磁気コア半体とを前記ギャ
ップ部材を介して溶着したことを特徴とする磁気ヘッド
。 (2)高飽和磁束密度の軟磁性膜を設けない他方の磁気
コア半体のギャップ部材の厚みを200Å以上とし、高
飽和磁束密度の軟磁性膜を設けた一方の磁気コア半体の
ギャップ部材の厚みを200Åを超え2300Å以下と
したことを特徴とする請求項(1)記載の磁気ヘッド。 (3)高飽和磁束密度の軟磁性膜がCoaMbで表され
る材料とその窒化物とが交互に積層されるか、または膜
厚方向に窒素の組成が変調された構造になっていること
を特徴とする請求項1記載の磁気ヘッド。 ここで、MはZr、Nb、Ta、Hf、Ti、Mo、W
の中の1種以上の元素からなり、a、bは原子比を表し
次の式を満足するものとする。 0.80≦a≦0.95 0.05≦b≦0.20 a+b=1.0 (4)高飽和磁束密度の軟磁性膜がFeaMbで表され
る材料とその窒化物とが交互に積層されるか、または膜
厚方向に窒素の組成が変調された構造になっていること
を特徴とする請求項1記載の磁気ヘッド。 ここで、MはZr、Nb、Ta、Hf、Ti、Mo、C
r、W、Mn、Re、Ruの中の1種以上の元素からな
り、a、bは原子比を表し次の式を満足するものとする
。 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
[Claims] (1) A soft magnetic film with high saturation magnetic flux density is provided on the magnetic gap forming surface, and the gap is thicker than the gap member of the other magnetic core half that faces and abuts on top of the soft magnetic film. A magnetic head characterized in that one magnetic core half provided with a member and the other magnetic core half provided with a gap member on a magnetic gap forming surface are welded together via the gap member. (2) The thickness of the gap member of the other magnetic core half that is not provided with a soft magnetic film with a high saturation magnetic flux density is 200 Å or more, and the gap member of one magnetic core half that is provided with a soft magnetic film with a high saturation magnetic flux density. 2. The magnetic head according to claim 1, wherein the thickness of the magnetic head is greater than 200 Å and less than 2300 Å. (3) The soft magnetic film with high saturation magnetic flux density has a structure in which a material represented by CoaMb and its nitride are alternately laminated, or the nitrogen composition is modulated in the film thickness direction. A magnetic head according to claim 1. Here, M is Zr, Nb, Ta, Hf, Ti, Mo, W
It consists of one or more elements among the following, where a and b represent the atomic ratio and satisfy the following formula. 0.80≦a≦0.95 0.05≦b≦0.20 a+b=1.0 (4) The soft magnetic film with high saturation magnetic flux density is made of a material represented by FeaMb and its nitride layered alternately. 2. The magnetic head according to claim 1, wherein the magnetic head has a structure in which the nitrogen composition is modulated in the film thickness direction. Here, M is Zr, Nb, Ta, Hf, Ti, Mo, C
It consists of one or more elements among r, W, Mn, Re, and Ru, and a and b represent atomic ratios and satisfy the following formula. 0.70≦a≦0.95 0.05≦b≦0.30 a+b=1.0
JP33395390A 1990-11-29 1990-11-29 Magnetic head Pending JPH04205804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33395390A JPH04205804A (en) 1990-11-29 1990-11-29 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33395390A JPH04205804A (en) 1990-11-29 1990-11-29 Magnetic head

Publications (1)

Publication Number Publication Date
JPH04205804A true JPH04205804A (en) 1992-07-28

Family

ID=18271830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33395390A Pending JPH04205804A (en) 1990-11-29 1990-11-29 Magnetic head

Country Status (1)

Country Link
JP (1) JPH04205804A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311610A (en) * 1987-06-12 1988-12-20 Hitachi Metals Ltd Composite magnetic head
JPH01229408A (en) * 1988-03-09 1989-09-13 Matsushita Electric Ind Co Ltd Magnetic head
JPH01276410A (en) * 1988-04-27 1989-11-07 Seiko Epson Corp Magnetic head
JPH01315109A (en) * 1988-06-15 1989-12-20 Alps Electric Co Ltd Amorphous soft magnetic film and magnetic head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63311610A (en) * 1987-06-12 1988-12-20 Hitachi Metals Ltd Composite magnetic head
JPH01229408A (en) * 1988-03-09 1989-09-13 Matsushita Electric Ind Co Ltd Magnetic head
JPH01276410A (en) * 1988-04-27 1989-11-07 Seiko Epson Corp Magnetic head
JPH01315109A (en) * 1988-06-15 1989-12-20 Alps Electric Co Ltd Amorphous soft magnetic film and magnetic head

Similar Documents

Publication Publication Date Title
JPS63191310A (en) Composite magnetic head
JPH04205804A (en) Magnetic head
JPH03116409A (en) Magnetic head
JPS63298806A (en) Composite magnetic head
JPH06309620A (en) Magnetic head
JP2643425B2 (en) Magnetic head
KR960015990B1 (en) Magnetic head structure
JPS63275005A (en) Composite magnetic head
JP3147434B2 (en) Magnetic head
JPH04205805A (en) Magnetic head
JPH04106706A (en) Magnetic head
JPH0366008A (en) Magnetic head
JPH04111207A (en) Magnetic head
JPH04245005A (en) Magnetic head and its manufacture
JPH02192006A (en) Magnetic head and production thereof
JPH02257404A (en) Mig system magnetic head
JPH0128490B2 (en)
JPH05217106A (en) Magnetic head
JPH04195707A (en) Magnetic head and its manufacture
JPH06203323A (en) Magnetic head and its production
JPS58125222A (en) Magnetic head
JPH08255308A (en) Production of composite magnetic head
JPH03113705A (en) Production of composite magnetic head
JPH03242809A (en) Magnetic head
JPH08115505A (en) Magnetic head